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Abstract. With the increasing number of created and deployed pre-
diction models and the complexity of machine learning workflows we
require so called model management systems to support data scientists
in their tasks. In this work we describe our technological concept for such
a model management system. This concept includes versioned storage of
data, support for different machine learning algorithms, fine tuning of
models, subsequent deployment of models and monitoring of model per-
formance after deployment. We describe this concept with a close focus
on model lifecycle requirements stemming from our industry application
cases, but generalize key features that are relevant for all applications of
machine learning.
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1 DMotivation

In recent years, applications of machine learning (ML) algorithms grew signifi-
cantly, leading to an increasing number of created and deployed predictive mod-
els. The iterative and experimental nature of ML workflows further increases
the number of models created for one particular ML use case. We require so
called model management systems to support the full ML workflow and to cover
the whole lifecycle of a predictive model. Such a model management system
should improve collaboration between data scientist, ensure the replicability of
ML pipelines and therefore increase trust in the created predictive models. To
highlight the need for model management systems we follow a typical machine
learning process and identify shortcomings or problems occurring in practice,
that could be mitigated by a model management system.

! The final publication is available at |https://link.springer.com/chapter/10.1007/
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1.1 Model management in the machine learning workflow

A typical ML workflow, as described by the CRISP-DM data mining guide [1]
and illustrated in Figure|l} is a highly iterative process. Business Understanding
and Data Understanding is gained through assessment of the particular ML use
case and the initial gathering and analysis of data. Meticulous Data Preparation,
cleaning of data and feature engineering, is an important prerequisite for good
modeling results, as selection and data transformation are critical for success-
ful application of ML methods. In the subsequent Modeling task, different ML
frameworks and algorithms are applied. Therein, it is necessary to test a variety
of algorithm configurations. It is common that the data preparation step and
modeling step are repeated and fiddled with, until satisfying results are achieved.
Analysis of applied data preparation techniques and their affect on model qual-
ity can provide insights on the physical system and improve future modeling
tasks in this domain. Similarly, comparison of all Fvaluation results can pro-
vide additional insights about suitable algorithm configurations for similar ML
problems.
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Fig. 1. Visualization of the typical machine learning workflow as described in the
CRISP-DM 1.0 Step-by-step data mining guide [1]

Finally, when a suitable model is discovered, it is deployed to the target
system. Typical ML workflows often end with this step. However, because of
changes to the system’s environment, i.e. concept drift, the model’s predictive
accuracy can deteriorate over time. Information about the several ML workflow
steps that led to the deployed model might be forgotten, lost, or scattered around
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different files or knowledge systems. Model management systems should aid by
tracking the complete ML workflow and saving every intermediate artefact in
order to ensure replicability.

1.2 Managing the model lifecycle - industrial applications

Predictive models are increasingly deployed to so-called edge computing devices,
which are installed close to the physical systems, e.g. for controlling production
machines in industry plants. In such scenarios, predictive models usually need to
be tuned for each particular installation and environment, resulting in many dif-
ferent versions of one model. Additionally, models need to be updated or re-tuned
to adapt to slowly changing systems or environmental conditions, i.e. concept
drift. Once a tuned model is ready for deployment, the model needs to be vali-
dated to ensure the functional safety of the plant. The heterogenous landscape of
ML frameworks, their different versions and software environments, further in-
creases difficulty of deployment. We argue that model management system need
to ML should borrow well established concepts from software development, i.e.
continuous integration, continuous delivery, to cope with fast model iterations,
and to cover the whole model lifecycle.

In a subsequent phase, the deployed model’s prediction performance, during
production use, needs to be monitored to detect concept drift or problems in
the physical system. Continuous data feedback from the physical system back to
the model management system provides additional data for training, and future
model validation.

2 Related work

Kumar et al. [5] have fairly recently published a survey on research on data man-
agement for machine learning. Their survey covers different systems, techniques
and open challenges in this areas. Each surveyed project is categorized into one
of three data centric categorizations:

ML in Data Systems cover projects that combine ML frameworks with ex-
isting data systems. Projects like Vertica [7], Atlas [9] or Glade [2] integrate
ML functionality into existing DBMS system by providing user-defined ag-
gregates that allow the user to start ML algorithms in an SQL like syntax,
and provide models as user-defined functions.

DB-Inspired ML Systems describe projects that apply DB proven concepts
to ML workloads. Most projects apply these techniques in order to speedup
or improve ML workloads. This includes techniques like asynchronous exe-
cution, query rewrites and operator selection based on data clusters, or ap-
plication of indices or compression. ML.NET Machine Learning as described
by Interlandi et al. [4] introduces the so called DataView abstraction which
adapts the idea of views, row cursors or columnar processing to improve
learning performance.
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ML Lifecycle Systems go beyond simply improving performance or quality
of existing ML algorithms. These systems assist the data-scientist in different
phases of the ML workflow. In their survey, Kumar et al. [5] further detail
the area of ML Lifecycle Systems and introduce so called Model Selection
and Management systems. These systems assist not one but many phases of
the ML lifecycle.

One representative of Model Selection and Management systems is described
by Vartak et al. [8]. Their so called ModelDB, is a model management system for
the spark.ml and scikit-learn machine learning frameworks. ModelDB provides
instrumented, wrapped APIs replacing the standard Python calls to spark.ml
or scikit-learn. The wrapped method calls the ML framework functionality and
sends parameters or metadata of the modelling process to the ModelDB-Server.
This separation allows ModelDB to be ML framework agnostic, given that the
ModelDB API is implemented. Their system provides a graphical user interface
(GUI) that compares metrics of different model versions and visualizes the ML
pipeline which lead to each model as a graph. However, ModelDB only stores the
pipeline comprised of ML instructions that yielded the model. ModelDB does
not store the model itself, training data, or metadata about the ML framework
version. External changes to the data, for example, are not recognized by the
system and could hamper replicability.

Another representative, ProvDB, as described by Miao et al. [6] uses a version
control system (e.g. git) to store the data and script files and model files created
during the ML lifecycle in a versioned manner. Therein, scripts can be used
for either preprocessing or to call ML framework functionalities. Git itself only
recognizes changes to the files and therefore treats changes to data, script or
model files equally. In order to store semantic connections between e.g. data
versions and their respective preprocessing scripts or the connection between
data, the ML script and the resulting model, ProvDB uses a graph database (e.g.
Neodj) on top. Provenance of files and metadata about the ML workflow, stored
in the graph database, can be recorded through the ProvDB command line or
manually defined through the file importer tool or the ProvDB GUI. This design
allows ProvDB to support data and model storage of any ML framework given
that these artefacts can be stored as files and are committed to git. However,
automatic parsing and logging of instructions to the ML framework only works in
the ProvDB command line environment. Inside the ProvDB environment, calls
to the ML framework and their parameters are first parsed and then forwarded
which requires ML frameworks that provide a command line interface.

Similar to ProvDB we aim to store all artefacts created during the ML life-
cycle and allow the definition of semantic connections between these artefacts.
Our approach differs from ProvDB as we plan to use a relational database for
the data persistence and aim to develop a tighter integration to the actual ML
framework, comparable to the API approach of ModelDB. Moreover, we aim to
support tuning, automated validation and deployment of ML models and provide
functionality to monitor performance of deployed models.
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In their conclusion Kumar et al. identify the area of ” Seamless Feature
Engineering and Model Selection”, systems that support end-to-end ML work-
flows, as important open areas in the field of data management for machine
learning. They highlight the need for fully integrated systems that support the
machine learning lifecycle, even if it only covers a single ML system/framework.

3 Design and architecture

In the following section we describe our concept of a model management system.
This system is designed to be ML framework agnostic. Integration into the open
source ML framework HeuristicLalfL which is being developed and maintained
by our research group, will serve as a prototypical template implementation.
Figure [2] serves as illustration of the data-flows and individual components of
the model management system described in the following sections. The described
system can be used either locally by a single user or as a centralized instance
to enables collaboration of different users. The model management system is
described by the following key features:

— Centralized and versioned data storage for all artefacts of the ML framework.
Definition of semantic connections between the different artefacts.

Storage API for ML framework integration.

Automatic evaluation of models on semantically connected snapshots.
Bundling of models for deployment and subsequent monitoring.
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Fig. 2. Visualization of interaction between the envisioned model management sys-
tem, a machine learning framework (e.g. HeuristicLab) and an external physical target
system.

! https://dev.heuristiclab.com
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3.1 Data management

The accuracy of prediction models, achievable by different ML algorithms, de-
pends on the quality of the (training) data. Errors in data recording, or wrong
assumptions made during business- and data-understanding phase affect data
preparation and are therefore carried over to the modeling phase and will subse-
quently result in bad models. Though, bad models are not solely caused by poor
data quality, as a model can become biased if certain information, contained in
the dataset, was then not present in the training portion of the ML algorithm.
These problems are especially hard to combat or debug if the connection between
a specific model version and its training data was not properly documented or if
the information is scattered around different knowledge bases and therefore hard
to connect and retrieve. A model management system should therefore provide
an integrated, versioned data-storage.

ML frameworks and supported preprocessing tools need to be able to query
specific version of data, i.e. snapshots, from the database. Preprocessing tools
also need to be able to store modified data as new snapshots. Additionally, data
scientists should be able define semantical relations between snapshots. This
connections can be used to mark compatible datasets that stem from similar
physical systems or are a more recent data recording of the same system, as also
discussed in Section In such cases a model management system could auto-
matically evaluate a model’s prediction accuracy on compatible snapshots. The
same semantic connections can be used to connect base datasets with the specific
datasets from physical systems for model tuning. When a new, better model on
the base dataset is created the model management system can automatically
tune it to all connected specific datasets.

3.2 Model management

The section model management loosely encompasses all tasks and system com-
ponents related to the ML model, this includes the ML training phase and the
resulting predictive model, fine tuning the model to fit system specific data sets,
evaluation of models (on training sets or physical system data) and the subse-
quent deployment of validated models.

Model creation or model training In order to conveniently support the ML
workflow, a model management system should impose no usability overhead.
In case of the Modeling phase this means that necessary instrumentation of
ML framework methods, to capture ML artefacts, should not affect usage or
require changes in existing pipelines/scripts. Therefore, method signatures of
the ML framework must stay the same. Functionally, the model management
system has to be able to capture all ML framework artefacts, configurations
and metadata necessary to fully reproduce the training step. In our concept
for a model management system we intend to provide an easy to use API for
capturing artefacts that can be integrated by any ML framework. The resulting
knowledge base of tried and tested ML algorithm parameters for a variety of
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ML problems can serve as a suggestion for suitable configurations for future
experiments, or meta-heuristic optimization for problem domains.

Model evaluation Besides ensuring replicability of the ML workflow, a model
management system should also aid in the evaluation of models. In practice we
require evaluation of a model’s prediction accuracy not only on the test section
of data, but also on ”"older” data snapshots, to evaluate whether a new model
actually has achieved equal or better predictive quality than it’s predecessor.

Similarly, functional safety of the prediction models in their production envi-
ronments can be ensured by automated validation of models on past production
data or on simulations of the physical system. This model evaluation process
can be seen as the analogy of unit tests in the continuous development process.
Facilitation of the semantic connections between datasets provides the necessary
information these evaluation steps.

Model tuning Predictive models often need to be tuned in order to describe a
specific target system. Model tuning refers to the task of using ML algorithms to
adapt an existing predictive model, or model structure, to fit to a specific previ-
ously unknown environment. Model tuning can be used to fit an existing model
to its changed environment after a concept drift was detected. Likewise, tuning
can improve or speedup the ML workflow by using an existing, proven model
as a starting point to describe another representative of a similar physical sys-
tem. If a model type and ML framework support tuning, the model management
system can trigger this tuning process and subsequent evaluation automatically.
This process reassembles automated software build processes. If concept drift is
detected or automated model tuning is enabled for a physical system, the model
management system can take action autonomously.

3.3 Model deployment

The model management system should aid in the deployment of prediction mod-
els. This means providing the model bundled with all libraries necessary for
execution of the model. The heterogenous landscape of ML frameworks and
their different versions and software environments can cause compatibility is-
sues on the target system. Crankshaw et al. [3] describe a system called Clipper,
that solves this problem by deploying the model and its libraries bundled inside
Docker images. This technique could also aid in distribution of the model, as
the Docker ecosystem includes image management applications, that host image
versions and provide deployment mechanisms. By applying this technique, the
model management system can ensure executability and solve delivery of models
to the target system.

3.4 Data feedback

Our concept for a model management system includes a data gathering compo-
nent to capture feedback in the form of production data from the edge device.
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Monitoring of the model’s prediction accuracy during deployment and evalua-
tion of the model on the production data enables the model management system
to detect concept drift and to tune and subsequently re-deploy tuned models.
The software necessary for monitoring and data gathering can be deployed to
the edge device by addition to the bundle created during model deployment.

4 Summary

In this work we described our technological concept for a model management
system. We describe the different features and components that are necessary to
fully capture the machine learning lifecycle to ensure replicability of modeling re-
sults. Application of predictive models in industrial scenarios provides additional
challenges regarding validation, monitoring, tuning and deployment of models
that are addressed by the model management system. We argue that advances in
model management are necessary to facilitate the transition of machine learning
from an expert domain into a widely adopted technology.
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