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Abstract. The electrocardiogram (ECG) was the first biomedical sig-
nal subject of extensive digital signal processing techniques. Essentially,
the ECG consists of a cyclic sequence of relevant activations embedded
into inactivity time sequences combined with interferences and noise. By
its nature, it can be subject of representation as a sparse signal. This
work describes an efficient method to create overcomplete multi-scale
dictionaries that can be used for sparse ECG representation. Whereas
most of the proposed methods to date use fixed waveforms that some-
how resemble actual ECG shapes, the main innovation in our approach
is selecting ECG waveforms recorded from actual patients. A relevant
result of our method is the ability to process long lasting recordings
from multiple patients. Simulations on patient actual records from Phy-
sionet’s PTB Diagnostic ECG Database confirm the good performance
of the proposed approach.

Keywords: Electrocardiogram (ECG) · LASSO · Overcomplete
multi-scale signal representation · Dictionary construction · Sparse
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1 Introduction

It is a well known fact that, since the viable introduction of the electrocardiogram
(ECG) recording, its use has become so widespread that it is now commonly used
in the health-care sector for obtaining indicators of patient health status. The
use and interpretation of the ECG has been dramatically extended by means of
the application of digital signal processing (DSP) techniques. Noise and interfer-
ence removal, extraction of specific signals from the composite ECG, detection
and characterization of waveforms are examples of solutions provided by DSP
techniques [3].

The time representation of an ECG shows cyclic waveforms corresponding
to QRS complexes, as well as P and T waveforms, embedded into non active
time sequences corresponding to isoelectric intervals, all this together with noise
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and interferences [12]. Therefore, the ECG can be considered a sparse signal. A
number of sparse inference and representation techniques have been proposed for
many types of signals (images, audio, recordings, biomedical waveforms, etc.) [4]
since the introduction of the Least Absolute Shrinkage and Selection Operator
(LASSO) regularizer [13].

Most of the works done regarding electrocardiographic signal processing and
aiming for sparse representation of single-channel or multi-channel ECGs [1,9,11,
14] use fixed arbitrary waveforms that somehow resemble the characteristic shape
of a QRS complex (e.g., a mexican hat wavelet). This type of approach leads to
practical positive results that usually include a number of spurious activations
which need a removal procedure before their potential use as physiologically
interpretable signals. This is typically performed using a post-processing stage
[9,11] or by minimizing a complex non-convex cost function [10].

In this work, the authors propose a method to conform a multi-scale dic-
tionary derived from a set of atoms that have their origin in ECG waveforms
recorded from actual patients. The aforementioned dictionary is then used to
obtain spare representations of ECGs using the LASSO regularizer. Numerical
simulations show that the proposed approach leads to very sparse representations
that both represent al QRS complexes without misses while lacking spurious
activations, which eliminates the need for any post-processing.

The rest of this document is organized as follows. The next section states the
problem of sparse representation of ECG signals, with special emphasis in the
relevance of counting on an appropriate dictionary. Then, Sect. 3 describes the
procedure followed to derive a multi-scale dictionary from one or more atoms
that have their origin in ECG waveforms recorded from actual patients. Finally,
the next section provides the results of experiments that validate the proposed
approach using ECG records from the Physikalisch-Technische Bundesanstalt
(PTB) [5] database from PhysioNet and the conclusions close the paper.

2 Sparse Representation Problem Formulation

Let us consider a single-lead discrete-time ECG, y[n], obtained from a prop-
erly filtered and amplified continuous-time single-lead ECG, yc(t), using uniform
sampling with a period Ts = 1/fs, i.e., y[n] = yc(nTs). Assuming that this signal
is obtained as the superposition of a number of waveforms of interest (essentially
QRS complexes, P and T waveforms) plus noise and interferences, then y[n] can
be expressed as:

y[n] =
∞∑

k=−∞
EkΦk(tn − Tk) + ε[n], n = 0, . . . , N − 1, (1)

where Tk denotes the arrival time of the k-th electrical pulse; Ek its amplitude;
Φk the associated, unknown pulse shape; and ε[n] an additive, white Gaussian
noise (AWGN) with variance σ2. Equation (1) is known in the literature as the
shot-noise model, and it is commonly used in the digital signal processing of
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biomedical signals. Note that, in real-world applications neither Φk, Tk nor Ek

are known. Even so, if the most common shapes and durations of Φk are known,
each one can be approximated using a time-shifted, multi-scale dictionary of
waveforms from actual patients recordings with finite support M � N and
this approximation can then be used to infer the values of Ek and Tk. More
precisely, let us define a set of P candidate waveforms, Γp for p = 1, . . . , P ,
with a finite support of Mp samples such that M1 < M2 < · · · < MP and
M = maxp=1,...,P Mp = MP . If properly chosen, these waveforms will provide
a good approximation of the local behavior of the signal around each sampling
point, thus allowing us to approximate (1) through the following model:

y[n] =
N−M−1∑

k=0

P∑

p=1

βk,pΓp[n − k] + ε[n], n = 0, . . . , N − 1, (2)

where the βk,p indicate the amplitude of the p-th waveform shifted to the
k-th time instant, tk = kTs. It is possible to group all the candidate waveforms
into a single matrix A = [A0 A1 · · · AN−M−1], where the N × P matrices
Ak (for k = 0, . . . , N − M − 1) have column entries equal to Γp[m − k] for
m = k, . . . , k +M −1 and 0 otherwise. With this grouping, the model of (2) can
be expressed in matrix form as follows:

y = Aβ + ε, (3)

where y = [y[0], . . . , y[N −1]]� is an N ×1 vector with all the ECG samples, β =
[β0,1, . . . , β0,P , . . . , βN−M−1,1, . . . , βN−M−1,P ]� is an (N − M)P × 1 coefficients
vector, and ε = [ε[0], . . . , ε[N − 1]]� is the N × 1 noise vector. Note that matrix
A can be seen as a global dictionary that contains N − M replicas, Ak for
k = 0, 1, . . . , N − M − 1, of the candidate waveforms time shifted to t0 = 0,
t1 = Ts, . . . , tN−M−1 = (N − M − 1)Ts. Two measures can now be taken to
cope with the uncertainty about the shape and duration of the pulses that can
be found in y[n]: using several different waveforms with distinct timescales. The
result is a time-shifted, multi-scale overcomplete (as (N −M)P > N) dictionary.
It is important to remark that, once the dictionary signals are defined, the only
remaining unknown term in (3) is β. In this case, since the presence of relevant
waveforms in y[n] is typically sparse, the usual approach consists in enforcing
sparsity in β by applying the so called LASSO, which minimizes a convex cost
function composed of the L2 norm of the reconstruction error and the L1 norm
of the coefficient vector,

β̂ = arg minβ ‖y − Aβ‖22 + λ‖β‖1, (4)

where λ is a parameter defining the trade-off between the sparsity of β and the
precision of the estimation.

3 Multi-scale Dictionary Derivation

As noted in the introduction, most previous works related to construction of sub-
dictionaries Ak typically use a single waveform unrelated to actual ECG wave-
forms, like Gaussians [11] with different variances or the mexican hat wavelet
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[9]. This work is an extension of [8], where a single waveform was used to con-
struct the dictionary. This extension aims to populate a dictionary with multiple
waveforms derived from actual ECG patients recordings, selected on the basis
of a distance metric. Let Q = 52 be the recording sessions from different healthy
control subjects in the database where, for simplicity reasons, a single channel
is considered corresponding to the precordial V4 electrode. The following steps
have been applied to each one of the sessions:

1. Identification of the fiducial points of every QRS complex in the session fol-
lowing the approach described in [6]. As a result, the characterization set of
all the P-QRS-T waveforms is available in the session.

2. Discard of those records for which fiducial points cannot be reliably found. For
the remaining records, all identified QRS complexes are extracted, centered
with respect to R and resampled in such a way that they all end up being
described with the same number of samples as the longest one, Li samples.

3. Derivation of the average QRS waveform corresponding to a subject. The
standard deviation is also computed as a safety measure: if it is too large, the
resulting waveform is discarded.

At this point, a number of Q′ ≤ Q average waveforms are made finally
available from different patients. All of them can potentially be used to build
sub-dictionaries. All Q′ waveforms are highly correlated and thus using them
all would result in a dictionary that would provide a poor performance and
lead to high computation consumption. Therefore, in order to obtain a reduced
dictionary composed of a few waveforms as differentiated as possible, we perform
the following procedure:

1. Resample all the average QRS waveforms in such a way that they all have
exactly the same number of samples as the longest one, L = maxi=1,...,Q′ Li

samples.
2. Normalize all the waveforms by removing their means and dividing by the

square root of their �2 norms. Remove border effects following the technique
described in [7].

3. Compute the correlation coefficient among each pair of waveforms,1

ρij =
Cij√
CiiCjj

, (5)

where Cij denotes the cross-covariance between the i-th and j-th waveforms
at lag 0 (i.e., without any time shift).

4. Select the waveform with the highest average correlation (in absolute value)
with respect to the rest of candidate waveforms, i.e.,

� = arg maxi=1,...,Q′

Q′∑

j=1

|ρij |, (6)

1 In practice, this only has to be done Q′(Q′ − 1)/2 times, since ρii = 1 ∀i thanks to
the normalization and ρij = ρji.
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Fig. 1. Q′ = 44 reliable average QRS complexes extracted from the Q = 52 healthy
patients in the PTB database after resampling, normalization and removal of border
effects.

which corresponds to the most representative waveform of all candidate wave-
forms.

5. If a number K > 1 of atoms is needed, additional waveforms can be sequen-
tially selected from the remaining waveforms set:
(a) Select the waveform with the highest average correlation (in absolute

value) with respect to the remaining candidate waveforms (to obtain rep-
resentative dictionary atoms).

(b) Compute the correlation of the selected waveform w.r.t. the already
accepted waveforms. If this correlation (in absolute value) is below a pre-
established threshold γ (to avoid similar atoms), then accept it. Other-
wise, discard it. In any case, remove the selected waveform from the pool
of candidates.

Once K waveforms have been selected, all of them are resampled in order
to obtain a multi-scale sub-dictionary composed of T different time scales. Note
that the total number of available waveforms in the resulting dictionary is thus
P = KT . Note also that the global dictionary is simply obtained by performing
N − M different time shifts on the resulting sub-dictionary [9].

4 Experimental Results

In this section we present the experimental results obtained both for building
the dictionary and to perform sparse reconstruction of a number of actual ECG
signals using it.
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Fig. 2. Sub-dictionary composed of six R-centered average QRS waveforms.

4.1 Dictionary Construction

In order to construct the dictionary, we use the Physikalisch-Technische Bun-
desanstalt (PTB) database, compiled by the National Metrology Institute of
Germany for research, algorithmic benchmarking and teaching purposes [2].
The ECGs were collected from healthy volunteers and patients with different
heart diseases by Prof. Michael Oeff, at the Dep. of Cardiology of Univ. Clinic
Benjamin Franklin in Berlin (Germany), and can be downloaded from Physionet
[5]. The database contains 549 records from 290 subjects (aged 17 to 87 years),
where each record includes 15 simultaneously measured signals: the 12 standard
leads plus the 3 Frank lead ECGs [3,12]. Each signal is digitized using a sampling
frequency fs = 1000 Hz with a 16 bit resolution.

Out of the 268 subjects for which the clinical summary is available, we
selected the Q = 52 healthy control patients in order to build the dictionary.
From those patients, we were able to obtain reliable average QRS complexes in
Q′ = 44 patients. The average waveforms for these 44 patients, after resampling
to L = 100 samples, normalization and removal of border effects, can be seen
in Fig. 1. Note the large similarity among all waveforms when they are centered
around the R peak. Given this set of average waveforms, the previously described
selection process for atoms is performed. Figure 2 shows a sub-dictionary com-
posed of the 6 atoms obtained by setting γ = 0.9. To finalize the construction of
the dictionary, from each sub-dictionary atom a number of related waveforms are
derived by resampling, so that each one has a duration that ranges from 60 ms to
160 ms in 10 ms steps. Hence, the resulting dictionary contains P = 6 × 11 = 66
waveforms that can be easily time shifted in order to construct the sparse ECG
representations performed in the following section.
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4.2 Sparse ECG Representation

Now we test the constructed dictionary on 5 healthy patients from the PTB
database. In order to solve (4), we use the CoSA (Convolutional Sparse Approx-
imation) algorithm recently proposed in [15], which allows us to process the
whole signals (approximately 115200 samples, nearly 2 min of recorded time
each) at once (i.e., without having to partition them into several segments that
have to be processed separately) in a reasonable amount of time. Since several
signals showed a significant degree of baseline wander, before applying CoSA
all signals were previously filtered using a third-order high-pass IIR (infinite
impuse response) Butterworth filter designed using Matlab’s filterDesigner:
stop-band frequency fstop = 0.1 Hz, pass-band frequency fpass = 1 Hz, mini-
mum stop-band attenuation Astop = 40 dB, and maximun pass-band attenuation
Apass = 1 dB.

The results are displayed in Table 1, where each row is identified by the record
patient number, the degree of sparsity (measured as the percentage of non-zero
coefficients in β), and the relative error (measured as the percentage of the �2
norm of the residual error w.r.t. the �2 norm of the signal). Note the large degree
of sparsity attained, which is slightly lower in all cases than the one achieved
in [8]. The large relative error shown is due to the fact that the dictionary is
optimized for the detection of the QRS complexes (which is usually the first
step in ECG signal processing) and does not recover other existing waveforms
in the signal (like P and T waves). This can be easily corrected by incorporating
additional waveforms to the dictionary in the future. However, note also that
this error is substantially lower than the one achieved in [8] using K = 1, thus
confirming the interest of building dictionaries with multiple waveforms.

Table 1. Sparsity and relative error for 5 signals from the PTB database using the
derived dictionary for K = 1 [8] and K = 6.

Signal K = 1 K = 6

Sparsity Rel. error Sparsity Rel. error

104 2.84% 30.14% 2.18% 9.89%

105 1.82% 57.74% 1.10% 30.93%

116 1.24% 49.69% 1.05% 14.10%

121 1.53% 24.39% 1.28% 4.94%

122 3.44% 36.23% 2.51% 13.58%

5 Conclusions

In this paper, we have presented a simple mechanism to build multi-scale dictio-
naries using several distinct QRS complexes directly extracted from real-world
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signals. The proposed approach has been used to model ECG signals from
healthy patients, showing promising results in terms of the achieved sparsity
and the reconstruction error. Future works will focus on the extension of this
procedure to patients with cardiac diseases (where robust methods for fiducial
point extraction will be essential) and the construction of dictionaries for the
other relevant waveforms in the ECG (P and T waves).
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LASSO. In: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 6118–6122 (2013)

11. Monzón, S., Trigano, T., Luengo, D., Artes-Rodriguez, A.: Sparse spectral analysis
of atrial fibrillation electrograms. In: IEEE International Workshop on Machine
Learning for Signal Processing, pp. 1–6 (2012)

12. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, vol. 8. Academic Press, Boston (2005)

13. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat.
Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

14. Trigano, T., Kolesnikov, V., Luengo, D., Artés-Rodŕıguez, A.: Grouped sparsity
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