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IPhilotimo (or filotimo) is a Greek word, which is difficult to translate. One may start from here,
among other references: https://en.wikipedia.org/wiki/Philotimo.
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Preface

Spatiotemporal mobility data has a significant role and impact on the global
economy and our everyday lives. The improvements along the last decades in
terms of data management, planning of operations, security of operations, infor-
mation provision to operators and end-users have been driven by location-centered
information. While a shift of paradigm regarding mobility data towards trajectory-
oriented tasks is emerging in several domains, the ever-increasing volume of data
emphasizes the need for advanced methods supporting detection and prediction
of events and trajectories, supplemented by advanced visual analytic methods,
over multiple heterogeneous, voluminous, fluctuating, and noisy data streams of
moving entities. This book provides a comprehensive and detailed description
of Big Data solutions towards activity detection and forecasting in very large
numbers of moving entities spread across large geographical areas. Specifically,
following a trajectory-oriented approach, this book reports on the state-of-the-
art methods for the detection and prediction of trajectories and important events
related to moving entities, together with advanced visual analytics methods, over
multiple heterogeneous, voluminous, fluctuating, and noisy data streams from
moving entities, correlating them with data from archived data sources expressing,
among others, entities’ characteristics, geographical information, mobility patterns,
regulations, and intentional data (e.g., planned routes), in a timely manner. Solutions
provided are motivated, validated, and evaluated in user-defined challenges focusing
on increasing the safety, efficiency, and economy of operations concerning moving
entities in the air-traffic management and maritime domains.

The book contents have been structured into six parts:

The first part provides the motivating points and background for mobility
forecasting supported by trajectory-oriented analytics. It presents specific problems
and challenges in the aviation (air-traffic management) and the maritime domains
and clarifies operational concerns and objectives in both domains. It presents
domain-specific terminology used in examples and cases, in which technology
is demonstrated, evaluated/validated, throughout the book. Equally important to
the above is the presentation of the data sources exploited per domain, the big
data challenges ahead in both domains, and of course, the requirements from
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technologies presented in subsequent parts of the book. These chapters present data
exploited for operational purposes in the aviation and maritime domains and provide
an initial understanding of spatiotemporal data through specific examples. They also
present challenges and motivating points by means of operational scenarios where
technology can help, putting the technologies presented in subsequent parts of the
book in a unique frame: This helps us understand why technological achievements
are necessary, what are the domain-specific requirements driving developments
in analytics, data storage, and processing, and what are the data processing, data
management, and data-driven analytics tools needed to advance operational goals
towards trajectory-based operations.

The second part focuses on big data quality assessment and processing, as applied
in the data sources and according to the requirements and objectives presented in
the first part of the book. This, second part of the book, presents novel technologies,
appropriate to serve mobility analytics components that are presented in subsequent
sections. In doing so, workflows regarding data sources’ quality assessment via
visual analytics methods are considered to be essential to understand inherent
features and imperfections of data, affecting the ways data should be processed
and managed, as the first section of this part shows. In addition to this, methods
for online construction of streamed data synopses are presented, towards addressing
big data challenges presented by surveillance, mostly, data sources.

The third part of this book specifies solutions towards managing big spatiotem-
poral data: The first section specifies a generic ontology revolving around the
notion of trajectory so as to model data and information that is necessary for
analytics components. This ontology provides a generic model for constructing
knowledge graphs integrating data from disparate data sources. In conjunction
to this, this part describes novel methods for integrating data from archived and
streamed data sources. Special emphasis is given to enriching data streams and
integrating streamed and archival data to provide coherent views of mobility: This
is addressed by real-time methods discovering topological and proximity relations
among spatiotemporal entities. Finally, distributed storage of integrated dynamic
and archived mobility data—i.e. large knowledge graphs constructed according to
the generic model introduced—are within focus.

The next part focuses on mobility analytics methods exploiting (online) pro-
cessed, synopsized, and enriched data streams as well as (offline) integrated,
archived mobility data. Specifically, online future location prediction methods
and trajectory prediction methods are presented, distinguishing between short-
term and the challenging long-term predictions. Recognition of complex events
in challenging cases for detecting complex events is thoroughly presented. In
addition to this, an industry-strong maritime anomaly detection service capable
of processing daily real-world data volumes is presented. This part focuses also
on offline trajectory analytics, addressing trajectory clustering and detection of
routes followed by mobile entities. Novel algorithms for subtrajectory clustering
are proposed and evaluated.

The fifth part presents how methods addressing data management, data pro-
cessing, and mobility analytics are integrated in a big data architecture that
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has distinctive characteristics when compared to known big data paradigmatic
architectures. We call this architectural paradigm, which is based on well-defined
principles for building analytics pipelines é. This paradigm is instantiated to a
specific architecture realizing the datAcron integrated system prototype. This part
presents the software stack of the datAcron system, together with issues concerning
individual, online, and offline components integration.

The last part focuses on important ethical issues that research on mobility
analytics should address: This is deemed to be crucial, given the growth of interest
in that topic in computer science and operational stakeholders, necessitating the
sharing of data and distributing the processing among stakeholders.

All chapters present background information on the specific topics they address,
detailed and rigorous specification of scientific and technological problems consid-
ered, and state-of-the-art methods addressing these problems, together with novel
approaches that authors have developed, evaluated, and validated, mainly during
the last 3 years of their involvement in the datAcron H2020 ICT Big Data Project.
Evaluation and validation results per method are presented using data sets from
both, maritime and aviation domain, showing the potential and the limitations of
methods presented, also according to the requirements specified in the first part
of the book. The chapters present also technical details about implementations of
methods, aiming to address big data challenges, so as to achieve the latency and
throughput requirements set in both domains.

In doing so, this book aims to present a reference book to all stakeholders in
different domains with mobility detection and forecasting needs and computer sci-
ence disciplines aiming to address data-driven mobility data exploration, processing,
storage, and analysis problems.

I would like to take the opportunity to thank everybody who contributed to the
exciting effort of developing mobility data processing, storage, analysis solutions
in time-critical domains, whose state of the art is summarized in this book. These,
as part of a much wider community, include all co-editors and chapter authors of
this publication. This book is a concerted effort of many people who worked and
continue to work together in different, but always exciting, lines of research for
mobility analytics.

Piraeus, Greece George A. Vouros
February 2020
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