Skip to main content

VNS and PBIG as Optimization Cores in a Cooperative Optimization Approach for Distributing Service Points

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12013))

Included in the following conference series:

Abstract

We present a cooperative optimization approach for distributing service points in a geographical area with the example of setting up charging stations for electric vehicles. Instead of estimating customer demands upfront, customers are incorporated directly into the optimization process. The method iteratively generates solution candidates that are presented to customers for evaluation. In order to reduce the number of solutions presented to the customers, a surrogate objective function is trained by the customers’ feedback. This surrogate function is then used by an optimization core for generating new improved solutions. In this paper we investigate two different metaheuristics, a variable neighborhood search (VNS) and a population based iterated greedy algorithm (PBIG) as core of the optimization. The metaheuristics are compared in experiments using artificial benchmark scenarios with idealized simulated user behavior.

Thomas Jatschka acknowledges the financial support from Honda Research Institute Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouamama, S., Blum, C., Boukerram, A.: A population-based iterated greedy algorithm for the minimum weight vertex cover problem. Appl. Soft Comput. 12(6), 1632–1639 (2012)

    Article  Google Scholar 

  2. Chen, T., Kockelman, K.M., Khan, M.: The electric vehicle charging station location problem: a parking-based assignment method for Seattle. In: 92nd Annual Meeting of the Transportation Research Board in Washington DC (2013)

    Google Scholar 

  3. Cornuéjols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp. 119–171. Wiley, New York (1990)

    Google Scholar 

  4. Liefooghe, A., Paquete, L. (eds.): EvoCOP 2019. LNCS, vol. 11452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16711-0

    Book  MATH  Google Scholar 

  5. Kameda, H., Mukai, N.: Optimization of charging station placement by using taxi probe data for on-demand electrical bus system. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6883, pp. 606–615. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23854-3_64

    Chapter  Google Scholar 

  6. Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. SCI, vol. 356, pp. 33–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20859-1_3

    Chapter  MATH  Google Scholar 

  7. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user fatigue in iGAs: Partial ordering, support vector machines, and synthetic fitness. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1363–1370. ACM, New York (2005)

    Google Scholar 

  8. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  9. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxonomy of interactive optimization methods in operations research. ACM Trans. Interact. Intell. Syst. 5(3), 17:1–17:43 (2015)

    Article  Google Scholar 

  10. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jatschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jatschka, T., Rodemann, T., Raidl, G.R. (2020). VNS and PBIG as Optimization Cores in a Cooperative Optimization Approach for Distributing Service Points. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12013. Springer, Cham. https://doi.org/10.1007/978-3-030-45093-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45093-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45092-2

  • Online ISBN: 978-3-030-45093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics