Big Data Analytics for Time-Critical Mobility Forecasting

George A. Vouros • Gennady Andrienko • Christos Doulkeridis • Nikolaos Pelekis • Alexander Artikis • Anne-Laure Jousselme • Cyril Ray • Jose Manuel Cordero • David Scarlatti Editors

Big Data Analytics for Time-Critical Mobility Forecasting

From Raw Data to Trajectory-Oriented Mobility Analytics in the Aviation and Maritime Domains

Editors

George A. Vouros Department of Digital Systems University of Piraeus Piraeus, Greece

Christos Doulkeridis Department of Digital Systems University of Piraeus Piraeus, Greece

Alexander Artikis Complex Event Recognition Group NCSR "Demokritos" Agia Paraskevi, Greece

Cyril Ray Naval Research Institute (IRENav) Arts & Metiers-Paris Tech Brest, France

David Scarlatti Boeing Research & Technology Europe Madrid, Spain Gennady Andrienko Intelligent Analysis & Info Systems Fraunhofer Institute IAIS Sankt Augustin, Germany

Nikolaos Pelekis Department of Statistics and Insurance Science University of Piraeus Piraeus, Greece

Anne-Laure Jousselme Centre for Maritime Research and Experimentation (CMRE) NATO Science and Technology Organization (STO) La Spezia, Italy

Jose Manuel Cordero Edificio Allende CRIDA Madrid, Spain

ISBN 978-3-030-45163-9 ISBN 978-3-030-45164-6 (eBook) https://doi.org/10.1007/978-3-030-45164-6

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

This book is dedicated to all those who struggle for a better own and others' trajectory with philotimo, ¹ respect and with no obsession.

¹Philotimo (or filotimo) is a Greek word, which is difficult to translate. One may start from here, among other references: https://en.wikipedia.org/wiki/Philotimo.

Preface

Spatiotemporal mobility data has a significant role and impact on the global economy and our everyday lives. The improvements along the last decades in terms of data management, planning of operations, security of operations, information provision to operators and end-users have been driven by location-centered information. While a shift of paradigm regarding mobility data towards trajectoryoriented tasks is emerging in several domains, the ever-increasing volume of data emphasizes the need for advanced methods supporting detection and prediction of events and trajectories, supplemented by advanced visual analytic methods, over multiple heterogeneous, voluminous, fluctuating, and noisy data streams of moving entities. This book provides a comprehensive and detailed description of Big Data solutions towards activity detection and forecasting in very large numbers of moving entities spread across large geographical areas. Specifically, following a trajectory-oriented approach, this book reports on the state-of-theart methods for the detection and prediction of trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating, and noisy data streams from moving entities, correlating them with data from archived data sources expressing, among others, entities' characteristics, geographical information, mobility patterns, regulations, and intentional data (e.g., planned routes), in a timely manner. Solutions provided are motivated, validated, and evaluated in user-defined challenges focusing on increasing the safety, efficiency, and economy of operations concerning moving entities in the air-traffic management and maritime domains.

The book contents have been structured into six parts:

The first part provides the motivating points and background for mobility forecasting supported by trajectory-oriented analytics. It presents specific problems and challenges in the aviation (air-traffic management) and the maritime domains and clarifies operational concerns and objectives in both domains. It presents domain-specific terminology used in examples and cases, in which technology is demonstrated, evaluated/validated, throughout the book. Equally important to the above is the presentation of the data sources exploited per domain, the big data challenges ahead in both domains, and of course, the requirements from

viii Preface

technologies presented in subsequent parts of the book. These chapters present data exploited for operational purposes in the aviation and maritime domains and provide an initial understanding of spatiotemporal data through specific examples. They also present challenges and motivating points by means of operational scenarios where technology can help, putting the technologies presented in subsequent parts of the book in a unique frame: This helps us understand why technological achievements are necessary, what are the domain-specific requirements driving developments in analytics, data storage, and processing, and what are the data processing, data management, and data-driven analytics tools needed to advance operational goals towards trajectory-based operations.

The second part focuses on big data quality assessment and processing, as applied in the data sources and according to the requirements and objectives presented in the first part of the book. This, second part of the book, presents novel technologies, appropriate to serve mobility analytics components that are presented in subsequent sections. In doing so, workflows regarding data sources' quality assessment via visual analytics methods are considered to be essential to understand inherent features and imperfections of data, affecting the ways data should be processed and managed, as the first section of this part shows. In addition to this, methods for online construction of streamed data synopses are presented, towards addressing big data challenges presented by surveillance, mostly, data sources.

The third part of this book specifies solutions towards managing big spatiotemporal data: The first section specifies a generic ontology revolving around the notion of trajectory so as to model data and information that is necessary for analytics components. This ontology provides a generic model for constructing knowledge graphs integrating data from disparate data sources. In conjunction to this, this part describes novel methods for integrating data from archived and streamed data sources. Special emphasis is given to enriching data streams and integrating streamed and archival data to provide coherent views of mobility: This is addressed by real-time methods discovering topological and proximity relations among spatiotemporal entities. Finally, distributed storage of integrated dynamic and archived mobility data—i.e. large knowledge graphs constructed according to the generic model introduced—are within focus.

The next part focuses on mobility analytics methods exploiting (online) processed, synopsized, and enriched data streams as well as (offline) integrated, archived mobility data. Specifically, online future location prediction methods and trajectory prediction methods are presented, distinguishing between short-term and the challenging long-term predictions. Recognition of complex events in challenging cases for detecting complex events is thoroughly presented. In addition to this, an industry-strong maritime anomaly detection service capable of processing daily real-world data volumes is presented. This part focuses also on offline trajectory analytics, addressing trajectory clustering and detection of routes followed by mobile entities. Novel algorithms for subtrajectory clustering are proposed and evaluated.

The fifth part presents how methods addressing data management, data processing, and mobility analytics are integrated in a big data architecture that

Preface ix

has distinctive characteristics when compared to known big data paradigmatic architectures. We call this architectural paradigm, which is based on well-defined principles for building analytics pipelines δ . This paradigm is instantiated to a specific architecture realizing the datAcron integrated system prototype. This part presents the software stack of the datAcron system, together with issues concerning individual, online, and offline components integration.

The last part focuses on important ethical issues that research on mobility analytics should address: This is deemed to be crucial, given the growth of interest in that topic in computer science and operational stakeholders, necessitating the sharing of data and distributing the processing among stakeholders.

All chapters present background information on the specific topics they address, detailed and rigorous specification of scientific and technological problems considered, and state-of-the-art methods addressing these problems, together with novel approaches that authors have developed, evaluated, and validated, mainly during the last 3 years of their involvement in the datAcron H2020 ICT Big Data Project. Evaluation and validation results per method are presented using data sets from both, maritime and aviation domain, showing the potential and the limitations of methods presented, also according to the requirements specified in the first part of the book. The chapters present also technical details about implementations of methods, aiming to address big data challenges, so as to achieve the latency and throughput requirements set in both domains.

In doing so, this book aims to present a reference book to all stakeholders in different domains with mobility detection and forecasting needs and computer science disciplines aiming to address data-driven mobility data exploration, processing, storage, and analysis problems.

I would like to take the opportunity to thank everybody who contributed to the exciting effort of developing mobility data processing, storage, analysis solutions in time-critical domains, whose state of the art is summarized in this book. These, as part of a much wider community, include all co-editors and chapter authors of this publication. This book is a concerted effort of many people who worked and continue to work together in different, but always exciting, lines of research for mobility analytics.

Piraeus, Greece February 2020 George A. Vouros

Acknowledgements

The developments described in the chapters of this book have been developed in the course of work in several past and on-going research projects, whose support is also acknowledged by the authors of each chapter. However, ideas and large part of this work have been developed, evaluated, and validated, mainly during the 3 years of involvement in the datAcron H2020 ICT Big Data Project.

datAcron has been funded by the European Union's Horizon 2020 Programme under grant agreement No. 687591. datAcron is a research and innovation collaborative project whose aim was to introduce novel methods to detect threats and abnormal activity of very large numbers of moving entities in large geographic areas.

Towards this target, datAcron advanced the management and integrated exploitation of voluminous and heterogeneous data-at-rest (archival data) and data-inmotion (streaming data) sources, so as to significantly advance the capacities of systems to promote safety and effectiveness of critical operations for large numbers of moving entities in large geographical areas.

Technological developments in datAcron have been validated and evaluated in user-defined challenges that aim at increasing the safety, efficiency, and economy of operations concerning moving entities in the air-traffic management (ATM) and maritime domains.

The datAcron addressed the following core challenges:

- Distributed management and querying of integrated spatiotemporal RDF data-at-rest and data-in-motion in integrated manners: datAcron advanced RDF data processing and spatiotemporal query answering for very large numbers of real-world triples and spatiotemporal queries, providing also native support for trajectory data, handling (semantic) trajectories as first-class citizens in data processing. In situ data processing and link discovery for data integration are critical technologies to those targets.
- Detection and prediction of trajectories of moving entities in the aviation and maritime domains: datAcron developed novel methods for real-time trajectory reconstruction, aiming at efficient large-scale mobility data analytics. Real-time

xii Acknowledgements

trajectories forecasting for the aviation and maritime domains aim to a short forecasting horizon.

- Recognition and forecasting of complex events in the aviation and maritime
 domains: datAcron developed methods for event recognition under uncertainty
 in noisy settings, aiming at processing very large number of events/second with
 complex event definitions. In doing so, optimization of complex events patterns'
 structure and parameters by means of machine learning methods for constructing
 event patterns was within datAcron objectives.
- Visual analytics in the aviation and maritime domains: datAcron developed a general visual analytics infrastructure supporting all steps of analysis through appropriate interactive visualizations, including both generic components and components tailored for specific applications.

Contents

Part I Time Critical Mobility Operations and Data: A Perspective from the Maritime and Aviation Domains

1	Mobility Data: A Perspective from the Maritime Domain							
	Cyril Ray, Anne-Laure Jousselme, Clément Iphar,							
	Maximilian Zocholl, Elena Camossi, and Richard Dréo							
	1.1	Maritime Operational Scenarios: Challenges						
		and Re	quirement	quirements				
		1.1.1	Monitori	ing Fishing Activities	4			
			1.1.1.1	Secured Fishing	5			
			1.1.1.2	Maritime Sustainable Development	8			
			1.1.1.3	Maritime Security	9			
		1.1.2	Maritime	e Situational Indicators	11			
	1.2	Big Mobility Data in the Maritime Domain			11			
		1.2.1	Maritime	e Big Data Challenges	13			
			1.2.1.1	Variety	13			
			1.2.1.2	Veracity	14			
			1.2.1.3	Volume	14			
			1.2.1.4	Velocity	14			
			1.2.1.5	Context	15			
		1.2.2	Heterogeneous Integrated Dataset for Maritime ISR		16			
			1.2.2.1	Navigation-Related Data	18			
			1.2.2.2	Vessel Data	22			
			1.2.2.3	Geographic Data	23			
			1.2.2.4	Environmental Data	26			
		1.2.3	Generati	ng Operational Scenario for Experiments	28			
	1.3	Conclu	isions		28			
	Refer	ences			30			
2		_		bility Data from the Aviation Domain d David Scarlatti	33			
	2.1				33			

xiv Contents

	2.2	Traject	tory Prediction Approaches in the Aviation Domain	35
		2.2.1	Kinematic Trajectory Prediction Approach	35
		2.2.2	Kinetic Trajectory Prediction Approach	36
		2.2.3	Data-Driven Trajectory Prediction Approaches	37
	2.3	Aviatio	on Datasets	41
	2.4	Recon	structed Trajectory	44
		2.4.1	Aircraft Intent	44
		2.4.2	The Trajectory Reconstruction Process	48
	2.5	Aviatio	on Operational Scenarios: Big Data Challenges	
			equirements	49
		2.5.1	Regulations Detection and Prediction	52
		2.5.2	Demand and Capacity Imbalance Detection	
			and Prediction	53
		2.5.3	Trajectory Prediction: Preflight	53
		2.5.4	Trajectory Prediction: Real Time	54
	2.6		isions	54
				55
		Trajecto	rization: Exploring Data and Constructing ories	
3	Visua	al Analy	tics in the Aviation and Maritime Domains	59
	Genn	ady And	drienko, Natalia Andrienko, Georg Fuchs, Stefan	
	Rüpi	ng, Jose	Manuel Cordero, David Scarlatti, George A. Vouros,	
			anz, and Rodrigo Marcos	
	3.1	Introdu	uction	60
	3.2	Relate	d Work	60
	3.3	Visual	Exploration of Data Quality	62
	3.4		bles of Visual Analytics Processes	67
		3.4.1	Detection and Analysis of Anchoring Events in	
			Maritime Traffic	68
		3.4.2	Exploring Separation of Airport Approach Routes	72
		3.4.3	Revealing Route Choice Criteria of Flight Operators	75
		3.4.4	Understanding Airspace Configuration Choices	77
	3.5	Discus	ssion and Conclusion	81
	Refe	rences		82
4	Two:	aatamu D	Actaction and Communication area Communillance	
4			Detection and Summarization over Surveillance	85
			umpas, Eva Chondrodima, Nikos Pelekis,	65
			heodoridis	
	4.1		neodoridis uction	06
	4.1			86 89
	4.2		d Work	89
	4.3		ning Data Sources in Maritime and Aviation	91
		Survei	Hance	91

Contents xv

		4.3.1	Maritime Data Sources	91
		4.3.2	Aviation Data Sources	92
	4.4	System	n Overview	93
		4.4.1	Trajectory Representation	94
		4.4.2	Framework Architecture	95
	4.5	Online	Processing of Streaming Trajectories	96
		4.5.1	Trajectory Construction	97
			4.5.1.1 Noise Reduction	97
			4.5.1.2 Mobility State Maintenance	99
		4.5.2	Trajectory Summarization	100
			4.5.2.1 Mobility Events on (x, y) Dimensions	101
			4.5.2.2 Mobility Events on <i>z</i> -Dimension	103
			4.5.2.3 Mobility Events on <i>t</i> -Dimension	105
			4.5.2.4 Discussion	105
	4.6	Prototy	ype Implementation	106
		4.6.1	Custom Support for Mobility Features	107
		4.6.2	Processing Through a Pipeline of Operators	108
	4.7	Empiri	ical Validation	109
		4.7.1	Performance Results	110
		4.7.2	Approximation Error	112
		4.7.3	Comparison with Trajectory Simplification Methods	113
	4.8	Toward	ds Cross-Stream Trajectory Maintenance	115
		4.8.1	Methodology	115
		4.8.2	Proof-of-Concept Evaluation	116
	4.9	Conclu	isions	117
	Refe	rences		118
Par	t III	-	ory Oriented Data Management for Mobility	
		Analyti	cs	
5	Mod	eling Mo	obility Data and Constructing Large Knowledge	
		_	ipport Analytics: The datAcron Ontology	123
	_		Santipantakis, George A. Vouros, Akrivi Vlachou,	
		_	Doulkeridis	
	5.1	Introdu	action	123
	5.2	Requir	rements for Enriched Representation of Mobility Data	125
		5.2.1	Requirements for the Representation of Semantic	
			Trajectories	125
		5.2.2	Fundamental Data Types and Data Transformations	
			for Visual Analytics	128
	5.3	Seman	tic Representations of Trajectories: Related Work	130
	5.4		tAcron Ontology	132
		5.4.1	Core Vocabulary and Overall Structure	133
		5.4.2	Patterns for the Representation of Semantic	
			Trajectories	134

xvi Contents

	5.5	Suppor	rting Data '	Transformations	140
		5.5.1		S	140
		5.5.2	datAcror	Namespaces for Functions	142
		5.5.3		n Setup	143
		5.5.4		essing Steps and Auxiliary Structures	144
		5.5.5	-	nalytics Enhanced Via Data	
				mations on Aviation Use Cases	145
		5.5.6		nalytics Enhanced Via Data	
				mations on Maritime Use Cases	148
	5.6	Conclu			150
	Refe	rences			151
6	Into	motina I	Doto by Di	scovering Topological and Proximity	
U				otemporal Entities	155
				kis, Christos Doulkeridis, Akrivi Vlachou,	155
		-	Santipantai A. Vouros	kis, Christos Douikeridis, Akrivi Viachou,	
	6.1			Discovery in Data Integration	155
	6.2			patiotemporal Link Discovery	156
	0.2	_		· · · · · · · · · · · · · · · · · · ·	
		6.2.1		s of Link Discovery	157
		6.2.2		blem of Spatiotemporal Link Discovery	157
			6.2.2.1	Topological Relations	158
			6.2.2.2	Proximity Relations	158
			6.2.2.3	Temporal Relations	158
			6.2.2.4	Motivating Real-Life Applications and	4.50
				Examples	159
		6.2.3	_	Spatial Link Discovery Systems and	
				orks	160
	6.3		-	poral LD Framework	161
		6.3.1		hitecture of a Spatiotemporal Link	
				y Framework	161
			6.3.1.1	Connectors and Configurations	163
			6.3.1.2	Consumption Strategy	164
			6.3.1.3	Blocking Methods (Filter)	165
			6.3.1.4	Link Evaluation	165
		6.3.2	Link Dis	covery of Topological Relations	166
			6.3.2.1	A Baseline Link Discovery Algorithm	166
			6.3.2.2	The RADON Algorithm	167
		6.3.3		kLink Technique for Link Discovery of	
				cal Relations	168
		6.3.4		covery of Proximity Relations	170
		6.3.5	Refined 1	Blocking Method	171
	6.4	Scalab	le LD for S	Spatiotemporal Data	172
		6.4.1	Setup for	Scalable Link Discovery	172
		642	Stream-F	Rased Link Discovery	173

Contents xvii

6.5	Empiri	cal Evaluation	175
	6.5.1	Experimental Setup	175
	6.5.2 6.5.3	Results for Region-to-Region Topological Relations Results for Point-to-Region Proximity-Based	176
		Relations	177
6.6	Conclu	isions	178
Refe	rences		179
Dist	ributed S	Storage of Large Knowledge Graphs	
		y Data	181
Pana	giotis Ni	kitopoulos, Nikolaos Koutroumanis, Akrivi Vlachou,	
Chris		Ikeridis, and George A. Vouros	
7.1	Introdu	action	181
7.2	Backgr	round	182
	7.2.1	Distributed Processing Frameworks	183
	7.2.2	Scalable Querying of Large Knowledge Graphs	184
7.3	One-D	imensional Encoding	185
7.4		ew of the DiStRDF Engine	187
7.5		orage Layer	188
	7.5.1	Storing the Dictionary	188
	7.5.2	Storing RDF Triples	189
7.6		ocessing Layer	191
	7.6.1	The SPARQL Query Parsing Component	191
	7.6.2	The Logical Plan Builder	191
	7.6.3	The Logical Plan Optimizer	194
	7.6.4	The Physical Plan Constructor	196
	7.0.1	7.6.4.1 Datasource Operators	196
		7.6.4.2 Selection Operators	197
		7.6.4.3 Join Operators	198
		7.6.4.4 Projection Operator	199
		7.6.4.5 Spatiotemporal Operators	199
		7.6.4.6 Other Operators	200
7.7	Evpori	mental Evaluation	200
1.1	7.7.1		200
	7.7.1	Experimental Setup	200
	1.1.2	Experiments on Real-World Queries	
		7.7.2.1 Queries for Maritime and Aviation Domain	202
	772	7.7.2.2 Evaluation	204
	7.7.3	Experiments on Physical Query Optimization	205
	7.7.4	Experiments on Logical Query Optimization	207
	7.7.5	Experiments on Spatiotemporal Filtering	207
7.8	Conclu	isions	209
Refe	rences		210

xviii Contents

Par	t IV	Analytic	cs Toward	s Time Critical Mobility Forecasting	
8	Harr	is Georgi	ou, Petros	rajectory Prediction	215
	and `	Yannis Th	neodoridis		
	8.1	Introdu	ction		215
		8.1.1	Purpose,	Scope, Motivation	215
	8.2	Backgr			217
		8.2.1	Future L	ocation Prediction	217
		8.2.2		ry Prediction	219
		8.2.3		Datasets Used	220
	8.3	Distrib	uted Onlin	e Future Location Prediction (FLP)	221
		8.3.1		rm FLP: Routes-Agnostic Approach	223
			8.3.1.1	Long Short-Term Memory (LSTM)	223
		8.3.2	Long-Te	rm FLP: Routes-Based Approach	226
			8.3.2.1	Offline Step: Routes Network Discovery	
				(Medoids)	226
			8.3.2.2	Online Step: Network-Based Prediction	228
		8.3.3	Experim	ental Study	229
			8.3.3.1	Short-Term FLP: Routes-Agnostic	
				Approach	229
			8.3.3.2	Long-Term FLP: Routes-Based Approach	231
	8.4			n Trajectory Prediction (FSTP)	232
		8.4.1		ng Enriched Trajectories for FSTP	234
		8.4.2		ve Models	236
			8.4.2.1	Hidden Markov Models (HMM)	238
			8.4.2.2	Linear Regressors (LR)	240
			8.4.2.3	Regression Trees (CART)	241
			8.4.2.4	Feed-Forward Neural Network	
				Regressors (NN-MLP)	241
		8.4.3	_	ental Study	242
			8.4.3.1	Clustering Stage	242
	0.5	5.1	8.4.3.2	Predictive Modeling Stage	243
	8.5				247
	8.6				250
	8.7				251
	Refe	rences	• • • • • • • • • • • • • • • • • • • •		252
9	Ever	nt Proces	sing for M	Iaritime Situational Awareness	255
	Man	olis Pitsik	alis, Kons	tantina Bereta, Marios Vodas, Dimitris Zissis,	
	and A	Alexande	r Artikis		
	9.1	Introdu	ction		255
	9.2			ure	257
		9.2.1		he Scene	257
		9.2.2		e Stream Reasoning	258

Contents xix

	9.3	Maritin	ne Events.		260
		9.3.1	Building	Blocks	261
			9.3.1.1	Vessel Within Area of Interest	
			9.3.1.2	Communication Gap	262
		9.3.2	Maritime	Situational Indicators	
			9.3.2.1	Vessel with High Speed Near Coast	
			9.3.2.2	Anchored or Moored Vessel	
			9.3.2.3	Drifting Vessel	
			9.3.2.4	Tugging	
			9.3.2.5	Vessel rendez-vous	
	9.4	Anoma	lv Detection	on Service	
	9.5		-	er Work	
	Refer		•		
10	O ear	75 0 •			
10				ytics	275
	-			vlianos Sideridis, Panagiotis Nikitopoulos,	
				Ooulkeridis, and Yannis Theodoridis	275
	10.1			17. D. A. 1.2	
	10.0	10.1.1		obility Data Analytics	
	10.2	_			
		10.2.1		ectory Clustering	
		10.2.2		Analysis	
	10.2	10.2.3		iched Mobility Networks	
	10.3			tory Clustering	
		10.3.1		ed Whole-Trajectory Clustering	279
			10.3.1.1	Clustering Trajectories in a Distributed	270
		10.2.2	D' ('1 (Way with Spark MLlib	
		10.3.2		ed Subtrajectory Clustering	
			10.3.2.1	Definitions	
			10.3.2.2	Distributed Subtrajectory Join	
			10.3.2.3	Distributed Trajectory Segmentation	
			10.3.2.4	Distributed Subtrajectory Clustering	
	10.4	D:	10.3.2.5	Experimental Results	
	10.4			ot Analysis	
		10.4.1		18	
		10.4.2		S Algorithm	
		10.4.3		oximate Algorithm: aTHS	
		10.4.4	_	ental Study	
	10.5	D:	10.4.4.1	Experimental Results	297
	10.5			Enriched Mobility Networks	298
		10.5.1		ns	298
		10.5.2		ing Data-Enriched Mobility Networks	
			10.5.2.1	Step 1: Enriched Nodes Extraction	
		10.53	10.5.2.2	Step 2: Enriched Paths Discovery	300
		10.5.3	The Sea	AirNet Algorithm	302

xx Contents

		10.5.4	Experime	ental Results	303
			10.5.4.1	Datasets	304
			10.5.4.2	Qualitative Results in Aviation	304
			10.5.4.3		305
	10.6	Related	Work		306
	10.7	Discuss	sion: Lesso	ns Learnt	310
	Refer	ences			311
Par				ures for Time Critical Mobility	
		Forecasti	Ü		
11		_		cture for Mobility Analytics	315
	Georg			tolis Glenis, and Christos Doulkeridis	
	11.1				315
	11.2	Backgr		ivating Points, and Requirements	317
		11.2.1		ng Points and Background	317
		11.2.2		nents	318
		11.2.3	Related V	Vork	320
	11.3	The δ E		rchitecture	321
		11.3.1	The δ Are	chitecture: An Overview	321
		11.3.2	Principles	s and Rules	322
		11.3.3	Snapshot	s of the δ Architecture	327
			11.3.3.1	A Single Log, No Data Management	
				Configuration	327
			11.3.3.2	Multiple Logs, No Data Management	
				Configuration	328
			11.3.3.3	The λ Architecture in Multiple Layers	328
			11.3.3.4	The κ Architecture in Multiple Layers	
				Configuration	328
	11.4	Instanti	ating δ in	the datAcron Big Data System for	
		Mobilit	y Analytic	s	329
	11.5	Implem	entation of	f datAcron Integrated Prototype	332
		11.5.1	Informati	on Processing and Data Management	332
		11.5.2	Online Fu	uture Location Prediction and Trajectory	
			Prediction	n	333
		11.5.3	Complex	Event Recognition/Forecasting Online	333
		11.5.4	Visualiza	tion and Interactive Visual Analytics: Online	334
		11.5.5	Trajector	y Data Analytics Offline	334
		11.5.6	Complex	Event Recognition/Forecasting Offline	335
		11.5.7	Interactiv	re Visual Analytics Offline	335
	11.6	Experir	nental Eva	luation	336
	11.7	Conclu	ding Rema	rks	338
	Refer	ences			338

Contents xxi

Ethic	al Issues	s in Big Da	ta Analytics for Time Critical Mobility
			and Victoria Peuvrelle
12.1			
12.2			at the EU Level
12.3			
	12.3.1		ences of Outputs for Privacy
	12.3.2		Creep and Dual Use
	12.3.3		ics Issues
		12.3.3.1	Subjective Thresholds
		12.3.3.2	Algorithms and Automatic Decision-Making
		12.3.3.3	Accuracy of Data
		12.3.3.4	Undesirable Reuse and Threat Modeling
		12.3.3.5	Technological Divide and Discrimination
12.4		-	sues
	12.4.1		tion of Factors for Privacy Concerns
		12.4.1.1	Types of Moving Entities Involved
		12.4.1.2	Provenance and Type of Data
	10.40	12.4.1.3	1100015/2110 05015
	12.4.2		tion of Factors to Avoid Function Creep
	12.4.3	_	ration of Privacy by Design Within the
	10 4 4		D / M / N
	12.4.4		a Data Management Plan
	12.4.5		tion and Documentation of the Licensing
10.5	G 1		
12.5			
	ences		

Editors and Contributors

About the Editors

Dr. Gennady Andrienko is a lead scientist responsible for the visual analytics research at Fraunhofer Institute IAIS (Sankt Augustin, Germany) and full professor at City University London. He co-authored monographs "Exploratory Analysis of Spatial and Temporal Data" (Springer, 2006) and "Visual Analytics of Movement" (Springer, 2013) and about 100 peer-reviewed journal papers. He is associate editor of three journals: "Information Visualization" (since 2012), "IEEE Transactions on Visualization and Computer Graphics" (2012–2016), and "International Journal of Cartography" (since 2014) and editorial board member of "Cartography and Geographic Information Science" and "Cartographica." He received Test of Time award at IEEE VAST 2018 and best paper awards at AGILE 2006, IEEE VAST 2011 and 2012 conferences, and EuroVA 2018 workshop.

Alexander Artikis is an Assistant Professor in the Department of Maritime Studies of the University of Piraeus. He is also a Research Associate in the Institute of Informatics and Telecommunications of NCSR Demokritos, the largest research center in Greece, leading the Complex Event Recognition lab. His research interests lie in the field of Artificial Intelligence. He has published over 100 papers in the top conferences and journals of the field, while, according to Google Scholar, his h-index is 31. He has participated in several EU-funded Big Data projects, being the scientific coordinator in some of them. He has been serving a member of the program committee of various conferences, such as AAAI, IJCAI, AAMAS, ECAI, KR, and DEBS.

Jose Manuel Cordero holds the Telecommunications Engineer degree from the Universidad de Sevilla, Spain (2002). He is currently a Principal Researcher at CRIDA (ATM R&D Reference Centre, depending on the Spanish ANSP, ENAIRE), with over 15 years of experience in the air-traffic management domain in the areas of performance monitoring and assessment, system simulation, and validation. In the

xxiv Editors and Contributors

last years, he focused his activity on Performance Management projects, including research activities in big data analytics, predictive models, and multi-objective optimization methods.

Christos Doulkeridis is an Assistant Professor at the Department of Digital Systems in the University of Piraeus. He has been awarded both a Marie-Curie fellowship and an ERCIM "Allain Bensoussan" fellowship for postdoctoral studies at the Norwegian University of Science and Technology in 2011 and 2009, respectively. He was the Principal Investigator of the research project "RoadRunner: Scalable and Efficient Analytics for Big Data" (2014–2015, funded by the General Secretariat for Research and Technology in Greece). He has participated in several H2020 EU research projects related to Big Data management and analytics ("Track&Know" 2018-2020, "BigDataStack," 2018-2020, and "datAcron," 2016-2018). He has been awarded the first position in the 2017 SemEval challenge on Sentiment Analysis in Twitter and the third position in the 2016 ACM SIGSPATIAL Cup on Hot Spot Analysis of Mobility Data. He has published in top international journals (including VLDB Journal, IEEE TKDE, IEEE JSAC, ACM TKDD, Data Mining and Knowledge Discovery, Information Systems, Distributed and Parallel Databases) and conferences (including ACM SIGMOD, VLDB, ICDE, EDBT, SSTD, PKDD, SIAM SDM) in the areas of data management, knowledge discovery, and distributed systems.

Dr. Anne-Laure Jousselme is with the NATO Centre for Maritime Research and Experimentation. She is member of the Boards of Director of the International Society of Information Fusion and Belief Functions and Applications Society. She is associate editor of the Perspectives on Information Fusion magazine and area editor of the International Journal of Approximate Reasoning. Her research interests include maritime anomaly detection, information fusion, reasoning under uncertainty, information quality.

Nikos Pelekis is Assistant Professor at the Department of Statistics and Insurance Science, University of Piraeus, Greece. His research interests include all topics of data science. He has been particularly working for almost 20 years in the field of Mobility Data Management and Mining. Nikos has co-authored one monograph and more than 80 refereed articles in scientific journals and conferences, receiving more than 1000 citations, while he has received 3 best paper awards and won the SemEval'17 competition and ranked 3rd in ACM SIGSPATIAL'16 data challenge. He has offered several invited lectures in Greece and abroad (including PhD/MSc/summer courses at Rhodes, Milano, KAUST, Aalborg, Trento, Ghent, JRC Ispra) on Mobility Data Management and Data Mining topics. He has been actively involved in more than 10 European and National R&D projects. Among them, he is or was principal researcher in GeoPKDD, MODAP, MOVE, DATASIM,

Editors and Contributors xxv

SEEK, DART and datAcron, Track & Know, MASTER. For more information: http://www.unipi.gr/faculty/npelekis/.

Cyril Ray is associate professor in computer science at Arts & Metiers—ParisTech, attached to Naval Academy Research Institute (IRENav) in France. His current research is oriented to the modeling and design of location-based services. His work mainly concerns theoretical aspects of the design of ubiquitous and adaptive location-based services applied to human mobility, maritime, and urban transportation systems. This research addresses the relationship between geographic information systems and the underlying computing architectures that support real-time tracking of mobile objects (pedestrian in indoor spaces, vehicles in urban areas, and ships at sea). This work includes, at different level, integration of location acquisition technologies, modeling of heterogeneous and large spatiotemporal datasets, movement data processing (cleaning, filtering, trajectory modeling, knowledge discovery), modeling of context-aware systems, and traffic simulation and prediction.

David Scarlatti works as Data Solutions Architect at Boeing Research & Technology Europe in the Aerospace Operational Efficiency group. He received Aeronautics Engineering degree in 1994 (Universidad Politecnica de Madrid), is Stanford Certified Project Manager (2008), Master of Science in Technology Management (2010, Open University- UK), and GIAC Certified Incident Handler (2011). In 1989, he started to work with computers at PHILIPS, then worked at INDRA (1993–2000) as Software Engineer, and at ORACLE as Technology Manager (2000–2005) where he led the European Professional Community on Data Warehousing. In May 2005, he joined Boeing where he has been applying data analytics technologies to a wide variety of aviation-related problems. His fields of expertise include big data, visualization, advanced computing in data analysis, cybersecurity, and human—machine interfaces. Is co-inventor in 17 patents (5 granted).

George A. Vouros holds a BSc in Mathematics (1986) and a PhD in Artificial Intelligence (1992) all from the University of Athens, Greece. Currently, he is a Professor in the Department of Digital Systems in the University of Piraeus and head of the AI-Lab in this Department. He has done research in the areas of Expert Systems, Knowledge Management, Collaborative Systems, Ontologies, and Agents and Multi-Agent Systems. He served/serves as program chair, chair, and member of organizing committees of national and international conferences (AAMAS, AAAI, IJCAI, ECAI, WI/IAT, AT, EUMAS, ICMLA, ESWC, CSCL, AIAI, ISWC) and as member of steering committees/boards of international conferences/workshops (EURAMAS, SETN, AT, COIN, OAEI). He has given keynote speeches in conferences and workshops (WoMo, ICTAI, CLIMA, IF&GIS) and he has organized several workshops (MATES@EDBT, Data-Driven ATM@WAC, Data-Enhanced Trajectory-Based Operations@ICRAT; the most recent ones). He served/ serves as guest editor in special issues in well-reputed journals (e.g., IJCIS,

xxvi Editors and Contributors

AIR, GEOINFORMATICA, AICom, ISF). He is/was senior researcher in numerous EU-funded and National research projects (GSRT/ AMINESS, FP7/Grid4All, FP7/SEMAGROW, COST/Agreement Technologies the most recent ones). He recently coordinated the successful DART (SESARER) project on data-driven trajectory prediction in the aviation domain and coordinates the datAcron (H2020 ICT-16) Big Data project. For more information on recent activities and publications, see http://ai-group.ds.unipi.gr/georgev/.

Contributors

Gennady Andrienko Fraunhofer Institute IAIS, Sankt Augustin, Germany City University of London, London, UK

Natalia Andrienko Fraunhofer Institute IAIS, Sankt Augustin, Germany City University of London, London, UK

Alexander Artikis Department of Maritime Studies, University of Piraeus, Piraeus, Greece

Institute of Informatics & Telecommunications, NCSR Demokritos, Athens, Greece

Konstantina Bereta Marine Traffic, Athens, Greece

Elena Camossi NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy

Eva Chondrodima University of Piraeus, Piraeus, Greece

Gemma Galdon Clavell Eticas Research and Innovation, Barcelona, Spain

Jose Manuel Cordero CRIDA (Reference Center for Research, Development and Innovation in ATM), Madrid, Spain

Christos Doulkeridis University of Piraeus, Piraeus, Greece

Richard Dréo Arts et Metiers Institute of Technology, Ecole Navale, IRENav, Brest, France

Georg Fuchs Fraunhofer Institute IAIS, Sankt Augustin, Germany

Harris Georgiou University of Piraeus, Piraeus, Greece

Apostolis Glenis University of Piraeus, Piraeus, Greece

Ricardo Herranz Nommon Solutions and Technologies, Madrid, Spain

Clément Iphar NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy

Anne-Laure Jousselme NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy

Editors and Contributors xxvii

Nikolaos Koutroumanis University of Piraeus, Piraeus, Greece

Rodrigo Marcos Nommon Solutions and Technologies, Madrid, Spain

Panagiotis Nikitopoulos University of Piraeus, Piraeus, Greece

Kostas Patroumpas Athena Research Center, Marousi, Greece

Nikos Pelekis University of Piraeus, Piraeus, Greece

Petros Petrou University of Piraeus, Piraeus, Greece

Victoria Peuvrelle Eticas Research and Innovation, Barcelona, Spain

Manolis Pitsikalis Institute of Informatics & Telecommunications, NCSR Demokritos, Athens, Greece

Cyril Ray Arts et Metiers Institute of Technology, Ecole Navale, IRENav, Brest, France

Stefan Rüping Fraunhofer Institute IAIS, Sankt Augustin, Germany

Georgios M. Santipantakis University of Piraeus, Piraeus, Greece

David Scarlatti Boeing Research & Development Europe, Madrid, Spain

Stylianos Sideridis University of Piraeus, Piraeus, Greece

Panagiotis Tampakis University of Piraeus, Piraeus, Greece

Yannis Theodoridis University of Piraeus, Piraeus, Greece

Akrivi Vlachou University of Piraeus, Piraeus, Greece

Marios Vodas MarineTraffic, Athens, Greece

George A. Vouros University of Piraeus, Piraeus, Greece

Dimitris Zissis Department of Product & Systems Design Engineering, University of the Aegean, Lesbos, Greece MarineTraffic, Athens, Greece

Maximilian Zocholl NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy

Acronyms

ADS-B Automatic-dependent surveillance-broadcast

AI Aircraft intent

AIS Automatic identification system
ANFR French Frequencies Agency
ANSP Air Navigation Service Providers
API Application programming interface

APM Aircraft performance model

ATC Air traffic control
ATCO Air traffic controller

ATFM Air traffic flow management aTHS approximate Trajectory Hot Spot

ATM Air-traffic management
AtoN Aids to navigation
BADA Base of aircraft data
BGP Basic graph pattern
CAS Calibrated airspeed

CDO Continuous descent operations
CEF Complex event forecasting
CEP Complex event processing
CER Complex event recognition

CoG Course over ground COLREGs Collision regulations

CP Cutting point

CRS Coordinate reference system
CSV Comma separated values
CTOT Calculated take off time

datAcron Big data analytics for time-critical mobility forecasting DBSCAN Density-based spatial clustering of application with noise

xxx Acronyms

DCB Demand and capacity balancing

DG ENTR European Commission's Directorate-General for Enterprise

and Industry

DiStRDF Distributed spatiotemporal RDF engine

DM Data management/manager
DMP Data management plan
DoF Degrees of freedom
DSTs Decision support tools

DTJ Distributed subTrajectory Join

DTW Dynamic time warping

EC Entry count

EEA European Environmental Agency

EEZ Exclusive economic zone

EPIRB Emergency Position Indicating Radio Beacon ESRI Environmental Systems Research Institute, Inc.

ETA Estimated time of arrival
ETD Estimated time of departure
ETOT Estimated take off time

EUMSS European Union Maritime Security Strategy

FAO Food and Agriculture Organization

FDR Flight recorded data
FLP Future location predictor
FMS Flight management system

FP Flight plan

GFS Global Forecast System
GLM Generalized linear models
GPS Global Positioning System

GSHHG Global Self-consistent, Hierarchical, High-resolution Geography

Database

HDFS Hadoop distributed file system

HMM Hidden Markov Model

ICAO International Civil Aviation Organization

IFREMER Institut français de recherche pour l'exploitation de la mer

IMO International Maritime Organization ISA International Standard Atmosphere

ISR Intelligence, surveillance, and reconnaissance
ITU International Telecommunication Union
IUU Illegal, unreported, and unregulated

IVA Interactive visual analytics

JRC European Commission Joint Research Centre

JSON JavaScript Object Notation

Acronyms xxxi

KDE Kernel density estimation

LCSS Longest Common SubSequence

LD Link discovery

LED Low-level events detector

LNG Liquid natural gas

LRIT Long range tracking and identification

MBB Minimum bounding box
MBR Minimum bounding rectangle

METAR Meteorological Terminal Aviation Routine Weather Report

METOC Meteorological and oceanographic

MLlib Machine learning library

MMSI Maritime Mobile Service Identity

MOB Man overboard

MSA Maritime situation awareness
MSI Maritime situational indicator
NGO Non-governmental organization

NMEA National Marine Electronics Association

NOAA National Oceanic and Atmospheric Administration

ODC-By Open Data Commons Attribution License
ODC-ODbL Open Data Commons Open Database License

OGC Open Geospatial Consortium

PbD Privacy by design
PMM Point-mass model
QAR Quick access recorder

RBT Reference business trajectory
RDF Resource description framework

RFL Requested flight level RMSE Root mean square error

ROC Rate of climb RoT Rate of turn

RTEC Event calculus for run-time reasoning

SAR Search And Rescue

SBT Shared business trajectory

SESAR Single European Sky ATM Research

SI Semantic integrator

SIGMET Significant meteorological information

SoG Speed over Ground

SSCR Sum of similarity between cluster members and cluster

representatives

STD Semantic Trajectory Database TAF Terminal aerodrome forecast xxxii Acronyms

TDA C	TITO.		
TAS	True	airspeed	

TBO Trajectory-based operations
TCL Talis Community License
TDA Trajectory data analytics
THS Trajectory hot spot
TP Trajectory predictors

TSA Trajectory segmentation algorithm

TSS Traffic separation scheme
TTL Terse RDF Triple Language

UN United Nations
VA Visual analytics
VHF Very high frequency
VMS Vessel monitoring system
VTS Vessel traffic system
WKT Well-known text

WGS World Geodetic System
WGS84 World Geodetic System 1984

WPI World Port Index

YARN Yet Another Resource Negotiator