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Abstract. We show that symmetry transformations and caching can enable scal-
able, and possibly unbounded, verification of multi-agent systems. Symmetry
transformations map any solution of the system to another solution. We show that
this property can be used to transform cached reachsets to compute new reachsets,
for hybrid and multi-agent models. We develop a notion of a virtual system which
defines symmetry transformations for a broad class of agent models that visit
waypoint sequences. Using this notion of a virtual system, we present a prototype
tool CacheReach that builds a cache of reachsets, in a way that is agnostic of
the representation of the reachsets and the reachability analysis method used.
Our experimental evaluation of CacheReach shows up to 64% savings in safety
verification computation time on multi-agent systems with 3-dimensional linear
and 4-dimensional nonlinear fixed-wing aircraft models following sequences of
waypoints. These savings and our theoretical results illustrate the potential benefits
of using symmetry-based caching in the safety verification of multi-agent systems.

1 Introduction

As the cornerstone for safety verification of dynamical and hybrid systems, reachability
analysis has attracted attention and has delivered automatic analysis of automotive,
aerospace, and medical applications [2,24,17,11]. Notable advances from the last few
years include the development of the generalized star data-structure [14] and the HyLaa
tool [3] which can analyze massive linear models [4]; Taylor model based reachability
analysis algorithms for nonlinear systems and their implementations in Flow* [7]; and a
simulation-based algorithm that guarantees locally optimal precision [15].

Exact symbolic reachability analysis of nonlinear models is generally hard. One
prominent approach is based on generalizing individual behaviors or simulations to
cover a whole set of behaviors. The idea was pioneered in [10] and implemented in
Breach [9] with sound generalization guarantees for linear models based on sensitivity
analysis. Subsequently, the idea has been significantly extended to cover nonlinear,
hybrid, and black-box models and it has been implemented in tools like C2E2 and
DryVR [12,19,17,16].

In all of the above, a single behavior ξ of the system from an initial state, is general-
ized to a compact set of neighboring behaviors that contains all the behaviors starting
? The authors are supported by a research grant from The Boeing Company and a research grant

from NSF (CPS 1739966). We would like to thank John L. Olson and Arthur S. Younger from
The Boeing Company for valuable technical discussions.

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 173–190, 2020.
https://doi.org/10.1007/978-3-030-45190-5_10

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_10&domain=pdf
http://orcid.org/0000-0002-6053-1001
http://orcid.org/0000-0002-5767-8547
http://orcid.org/0000-0003-4671-233X
http://orcid.org/0000-0001-7082-5516
https://doi.org/10.1007/978-3-030-45190-5_10


174 H. Sibai et al.

from a small neighborhood around the initial state of ξ . Thus, the computed neighboring
set of behaviors always contains ξ and its size is determined by the algorithms for
sensitivity analysis. In contrast, the type of generalization we pursue here uses symmetry
transforms on the state space. Given a group Γ of operators on the state space, and a sin-
gle behavior ξ , we can generalize ξ to γ(ξ ), for each γ ∈ Γ . Symmetry transformations
can be applied to sets of behaviors symbolically. Not only can this type of generalization
work in conjunction with sensitivity analysis, it captures structural properties of the
system that make behaviors similar in a way that is not covered by sensitivity analysis.

In our recent work [29], we showed how symmetry transforms can be used to pro-
duce new reachsets from other previously computed reachsets for non-parameterized
dynamical systems. In this paper, we introduce the use of symmetry transforms of
parameterized dynamical systems for safety verification. We present an algorithm
symComputeReachtube (Algorithm 1) which caches and reuses reachsets, avoiding
repeating expensive computations. We show how an infinite number of reachsets can
be obtained by transforming a single one using symmetry transforms (Corollary 2).
Building on it, we provide unbounded time safety guarantees using finite cached safety
checking results (Theorem 6).

The key contributions of this paper are as follows.
First, we show how symmetry transformations for parameterized dynamical systems

can be used to compute reachable states (Theorem 2). Going well beyond the previous
theory [29], this enables cached reachtubes to be reused for verification across different
modes and across multiple agents.

We develop a notion of virtual system (Section 4) which automatically defines
symmetry transformations for a broad swathe of hybrid and dynamical systems modeling
agents visiting a sequence of waypoints (see Theorem 3 and Examples 3 and 4). That
is, reachability analysis of a multi-agent system, with possibly different dynamics and
different parameters, can be performed in a common transformed coordinate system, and
thus, increases the possibility of reuse. We show how this principle can make it possible
to verify systems over unbounded time and with infinite number of agents (Theorem 6),
provided that no new unproven scenarios appear for the virtual system.

We present a prototype implementation of a tool that uses symComputeReachtube.
We name it CacheReach. It builds a cache of reachtubes for the virtual system, from
different sets of initial states. In performing reachability analysis of a multi-agent hybrid
or dynamical system, for each agent and each mode, the algorithm proceeds as follows:
(1) transform the initial set X to an initial set of the virtual system to get γ(X). (2) If
the transformed set γ(X) has already been stored in the cache, then extract it and apply
γ−1 to get the actual reachset. (3) Otherwise, compute the reachset from γ(X) and cache
it. Our algorithm symComputeReachtube and its implementation in CacheReach are
agnostic of the representation of the reachsets and the reachability analysis subroutine,
and therefore, any of the ever-improving libraries can be plugged-in for step 3.

Our experimental evaluation of CacheReach shows safety verification computation
time savings of up to 64% on scenarios with multiple agents with 3-dimensional linear
and 4-dimensional nonlinear fixed-wing aircraft model following sequences of waypoints.
These savings illustrate the potential benefits of using symmetry transformations and
caching in the safety verification of multi-agent systems.
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2 Model and problem statement

Notations. We denote by N, R, and R≥0 the sets of natural numbers, real numbers and
non-negative reals. Given a finite set S, its cardinality is denoted by |S|. Given N ∈N, we
denote by [N] the set {1, . . . ,N}. Given a vector v ∈ Rn and a set L⊆ [n], we denote the
projection of v to the indices in L by v[L]. We define an n-dimensional hyper-rectangle by
a 2d-array specifying its bottom-left and upper-right corners. We denote the projection
of a hyper-rectangle H on the set of dimensions L by H[L]. Given a function γ : Rk→Rk

and a set S⊆ Rk, we abuse notation and define γ(S) = {γ(x) | x ∈ S}. Moreover, given
S ∈ 2R

k ×R≥0, we define γ(S) = {(γ(X), t) | (X , t) ∈ S}.

2.1 Agent mode dynamics

In this section, we define the syntax and semantics of the model that determines the
dynamics of an agent. We present the syntax first.

Definition 1 (syntax). The agent dynamics are defined by a tuple A = 〈S,P, f 〉, where
S ⊆ Rn is its state space, P ⊆ Rm is its parameter or mode space, and the dynamic
function f : S×P→ S that is Lipschitz in the first argument.

The semantics of an agent dynamics is defined by trajectories, which describe the
evolution of states over time.

Definition 2 (semantics). For a given agent A = 〈S,P, f 〉, we call a function ξ : S×P×
R≥0→ S a trajectory if ξ is differentiable in its third argument, and given an initial state
x0 ∈ S and a mode p ∈ P, ξ (x0, p,0) = x0 and for all t > 0,

dξ

dt
(x0, p, t) = f (ξ (x0, p, t), p). (1)

We say that ξ (x0, p, t) is the state of A at time t when it starts from x0 in mode p.

Given an initial state x0 ∈ S and mode p ∈ P, the trajectory ξ (x0, p, ·) is the unique
solution of the ordinary differential equation (ODE) (1) since f is Lipschitz continuous.

Given a compact initial set K ⊆ S, a parameter p ∈ P, the set of reachable states of
A over a time interval [ftime,etime] is defined as

Reach(K, p, [ftime,etime]) = {x ∈ S | ∃x0 ∈ K, t ∈ [ftime,etime],x = ξ (x0, p, t)}. (2)

We let Reach(K, p, t) denote the set of reachable states at time t. Unbounded reachset
from K and p is Reach(K, p, [ftime,∞)).

The bounded time safety verification problem requires one to check if any state
reachable by A for a given initial set K and mode p is unsafe within a given time bound.
That is, given a time bound T > 0, p ∈ P, and an unsafe set U ⊆ S, we want to check
whether Reach(K, p, [0,T ])∩U = /0.
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2.2 Reachtubes

Computing reachsets exactly is theoretically hard [22]. There are many reachability anal-
ysis tools [8,1,3] that can compute bounded-time over-approximations of the reachsets.
Generally, given an initial set K for a set of ODEs, these tools can return a sequence of
sets that contain the exact reachset over small time intervals. Motived by this, we define
reachtubes as sequences of time-annotated over-approximations of exact reachsets:

Definition 3. For a given agent A = 〈S,P, f 〉, an initial set K ⊆ T , a mode p ∈ P, and
a time interval [ftime,etime], a (K, p, [ftime,etime])-reachtube ReachTb(K, p, [0,T ]) is
a sequence {(Xi, [τi−1,τi])} j

i=1 such that Reach(K, p, [τi−1,τi])⊆ Xi, and τ0 = ftime <
τ1 < · · ·< τ j = etime. Without loss of generality, we assume equal separation between
the time points, i.e. ∃ τs > 0,∀i ∈ [ j],τi− τi−1 = τs.

For a given (K, p, [ftime,etime])-reachtube rtube, we denote its parameters by rtube.K,
rtube.p, rtube.ftime, and rtube.etime, respectively, and its cardinality by rtube.len.

We define union, truncation, concatenate, and time-shift operators on reachtubes. Fix
rtube1 = {(Xi,1, [τi−1,1,τi,1])} j1

i=1 and rtube2 = {(Xi,2, [τi−1,2,τi,2])} j2
i=1 to be two reach-

tubes, where j1 = rtube1.len and j2 = rtube2.len. If τi,1 = τi,2 for all i∈ [min( j1, j2)], we
say they are time-aligned. Without loss of generality, assume that j1 ≤ j2. The operators
are defined as follows:

– timeShift(rtube1, ts) = {(Xi,1, [ts + τi−1,1, ts + τi,1])} j1
i=1,

– union: rtube1∪ rtube2 = {(Xi,1∪Xi,2, [τi−1,1,τi,1])} j1
i=1∪{(Xi,2, [τi−1,2,τi,2])} j2

i= j1+1,

– concatenation: rtube1
_ rtube2 = rtube1∪{(Xi,2, [τ j1,1 + τi−1,2,τ j1,1 + τi,2))} j2

i=1,
– truncate(rtube1, tc) = {(Xi,1, [τi−1,1,τi,1])}k

i=1, where τk,1 ≥ tc and τk−1,1 < tc.

A simulation of system (1) is a reachtube with X0 being a singleton state x0 ∈K. That
is, a simulation is a representation of ξ (x0, p, ·). Several numerical solvers can compute
such simulations as VNODE-LP1 and CAPD Dyn-Sys library 2.

Example 1 (Fixed-wing aircraft following a single waypoint). Consider an agent with
state space S = R4, parameter space P = R4, and f : S×P→ S defined as follows: for
any x ∈ S and p ∈ P,

f (x, p) = [
Tc− cd1x[0]2

m
,

g
x[0]

sinφ ,x[0]cosx[1],x[0]sinx[1]],

where Tc = k1m(vc−x[0]), φ = k2
vc
g (ψc−x[1]), ψc = arctan2(

x[2]−p[2]
x[3]−p[3] ), and k1,k2,m,g,

cd1, and vc are positive constants. The agent models a fixed-wing aircraft starting from
a waypoint and following another in the 2D plane: x[0] is its speed, x[1] is its heading
angle, (x[2],x[3]) is its position in the plane, [p[0], p[1]] is the position of the source
waypoint, and (p[2], p[3]) is the position of the destination one. Note that the source
waypoint does not affect the dynamics, but will be useful later in the paper.

1 http://www.cas.mcmaster.ca/~nedialk/vnodelp/
2 http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html

http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html
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3 Symmetry and Equivariant Dynamical Systems

Symmetry plays a fundamental role in the analysis of dynamical systems. It has been
used for studying stability of feedback systems [25], designing observers [5] and con-
trollers [30], and analyzing neural networks [20]. In this section, we present definitions
of symmetries and their implications on systems that posses them.

3.1 Symmetry of systems with inputs

In the following, symmetry transformations are defined by the ability of computing new
solutions of (1) using already computed ones. First, let Γ be a group of smooth maps
acting on S.

Definition 4 (Definition 2 in [27]). We say that γ ∈ Γ is a symmetry of (1) if for any
solution ξ (x0, p, ·), γ(ξ (x0, p, ·)) is also a solution.

Using γ-symmetry, we can get a new trajectory without simulating the system but
instead by just transforming the entire old trajectory using γ .

In the following definition we characterize the conditions under which a transforma-
tion is a symmetry of (1).

Definition 5. The dynamic function f : S×P→ S is said to be Γ -equivariant if for any
γ ∈ Γ , there exists ρ : P→ P such that for all x ∈ S, ∂γ

∂x f (x, p) = f (γ(x),ρ(p)).

The following theorem shows that it is enough to check the condition in Definition 5
to prove that a transformation is a symmetry of (1).

Theorem 1 (part of Theorem 10 in [27]). If f is Γ -equivariant, then all maps in Γ

are symmetries of (1). Moreover, for any solution ξ (x0, p, ·) and γ ∈ Γ , γ(ξ (x0, p, ·)) =
ξ (γ(x0),ρ(p), ·), where ρ is the transformation associated with γ in Definition 5.

Proof. Let y = γ(x), then ẏ = ∂γ

∂x (ẋ) =
∂γ

∂x ( f (x, p)) = f (γ(x),ρ(p)) = f (y,ρ(p)). The
second equality is a result of the derivative chain rule. The 3rd equality uses Definition 5.

Remark 1. If γ in Theorem 1 is linear, the condition in Definition 5 for a map γ to be a
symmetry becomes γ( f (x, p)) = f (γ(x),ρ(p)).

Example 2 (Fixed-wing aircraft coordinate transformation symmetry). Consider the
fixed-wing aircraft model of Example 1. Fix goal ∈ R2 and θ ∈ R. Let γ : R4→ R4 and
ρ : R4→ R4 be defined as:

γ(x) = [x[0],x[1]+θ ,(x[2]−goal[0])cos(θ)+(x[3]−goal[1])sin(θ),
− (x[2]−goal[0])sin(θ)+(x[3]−goal[1])cos(θ)] and (3)

ρ(p) = [0,0,(p[2]−goal[0])cos(θ)+(p[3]−goal[1])sin(θ),
− (p[2]−goal[0])sin(θ)+(p[3]−goal[1])cos(θ)]. (4)

Then, for all x ∈ S and p ∈ P, γ( f (x, p)) = f (γ(x),ρ(p)), where f is as in Section 2.1.
The transformation γ would change the origin of S from [0,0,0,0] to [0,0,goal[0],goal[1]].
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Then, it would rotate the third and four axes counter-clockwise by θ . Moreover, ρ would
set the first two coordinates of the parameters to zero as they do not affect the dynamics,
translate the origin of the parameter space P to [0,0,goal[0],goal[1]], and rotate the third
and fourth axes counter-clockwise by θ . For the aircraft, this means translating and
rotating the plane where the aircraft and the waypoint positions reside.

3.2 Symmetry and reachtubes

Computing reachtubes is computationally expensive as it requires non-trivial optimiza-
tion problems and integrating non-linear functions [13,15,16,8,6]. Compared with that,
transforming reachtubes is much cheaper, especially if the transformation is linear.

In our previous work [29], we showed how to get reachtubes of autonomous systems
from previously computed ones using symmetry transformations. In this paper, we show
how to do that for systems with parameters. This allows different modes of a hybrid
system and different agents with similar dynamics to share reachtube computations. That
was not possible when the theory was limited to non-parameterized systems.

Theorem 2. Let (1) be Γ -equivariant. Then for any γ ∈ Γ and its corresponding ρ , any
K, p, [ftime,etime] and {(Xi, [τi−1,τi])} j

i=1 as a (K, p, [ftime,etime])-reachtube,

∀i ∈ [ j],Reach(γ(K),ρ(p), [τi−1,τi]) = γ(Reach(K, p, [τi−1,τi]))⊆ γ(Xi).

Proof. (Sketch) The first part Reach(γ(K),ρ(p), [τi−1,τi]) = γ(Reach(K, p, [τi−1,τi]))
follows directly from Theorem 1. The second part γ(Reach(K, p, [τi−1,τi])) ⊆ γ(Xi)
follows from the reachtube ReachTb(K, p, [tb, te]) being an over-approximation of the
exact reachset during the small time intervals [τi−1,τi].

Theorem 2 says that we can transform a computed reachtube ReachTb(K, p, [t1, t2]) =
{(Xi, [τi−1,τi])} j

i=1 to get another reachtube {(γ(Xi), [τi−1,τi])} j
i=1, which is an over-

approximation of the reachsets starting from γ(K).
The results of this section subsume the results about transforming reachtubes of

autonomous systems-dynamical systems without parameters as presented in [29].

4 Virtual system

The challenge in safety verification of multi-agent systems is that the dimensionality
of the problem grows rapidly with the number of agents. However, often agents share
the same dynamics. For instance, several fixed-wing aircrafts of the type described in
Example 1 share the same dynamics but may have different initial conditions and follow
different waypoints. This commonality has been exploited in developing specialized
proof techniques [23]. For reachability analysis, using symmetry transforms of the
previous section, reachtubes of one agent in one mode can be used to get the reachtubes
of other modes and even other agents.

Fix a particular value pv ∈ P and call it the virtual parameter. Assume that for all
p∈ P, there exists a pair of transformations (γp,ρp) such that ρp(p) = pv, γp is invertible,
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and γp( f (x, p)) = f (γp(x),ρp(pv)) = f (γp(x), pv). Consider the resulting ODE:

dξ

dt
(y, pv, t) = f (ξ (y, pv, t), pv). (5)

Following [27], we call (5) a virtual system. Correspondingly, we call (1), the real system
for the rest of the paper. The virtual system unifies the behavior of all modes of the real
system in one representative mode, the virtual one pv.

Example 3 (Fixed-wing aircraft virtual system). Consider the fixed-wing aircraft agent
described in Example 1 and the corresponding transformations described in Example 2.
Fix p ∈ P, we set goal in the transformation of Example 2 to [p[2], p[3]] and θ to
arctan2(p[0]− p[2], p[3]− p[1]) and let γp and ρp be the resulting transformations. Then,
for all p ∈ P, ρp(p) = [0,0,0,0]. Hence, pv = [0,0,0,0] and the virtual system is that of
Example 1 with the parameter p = pv. For the aircraft, γp would translate the origin of
the plane to the destination waypoint and rotate its axes so that the y-axis is aligned with
the segment between the source and destination waypoints. Hence, in the constructed
virtual system, the destination waypoint is the origin of the plane. The source waypoint
is the origin as well as it does not affect the dynamics.

The solutions of the virtual system can be transformed to get solutions of all other
modes in P using {γ−1

p }p∈P. This is shown in the following theorem.

Theorem 3. Given any initial state y0 ∈ S, and any mode p ∈ P, γ−1
p (ξ (y0, pv, ·)) is a

solution of the real system (1) with mode p starting from γ−1
p (y0). Similarly, given any

x0 ∈ S, γp(ξ (x0, p, ·)) is the solution of the virtual system (5) starting from γp(x0).

Proof. Lets start with the first part of the theorem. Fix p ∈ P and let x0 = γ−1
p (y0).

Using Theorem 1, γp(ξ (x0, p, ·)) = ξ (γp(x0),ρp(p), ·)) and is the solution of the real
system (1). Furthermore, ρp(p) = pv, by definition, and γp(x0) = γp(γ

−1
p (y0)) = y0.

Hence, γp(ξ (x0, p, ·)) = ξ (y0, pv, ·). Applying γ−1
p on both sides implies the first part of

the theorem. The second part is a direct application of Theorem 1.

The following corollary extends the result of Theorem 3 to reachtubes. It follows
from Theorem 2.

Corollary 1. Given a Kv ⊆ S and a mode p ∈ P, γ−1
p (ReachTb(Kv, pv, [tb, te])) is a

reachtube of the real system (1) with mode p starting from γ−1
p (Kv). Similarly, given

any initial set K ⊂ S, γp(ReachTb(K, p, [tb, te])) is a reachtube of the virtual system (5)
starting from γp(K).

Consequently, we get a solution or a reachtube for each mode p ∈ P of the real
system by simply transforming a single solution or a single reachtube of the virtual
system using the transformations {γp}p∈P and their inverses. This will be the essential
idea behind the savings in computation time of the new symmetry-based reachtube
computation algorithm and symmetry-based safety verification algorithms presented
next. It will be also the essential idea behind proving safety in the case of unbounded
time and infinite number of modes.
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Example 4 (Fixed-wing aircraft infinite number of reachtubes resulting from transform-
ing a single one). Consider the real system in Example 1 and the virtual one in Example 3.
Fix the initial set, which is represented as a hyper-rectangle, Kr = [[1, π

4 ,3,1], [2,
π

3 ,4,2]],
the real mode pr = [2.5,0.5,13.3,5], and the time bound 20 seconds. Then, similar to Ex-
ample 3, we fix θ = arctan2(2.5−13.3,5−0.5) =−1.176 rad and goal = [13.3,5]. We
call the resulting transformations from Example 3, γpr and ρpr . Let Kv = γpr(Kr) and pv =
ρpr(pr) = [0,0,0,0]. Assume that we have the reachtube rtuber = ReachTb(Kr, pr,T ).
Then, using Corollary 1, we can get rtubev = ReachTb(Kv, pv,T ) by transforming rtuber
using γpr . The benefit of the corollary appears in the following: for any p ∈ P = R4, we
can get the corresponding reachtube ReachTb(γ−1

p (Kv), p,T ) by transforming rtubev

using γ−1
p .

The projection of Kv on its last two coordinates Kv[2 : 3] represents the possible
initial position of the aircraft in the plane relative to the destination waypoint. It would
be a rotated square with angle θ . The distance from Kv[2 : 3] center to the origin would
be equal to the distance from K[2 : 3] center to the destination waypoint. Moreover, the
angle between the y-axis and the line connecting the origin with the center of Kv[2 : 3]
would be equal to the angle from the segment connecting the source and destination
waypoints to the line connecting the destination waypoint with the center of K[2 : 3]. On
the other hand, Kv[0] = K[0] and Kv[1] = K[1]+θ .

In summary, the absolute positions of the aircraft and waypoints do not matter. What
matters is their relative positions. The virtual system stores what matters and whenever a
reachtube is needed for a new absolute position, we can transform it from the virtual one.

5 Symmetry-based verification algorithm

In this section, we introduce a novel safety verification algorithm, symSafetyVerif,
which uses existing reachability subroutines, but exploits symmetry, unlike existing
algorithms. In our earlier work [29], we introduced reachtube transformations using
symmetry for single mode dynamical systems. Here, we extend the method across modes,
introduce the virtual system, and develop the corresponding verification algorithm.

In Section 5.1, we define tubecache—a data-structure for storing reachtubes; in 5.2,
we present the symmetry-based reachtube computation algorithm symComputeReachtube

that reuses reachtubes stored in tubecache; finally, in 5.3, we define the safetycache data-
structure which stores previously computed safety verification results. These results
would be used by the symSafetyVerif algorithm.

5.1 tubecache: shared memory for reachtubes

We show how we use the virtual system (5) to create a shared memory for the different
modes of the real system (1) to reuse each others’ computed reachtubes. We call this
shared memory tubecache.

Definition 6. A tubecache is a data structure that stores a set of reachtubes of the virtual
system (5). It has two methods: getTube, for retrieving stored tubes and storeTube, for
storing a newly computed one.
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The function getTube returns a set of reachtubes {ReachTb(Ki, pv, [0,Ti])}i∈[h], for
some h ∈ N, that are already stored in tubecache. Moreover, the union of Kis is the
largest subset of K that can be covered by the initial sets of the reachtubes in tubecache.
Formally,

tubecache.getTube(K) = argmax
{ReachTb(Ki,pv,[0,Ti])∈tubecache}i

Vol(K∩∪iKi), (6)

where Vol(·) is the Lebesgue measure of the set. Note that for any K ⊂ Rn, a maximizer
of (6) would be the set of all reachtubes in tubecache. However, this is very inefficient
and it would be too conservative to be useful for checking safety. Therefore, getTube
should return the minimum number of reachtubes that maximize (6). Note that the
reachtubes in tubecache may have different time bounds. We will truncate or extend
them when used.

5.2 symComputeReachtube: symmetry-based reachtube computation

Given an initial set K ⊂ S, a mode p∈ P, and time bound T , there are dozens of tools that
can return a ReachTb(K, p, [0,T ]). See [13,8,9] for examples of such tools and [26] for a
comprehensive survey. We denote this procedure by computeReachtube(K, p, [0,T ]).

Whenever a reachtube is needed, instead of calling computeReachtube, we will
use symmetry to retrieve corresponding reachtubes that are already stored in tubecache
and only compute what is not stored. We introduce Algorithm 1 which implements this
idea and name it symComputeReachtube.

It takes as input the initial set of the virtual system Kv, the time bound T , and
tubecache. It returns a reachtube of the virtual system starting from Kv and running
for T time units. Hence, to get a reachtube of the real system starting from an initial
set K and having a mode p and time bound T , we transform K using γp to get Kv, call
symComputeReachtube, and transform the result using γ−1

p .
First, it initializes restubev as an empty tube of the virtual system (5) to store the

result in line 2. It then gets the reachtubes from tubecache that corresponds to Kv using
the getTube method in line 3. Now that it has the relevant tubes in storedtubes, it adjusts
their lengths based on the time bound T . For a retrieved tube with a time bound less
than T in line 5, symComputeReachtube extends the tube for the remaining time using
computeReachtube in lines 6-7, store the resulting tube in tubecache instead of the
shorter one in line 8. If the retrieved tube is longer than T (line 9), it trims it in line 10.
However, we keep the long one in the tubecache to not lose a computation we already
did. Then, the tube with the adjusted length is added to the result tube restubev in line 11.

The union of the initial sets of the tubes retrieved storedtubes may not contain all of
the initial set Kv. That uncovered part is called K′v in line 12. The reachtube starting from
K′v would be computed from scratch using computeReachtube in line 13, stored in
tubecache in line 14, and added to restubev in line 15. The resulting tube of the virtual
system (5) is returned in line 16. This tube would be transformed by the calling algorithm
using γ−1

p to get the corresponding tube of the real system (5).

Theorem 4. The output of Algorithm 1 is an over-approximation of the reachtube
ReachTb(Kv, pv, [0,T ]).
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Algorithm 1 symComputeReachtube

1: input: Kv,T, tubecache
2: restubev← /0
3: storedtubes← tubecache.getTube(Kv)
4: for i ∈ [|storedtubes|] do
5: if storedtubes[i].T < T then
6: (Ki, [τi,Ti])← storedtubes[i].end
7: tubei← storedtubes[i]_ computeReachtube(Ki, pv, [0,T − τi])
8: tubecache.storeTube(tubei)
9: else if storedtubes[i].T > T then

10: tubei← storedtubes[i].truncate(T )
11: restubev← restubev∪ tubei

12: K′v← Kv\∪i storedtubes[i].K
13: tube′ = computeReachtube(K′v, pv, [0,T ])
14: tubecache.storeTube(tube′)
15: restubev← restubev∪ tube′

16: return: restubev

Proof. The function computeReachtube always returns over-approximations of the
reachset from a given initial set and for a given time bound. The set restube contains
reachtubes that were computed by computeReachtube at some point. There are three
types of reachtubes in restube:

1. When the time bound Ti of the stored reachtube storedtubes[i] is less than T ,
we need to extend storedtubes[i] until time T by concatenating the original tube
with computeReachtube(Ki, pv, [0,T − τi]), where (Ki, [τi,Ti]) is the last pair in
storedtubes[i]. The result is a valid (storedtubes[i].K, pv, [0,T ])-reachtube.

2. When the time bound Ti of the stored reachtube storedtubes[i] is more than T , the
truncated reachtube is also a valid (storedtubes[i].K, pv, [0,T ])-reachtube.

3. For K′v that is not contained in the union of the initial sets in storedtubes, the function
computeReachtube will return a valid (K′v, pv, [0,T ])-reachtube.

The union of the initial sets of the tubes in storedtubes and K′v contains Kv, so the union
of the reachtubes the algorithm returns a (Kv, pv, [0,T ])-reachtube.

The importance of symComputeReachtube lies in that if a mode p required a
computation of a reachtube and the result is saved in tubecache, another mode with
a similar scenario with respect to the virtual system would reuse that tube instead of
computing one from scratch. Moreover, reachtubes of the same mode might be reused as
well if the scenario was repeated again.

5.3 Bounded time safety

In this section, we show how to use tubecache and symComputeReachtube of the previ-
ous section for bounded and unbounded time safety verification of the real system (1). We
consider a scenario where the safety verification of multiple modes of the real system (1)
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starting from different initial sets and for different time horizons is needed. We will
use the virtual system (5) and the transformations {γp}p∈P to share safety computations
across modes, initial sets, time horizons, and unsafe sets.

We first introduce safetycache, a shared memory to store the results of intersecting
reachtubes of the virtual system (5) with different unsafe sets. It will prevent repeating
safety checking computations of different modes under similar scenarios and can be
used in finding unbounded time safety properties of the real system (1).

Definition 7. A safetycache is a data structure that stores the results of intersecting
reachtubes of the virtual system (5) with unsafe sets. It has two functions: getIntersect,
for retrieving stored results and storeIntersect, for storing a newly computed one.

Given an initial set Kv, a time bound T , and an unsafe set Uv, the reachtube rtube =
ReachTb(Kv, pv, [0,T ]) is unsafe if there is another one rtube′= ReachTb(K′v, pv, [0,T ′]),
is unsafe, and is an under-approximation of rtube. Similarly, if rtube′ is an over-
approximation of rtube and is safe, then rtube is safe. Formally, the getIntersect func-
tion of safetycache returns the truth value of the predicate ReachTb(Kv, pv, [0,T ])∩Uv =
/0 if a subsuming computation is stored, and returns ⊥, otherwise.

Formally, safetycache.getIntersect(Kv,T,Uv) =
0, if ∃ K′v,T

′,U ′v | Kv ⊇ K′v,T ≥ T ′,Uv ⊇U ′v,safetycache(K′v,T
′,U ′v) = 0,

1, if ∃ K′v,T
′,U ′v | Kv ⊆ K′v,T ≤ T ′,Uv ⊆U ′v,safetycache(K′v,T

′,U ′v) = 1, and
⊥, otherwise,

where 0 means unsafe and 1 means safe.
It is equivalent to check the intersection of a reachtube of the real system (1) with an

unsafe set U and to check the intersection of the corresponding reachtube and unsafe set
of the virtual one. This is formalized in the following lemma.

Lemma 1. Consider an unsafe set U ⊆ Rn×R+ and rtube = ReachTb(K, p, [t1, t2]).
Then, for any invertible γ : Rn→ Rn, rtube∩U 6= /0 if and only if γ(rtube)∩ γ(U) 6= /0.

Now that we have established the equivalence of safety checking between the real
and virtual systems, we present Algorithm 2 denoted by symSafetyVerif. It uses
safetycache, tubecache, and symComputeReachtube in order to share safety verifica-
tion computations across modes. The method symSafetyVerif would be called several
times to check safety of different scenarios and safetycache and tubecache would be
maintained across calls.

The function symSafetyVerif takes as input an initial set K, a mode p, a time
bound T , an unsafe set U , the transformation γp, and safetycache and tubecache that
resulted from previous runs of the algorithm.

It starts by transforming the initial and unsafe sets K and U to a virtual system
initial and unsafe sets Kv and Uv using γp in line 2. It then checks if a subsuming
result of the safety check for the tuple (Kv,T,Uv) exists in safetycache using its method
getIntersect in line 3. If it does exist, it returns it directly in line 8. Otherwise,
the approximate reachtube is computed using symComputeReachtube in line 5. The
returned tube is intersected with Uv in line 6 and the result of the intersection is stored in
safetycache in line 7 and returned in line 8.
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Algorithm 2 symSafetyVerif

1: input: K, p,T,U,γp,safetycache, tubecache
2: Kv← γp(K), Uv← γp(U)
3: result← safetycache.getIntersect(Kv,T,Uv)
4: if result =⊥ then
5: rtube← symComputeReachtube (Kv,T, tubecache)
6: result← (tube∩Uv = /0)
7: safetycache.storeIntersect(Kv,T,Uv,result)
8: return: result

Theorem 5. If symSafetyVerif returns safe, then ReachTb(K, p, [0,T ])∩U = /0.

Proof. From Theorem 4, if the result is not stored in safetycache, we know that rtube
in line 5 is an over-approximation of ReachTb(Kv, pv, [0,T ]). Moreover, we know from
Corollary 1 that ReachTb(K, p, [0,T ])⊆ γ−1

p (rtube). But, from Lemma 1, we know that
the truth value of the predicate (rtube∩Uv = /0) is equal to that of (γ−1

p (rtube)∩U = /0)
and hence result is safe if γ−1

p (rtube)∩U = /0 and thus it is safe if ReachTb(K, p,T )∩
U = /0. Finally, the stored values in safetycache are results from previous runs, and hence
have the same property.

However, if symSafetyVerif returns unsafe, it might be that rtube in line 5 inter-
sected the unsafe set because of an over-approximation error. There are two sources
of such errors: first, the method computeReachtube used by symComputeReachtube

can itself result in over-approximation errors. Actually, it will, most of the time [13,8].
But it may be exact too [3]. Second, the tubecache.getTube method which would return
a list of tubes with the union of their initial sets strictly over-approximating the needed
initial set. The first problem can be solved by asking the method computeReachtube

to compute tighter reachtubes. Existing methods provide this option at the expense
of worse computational complexity [13,8]. However, we can use symmetry in these
tightening computations as well, as we did in [29]. We can also replace saved tubes
in tubecache with newly computed tighter ones. The second problem can be solved
by asking tubecache.getTube to return only the tubes with initial sets that are fully
contained in the asked initial set. This would decrease the savings from transforming
cached results, but it would reduce the false-positive error, saying unsafe while it is safe.

5.4 Unbounded time safety

In this section, we show how infinite number of results of safety checks, i.e. results
of intersections of reachtubes with unsafe sets, can be deduced from finite ones. The
following corollary applies Lemma 1 to the transformations {γp}p∈P that map the
different modes of the real system (1) to the unique virtual one (5).

Corollary 2 (Infinite safety verification results from a single one). Fix U ⊆ Rn and
rtube= ReachTb(Kv, pv, [0,T ]). If rtube∩U = /0, then ∀p∈P, γ−1

p (rtube)∩γ−1
p (U) = /0.
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The corollary means that from a single scenario safety check, i.e. an intersection op-
eration between a reachtube ReachTb(K, pv, [0,T ]) and unsafe set U , we can deduce the
safety of any mode p ∈ P starting from γ−1

p (K) and running for T time units with respect
to the corresponding unsafe set γ−1

p (U). This would, for example, imply unbounded
time safety of a hybrid automaton under the assumption that the unsafe sets of the modes
are at the same relative position with respect to the reachtube. But, safetycache stores a
number of results of such operations. We can infer from each one of them the safety of
infinite scenarios. This is formalized in the following theorem which follows directly
from Corollary 2.

Theorem 6 (Infinite safety verification results from finite ones). For any mode p∈ P,
initial set K ⊆ S, time bound T ≥ 0, and unsafe set U ⊂ S×R≥0, such that K ⊆ γ−1

p (K′),
U ⊆ γ−1

p (U ′), and safetycache(K′,T,U ′) = 1, system (1) is safe.

As more results are added to safetycache, then we can deduce the safety of more
scenarios in all modes. If at a given point of time, we are sure that no new scenarios
would appear, we can deduce the safety for unbounded time and unbounded number of
agents with the same dynamics having scenarios already covered.

Example 5 (Fixed-wing aircraft infinite number of safety verification results from com-
puting a single one). Consider the initial set K, mode p, time bound T , their correspond-
ing virtual ones Kv and pv, and the symmetry transformation γpr considered in Example 4.
Let the unsafe set be U = [[0,−∞,11.9,5.1], [∞,∞,12.9,6.1]]×R≥0 and Uv = γpr(U).
Assume that rtubev∩Uv = /0 and the result is stored in safetycache. Then, for all p ∈ P,
γ−1

p (rtubev)∩ γ−1
p (Uv) = /0.

For the aircraft, U could represent a mountain. Crashing with the mountain at any
speed, heading angle, and time is unsafe. Uv represents the relative position of the
mountain with respect to the segment of waypoints. Theorem 6 says that for any initial
set of states K of the aircraft and time bound T , if the relative positions of the aircraft,
unsafe set, and the segment of waypoints are the same or subsumed by those of Kv, Uv,
and the origin, we can infer safety irrespective of their absolute positions.

6 Experimental evaluation

We implemented a software safety verification tool for multi-agent hybrid systems based
on symComputeReachtube using Python 3. We named it CacheReach. By hybrid, we
mean systems that transition between different modes under different conditions. We
tested it on a linear dynamical system and the aircraft model of Example 1, following
sequences of waypoints, using DryVR [18] and Flow* [8] as reachability subroutines.
Our code is available in a figshare repository [28] and has been tested on an Ubuntu
virtual machine available in another figshare repository [21].

6.1 CacheReach: multi-agent safety verification tool

Our tool CacheReach takes as input a JSON file specifying a list of N agents of di-
mension n. It also specifies the python file that contains the dynamics function f of
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Definition 1 and two symmetry-related functions: symGamma and symGammaInv. Given
a p ∈ P and a polytope3 poly of dimension n representing a set of states of the agent,
symGamma returns γp(poly), where γp is the symmetry map to the virtual system.
Similarly, symGammaInv would return γ−1

p (poly). The list of modes that the ith agent
transition between sequentially and their corresponding transitions conditions, denoted
by guards, are specified as well and denoted by Hi. The guard of the jth mode of the ith

agent Hi[ j].guard is a hyper-rectangle in the state space which when the agent reaches,
it transitions to the ( j+1)st mode. The guard Hi[ j] has time bound Hi[ j].T on how long
the agent can stay in the mode. Moreover, it specifies the initial set of states for each
agent as a hyper-rectangle. Finally, it specifies the static unsafe set U and the subset of
dimensions O⊆ [n] that is relevant for dynamic safety checking between agents. If the
reachtubes of two agents projected on O intersect each other, it would model a collision
between the agents. For example, O would be {2,3} for the aircraft model in Example 1
as (x[2],x[3]) represents its position.

CacheReach would return unsafe if the reachtubes of the agents starting from their
initial sets of states and following the sequence of modes intersect a static unsafe set,
or when projected to O, intersect each other. It would return safe, otherwise. Currently,
CacheReach assumes that all agents share the same dynamics but do not interact. Hence,
it has a single tubecache that is shared by all.

CacheReach computes the reachtubes of individual agents iteratively. It would com-
pute the reachtube mtubei of the jth mode of the ith agent using symComputeReachtube.
Then, it intersects it with the guard using the function guardIntersect to get the initial set
initseti for the next mode. In addition to initseti, guardIntersect computes the minimum
and maximum times: mintimei and maxtimei, respectively, at which mtubei intersects the
guard. The value mintimei is the time at which a trajectory of the next mode may start at
and maxtimei is the maximum such time. These values are used to check safety against
time-annotated unsafe sets such as collision between agents.

The computed tube mtubei gets appended to atubei storing the full reachtube of the
ith agent. The benefit of this method is that now all modes of all agents can be mapped
to a single virtual system. They can resuse each others reachtubes using tubecache that
is getting updated at every call to symComputeReachtube. Moreover, the static safety
is done in the usual way.

The collision between agents is done by the function checkDynamicSafety. It takes
two full reachtubes of two agents atube1 and atube2 along with two arrays lookback1 and
lookback2. For agent i, the array lookbacki consists of pairs of integers (ind j, timerange j)

specifying the index identifying the beginning of the jth mode tube in atubei and the un-
certainty in the starting time of the trajectories from its initial set. checkDynamicSafety
would use this information to time-align parts of atube1 and atube2 so that the intersec-
tion check happens only between two sets that may have been reached at the same time
by the two agents.

3 https://github.com/tulip-control/polytope

https://github.com/tulip-control/polytope
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6.2 Experimental results

We ran experiments using our tool CacheReach on two models: a 3-dimensional linear
dynamical system example and the nonlinear aircraft model described in Example 1. The
linear model is of the form ẋ=A(x− p[3 : 5]), where A= [[−3,1,0], [0,−2,1], [0,0,−1]],
x ∈ R3, and p ∈ R6. We considered scenarios with single, two, and three agents for each
model following different sequences of waypoints. The sequences of waypoints for the
linear model are translations and rotations of a digital-S shaped path. For the aircraft
model, the paths are random crossing paths going north-east. In every scenario, all the
agents have the same model. In the aircraft scenarios, the agent would switch to the next
waypoint once its x, y position is within 0.5 units from the current waypoint in each
dimension. The initial set of the aircraft was of size 1 in the position components, 0.1 in
the speed, and 0.01 in the heading angle. We used Flow* [8] and DryVR [18] to compute
reachtubes from scratch for the linear example. We only used DryVR for the aircraft
model since our C++ Flow* wrapper does not handle a model having arctan2 in the
dynamics. We ran all scenarios in CacheReach with and without using tubecache. The
symmetry used for the aircraft was the one we showed in Example 3. For the linear model,
the symmetry transformation γp that was used to map the state to the virtual system
was a coordinate transformation where the new origin is at the next waypoint p[3 : 5]
and rotating the xy-plane by the angle between the previous and the next waypoints
p[0 : 2] and p[3 : 5] projected to the plane. We compared the computation time with and
without symmetry and show the results in Table 1. The reachtubes for three nonlinear
and three linear agents are shown in Figure 1. The different colors represent reachtubes
of different agents, the black points represent the waypoints, the black segments connect
consecutive waypoints, and the red rectangles represent the unsafe sets. The figures
on the top represent the real reachtubes while those on the bottom represent the ones
corresponding to the virtual system saved in tubecache.

Table 1: Results.
tool \ agent model Linear(1,2,and 3 agents) aircraft(1,2,and 3 agents)

Sym-DryVR
computed 57 90 90 635.23 1181.38 1550.62
transformed 42 165 264 20.76 286.62 501.38
time (min) 0.093 0.163 0.187 3.42 8.2 10.59

Sym-Flow*
computed 39.8 61.14 66.15
transformed 19.2 84.85 143.85 NA NA NA
time (min) 0.387 0.62 0.684

NoSym-DryVR
computed 99 255 354 656 1468 2052
time (min) 0.062 0.355 0.52 3.71 10.78 15.47

NoSym-Flow*
computed 59 151 210
time (min) 0.53 1.328 1.5 NA NA NA

In Table 1, we call CacheReach, when ran with DryVR while using tubecache,
Sym-DryVR, for symmetric DryVR. We call it Sym-Flow* if we are using Flow*
instead. If we are not using tubecache, we call them NoSym-DryVR and NoSym-
Flow*, respectively. Remember in symComputeReachtube, some tubes may be cached
but they have shorter time horizons than the needed tube. So, we compute the rest from
scratch. Here, we report the fractions of tubes computed from scratch and tubes that were
transformed from cached ones. Moreover, we report the execution time till the tubes are



188 H. Sibai et al.

Fig. 1: Reachtubes for three fixed-wing aircrafts (left) and three linear models (right).
Real reachtubes (top) vs. the virtual ones saved in tubecache (bottom).

computed. In the experiments, we always compute the full tubes even if it was detected
to be unsafe earlier to have a fair comparison of running times. Moreover, the execution
time does not include dynamic safety checking as the four versions of the experiments are
doing the same computations for that purpose. We are using CacheReach in all scenarios
with other reachability computation tools to decrease the degrees of freedom and show
the benefits of transforming reachtubes over computing them. The Sym versions result
in decrease of running time up-to 64% in the linear case with three agents. The ratio of
transformed vs. computed tubes increases as the number of agents increase. This means
that different agents are sharing reachtubes with each other in the virtual system. The
total number of reachtubes is the same, whether tubecache is used or not. This means that
the quality of the tubes, i.e. how tight they are, is the same whether we are transforming
from tubecache or computing from scratch since the initial sets of modes are computed
from intersections of reachtubes with guards. The fatter the reachtube is, the larger the
initial set gets and the larger the number of reachtubes need to be computed.

7 Discussion and conclusions

In this paper, we investigated how symmetry transformations and caching can help
achieve scalable, and possibly unbounded, verification of multi-agent systems. We
developed a notion of virtual system which define symmetry transformations for a broad
class of hybrid and dynamical agent models visiting waypoint sequences. Using virtual
system, we present a prototype tool called CacheReach that builds a cache of reachtubes
for the transformed virtual system, in a way that is agnostic of the representation of the
reachsets and the reachability analysis subroutine used. Our experimental evaluation
show significant improvement in computation time on simple examples and increased
savings as number of agents increase.
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