Skip to main content

Some Results on a Growth Model Governed by a Fractional Differential Equation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12013))

Abstract

We define a deterministic growth model which generalizes both the Gompertz and the Korf law in a fractional way. We provide lower bounds for the solution of the corresponding initial value problem and discuss how the introduction of “memory effects” affects the shape of such functions. We also compute maximum and inflection points.

Paper partially supported by MIUR - PRIN 2017, project “Stochastic Models for Complex Systems”. The authors are members of the INdAM Research group GNCS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almeida, R., Bastos, N.R., Monteiro, M.T.T.: Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci. 39(16), 4846–4855 (2016)

    Article  MathSciNet  Google Scholar 

  2. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. World Scientific Publishing Company, Singapore (2016)

    Book  Google Scholar 

  3. Benzekry, S., et al.: Classical mathematical models for description and prediction of experimental tumor growth. PLOS Comput. Biol. 10(8), e1003800 (2014)

    Article  Google Scholar 

  4. Bhowmick, A.R., Bhattacharya, S.: A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala. Math. Biosci. 254, 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bolton, L., Cloot, A.H., Schoombie, S.W., Slabbert, J.P.: A proposed fractional-order Gompertz model and its application to tumour growth data. Math. Med. Biol. 32(2), 187–207 (2014)

    Article  MathSciNet  Google Scholar 

  6. D’Ovidio, M., Loreti, P., Ahrabi, S.S.: Modified fractional logistic equation. Physica A 505, 818–824 (2018)

    Article  MathSciNet  Google Scholar 

  7. Di Crescenzo, A., Paraggio, P.: Logistic growth described by birth-death and diffusion processes. Mathematics 7(6), 489 (2019)

    Article  Google Scholar 

  8. Di Crescenzo, A., Spina, S.: Analysis of a growth model inspired by Gompertz and Korf laws, and an analogous birth-death process. Math. Biosci. 282, 121–134 (2016)

    Article  MathSciNet  Google Scholar 

  9. Frunzo, L., Garra, R., Giusti, A., Luongo, V.: Modelling biological systems with an improved fractional Gompertz law. Commun. Nonlinear Sci. Numer. Simul. 74, 260–267 (2019)

    Article  MathSciNet  Google Scholar 

  10. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simulat. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hafiz, M.A.W., Hifzan, M.R., Bahtiar, I.A.J., Ariff, O.M.: Describing growth pattern of Brakmas cows using non-linear regression models. Mal. J. Anim. Sci. 18(2), 37–45 (2015)

    Google Scholar 

  12. Paine, C.E.T., et al.: How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3(2), 245–256 (2012)

    Article  Google Scholar 

  13. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Elsevier (1998)

    Google Scholar 

  14. Sambandham, B., Aghalaya, V.: Basic results for sequential Caputo fractional differential equations. Mathematics 3(1), 76–91 (2015)

    Article  Google Scholar 

  15. Sedmk, R., Scheer, L.: Modelling of tree diameter growth using growth functions parameterised by least squares and Bayesian methods. J. For. Sci. 58(6), 245–252 (2012)

    Article  Google Scholar 

  16. Talkington, A., Durrett, R.: Estimating tumor growth rates in vivo. Bull. Math. Biol. 77(10), 1934–1954 (2015). https://doi.org/10.1007/s11538-015-0110-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsoularis, A., Wallace, J.: Analysis of logistic growth models. Math. Biosci. 179(1), 21–55 (2002)

    Article  MathSciNet  Google Scholar 

  18. Varalta, N., Gomes, A.V., Camargo, R.F.: A prelude to the fractional calculus applied to tumor dynamic. TEMA Tendências em Matemática Aplicada e Computacional 15(2), 211–221 (2014)

    MathSciNet  Google Scholar 

  19. Zwietering, M.H., Jongenburger, I., Rombouts, F.M.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56(6), 1875–1881 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Crescenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Crescenzo, A., Meoli, A. (2020). Some Results on a Growth Model Governed by a Fractional Differential Equation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12013. Springer, Cham. https://doi.org/10.1007/978-3-030-45093-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45093-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45092-2

  • Online ISBN: 978-3-030-45093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics