Skip to main content

Abstract

In recent years, there has been observed an “explosion” of trajectory data production due to the proliferation of GPS-enabled devices, such as mobile phones and tablets. This massive-scale data generation has posed new challenges in the data management community in terms of storing, querying, analyzing, and extracting knowledge out of such data. Knowledge discovery out of mobility data is essentially the goal of every mobility data analytics task. Especially in the maritime and aviation domains, this relates to challenging use-case scenarios, such as discovering valuable behavioral patterns of moving objects, identifying different types of activities in a region of interest, environmental fingerprint, etc. In order to be able to support such scenarios, an analyst should be able to apply, at massive scale, several knowledge discovery techniques, such as trajectory clustering, hotspot analysis, and frequent route/network discovery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Fox, K., Munagala, K., Nath, A., Pan, J., Taylor, E.: Subtrajectory clustering: models and algorithms. In: PODS, pp. 75–87 (2018)

    Google Scholar 

  2. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: SIGMOD, pp. 49–60 (1999)

    Google Scholar 

  3. Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 79–88 (2012)

    Google Scholar 

  4. Cao, L., Krumm, J.: From GPS traces to a routable road map. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 3–12 (2009)

    Google Scholar 

  5. Claramunt, C., Ray, C., Camossi, E., Jousselme, A., Hadzagic, M., Andrienko, G.L., Andrienko, N.V., Theodoridis, Y., Vouros, G.A., Salmon, L.: Maritime data integration and analysis: recent progress and research challenges. In: Proceedings of the 20th International Conference on Extending Database Technology, EDBT, pp. 192–197 (2017)

    Google Scholar 

  6. Deng, Z., Hu, Y., Zhu, M., Huang, X., Du, B.: A scalable and fast OPTICS for clustering trajectory big data. Clust. Comput. 18(2), 549–562 (2015)

    Article  Google Scholar 

  7. Edelkamp, S., Schrödl, S.: Route Planning and Map Inference with Global Positioning Traces, pp. 128–151. Springer, Berlin (2003)

    Google Scholar 

  8. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  9. Fan, Q., Zhang, D., Wu, H., Tan, K.: A general and parallel platform for mining co-movement patterns over large-scale trajectories. Proc. VLDB Endowment 10(4), 313–324 (2016)

    Article  Google Scholar 

  10. Fathi, A., Krumm, J.: Detecting road intersections from GPS traces. In: Geographic Information Science, pp. 56–69 (2010)

    Google Scholar 

  11. Hong, L., Zheng, Y., Yung, D., Shang, J., Zou, L.: Detecting urban black holes based on human mobility data. In: Proceedings of the 23rd International Conference on Advances in Geographic Information Systems SIGSPATIAL, pp. 35:1–35:10 (2015)

    Google Scholar 

  12. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: SSTD, pp. 364–381 (2005)

    Google Scholar 

  13. Klessig, H., Suryaprakash, V., Blume, O., Fehske, A.J., Fettweis, G.: A framework enabling spatial analysis of mobile traffic hot spots. IEEE Wirel. Commun. Lett. 3(5), 537–540 (2014). https://doi.org/10.1109/LWC.2014.2349520

    Article  Google Scholar 

  14. Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. Int. J. Geogr. Inf. Sci. 19(6), 639–668 (2005)

    Article  Google Scholar 

  15. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)

    Google Scholar 

  16. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale, sparse GPS traces for map inference: comparison of approaches. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 669–677 (2012)

    Google Scholar 

  17. Lukasczyk, J., Maciejewski, R., Garth, C., Hagen, H.: Understanding hotspots: a topological visual analytics approach. In: Proceedings of the 23rd International Conference on Advances in Geographic Information Systems SIGSPATIAL, pp. 36:1–36:10 (2015)

    Google Scholar 

  18. Moran, P.: Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950)

    Article  MathSciNet  Google Scholar 

  19. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  20. Nikitopoulos, P., Paraskevopoulos, A., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Hot spot analysis over big trajectory data. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, 10–13 December 2018, pp. 761–770 (2018). https://doi.org/10.1109/BigData.2018.8622376

  21. Orakzai, F., Calders, T., Pedersen, T.B.: Distributed convoy pattern mining. In: IEEE MDM, pp. 122–131 (2016)

    Google Scholar 

  22. Orakzai, F., Calders, T., Pedersen, T.B.: k/2-hop: fast mining of convoy patterns with effective pruning. Proc. VLDB Endowment 12(9), 948–960 (2019)

    Google Scholar 

  23. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27(4), 286–306 (1995)

    Article  Google Scholar 

  24. Panagiotakis, C., Tziritas, G.: A speech/music discriminator based on RMS and zero-crossings. IEEE Trans. Multimedia 7(1), 155–166 (2005)

    Article  Google Scholar 

  25. Panagiotakis, C., Kokinou, E., Vallianatos, F.: Automatic p-phase picking based on local-maxima distribution. IEEE Trans. Geosci. Remote Sens. 46(8), 2280–2287 (2008)

    Article  Google Scholar 

  26. Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering uncertain trajectories. Knowl. Inf. Syst. 28(1), 117–147 (2011)

    Article  Google Scholar 

  27. Pelekis, N., Tampakis, P., Vodas, M., Doulkeridis, C., Theodoridis, Y.: On temporal-constrained sub-trajectory cluster analysis. Data Min. Knowl. Discov. 31(5), 1294–1330 (2017)

    Article  MathSciNet  Google Scholar 

  28. Pelekis, N., Tampakis, P., Vodas, M., Panagiotakis, C., Theodoridis, Y.: In-DBMS sampling-based sub-trajectory clustering. In: EDBT, pp. 632–643 (2017)

    Google Scholar 

  29. Rogers, S., Langley, P., Wilson, C.: Mining GPS data to augment road models. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 104–113 (1999)

    Google Scholar 

  30. Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces for map refinement. Data Min. Knowl. Discov. 9, 59–87 (2004)

    Article  MathSciNet  Google Scholar 

  31. Shan, Z., Wu, H., Sun, W., Zheng, B.: Cobweb: a robust map update system using GPS trajectories. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 927–937 (2015)

    Google Scholar 

  32. Steiner, A., Leonhardt, A.: A map generation algorithm using low frequency vehicle position data contents. In: 90th Annual Meeting of the Transportation Research Board (2011)

    Google Scholar 

  33. Tampakis, P., Pelekis, N., Andrienko, N.V., Andrienko, G.L., Fuchs, G., Theodoridis, Y.: Time-aware sub-trajectory clustering in hermes@postgresql. In: ICDE, pp. 1581–1584 (2018)

    Google Scholar 

  34. Tampakis, P., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Distributed subtrajectory join on massive datasets. ACM Trans. Spatial Algorithms Syst. 6(2) (2019). https://doi.org/10.1145/3373642

  35. Tampakis, P., Pelekis, N., Doulkeridis, C., Theodoridis, Y.: Scalable distributed subtrajectory clustering. In: IEEE BigData 2019, pp. 950–959 (2019)

    Google Scholar 

  36. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

    Google Scholar 

  37. Wang, S., Wang, Y., Li, Y.: Efficient map reconstruction and augmentation via topological methods. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 25:1–25:10 (2015)

    Google Scholar 

  38. Zhang, L., Thiemann, F., Sester, M.: Integration of GPS traces with road map. In: Proceedings of the Third International Workshop on Computational Transportation Science, pp. 17–22 (2010)

    Google Scholar 

  39. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 29:1–29:41 (2015)

    Google Scholar 

  40. Zygouras, N., Gunopulos, D.: Corridor learning using individual trajectories. In: IEEE MDM, pp. 155–160 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Pelekis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tampakis, P., Sideridis, S., Nikitopoulos, P., Pelekis, N., Doulkeridis, C., Theodoridis, Y. (2020). Offline Trajectory Analytics. In: Vouros, G., et al. Big Data Analytics for Time-Critical Mobility Forecasting. Springer, Cham. https://doi.org/10.1007/978-3-030-45164-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45164-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45163-9

  • Online ISBN: 978-3-030-45164-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics