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Abstract. Model checking algorithms are typically complex graph algo-
rithms, whose correctness is crucial for the usability of a model checker.
However, establishing the correctness of such algorithms can be challeng-
ing and is often done manually. Mechanising the verification process is
crucially important, because model checking algorithms are often paral-
lelised for efficiency reasons, which makes them even more error-prone.

This paper shows how the VerCors concurrency verifier is used to
mechanically verify the parallel nested depth-first search (NDFS) graph
algorithm of Laarman et al. [25]. We also demonstrate how having a
mechanised proof supports the easy verification of various optimisations
of parallel NDFS. As far as we are aware, this is the first automated
deductive verification of a multi-core model checking algorithm.

1 Introduction

Model checking is an automated procedure for verifying behavioural properties
of reactive systems. To avoid a false sense of safety, it is essential that model
checkers are themselves correct. However, model checkers use ever more inge-
nious algorithms [12] and even parallel implementations [2] to be able to combat
the large state spaces of critical industrial systems, which makes it increasingly
difficult to guarantee their correctness.

This paper focusses on the mechanical verification of a multi-core model
checking algorithm for detecting accepting cycles in automata, called nested
depth-first search (NDFS). This algorithm solves the model checking problem
for Linear-time Temporal Logic (LTL), a widely used logic for specifying reactive
systems. Multi-core NDFS is developed by Laarman et al. in 2011 [25] and is
currently deployed in the high-performance model checker LTSmin [23].

The mechanical verification of parallel NDFS is carried out in VerCors [6], a
verifier based on concurrent separation logic that targets real-world concurrent
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and parallel programs. The presented verification is inspired by a previous me-
chanical verification of sequential NDFS [37] that was carried out in Dafny [30].

This paper demonstrates the feasibility of mechanical program verification of
parallel graph algorithms, like multi-core NDFS. To the best of our knowledge
we present the first mechanical verification of a parallel graph algorithm. Our
formalisation provides reusable components that can be used to verify variations
of parallel NDFS, as well as other algorithms for parallel model checking.

Before listing our contributions (§1.3) we first provide more background on
model checking algorithms (§1.1) and related work on their verification (§1.2).

1.1 Background on Model Checking

Pnueli introduced the Linear-time Temporal Logic (LTL) [36] to specify proper-
ties of reactive systems. The model checking problem [12] decides whether a tran-
sition system satisfies a given LTL property. The automata-based approach [45]
reduces the model checking problem to the graph-theoretic problem of checking
the reachability of accepting cycles. Reachability of accepting cycles in directed
graphs can be checked in linear time, with the nested depth-first search (NDFS)
algorithm [13,19,41], which forms the basis of the Spin model checker [17].

Several distributed and parallel model checking algorithms have been pro-
posed, to allocate more memory and processors to the problem [2]. NDFS is
based on depth-first search, which is considered hard (impossible) to parallelise
efficiently [39]. For distributed approaches, the best strategy is to turn to BFS al-
gorithms [3], which are straightforward to parallelise but at the cost of increasing
the amount of work beyond linear time. For the shared-memory setting, swarm
verification was proposed [18], where each worker runs its own instance of NDFS.
Various DFS-based multi-core algorithms for full LTL model checking have been
devised for this strategy [14,15,25]. This paper considers the version by Laarman
et al. [25], which is a parallel version of improved sequential NDFS [41].

The correctness of parallel NDFS is quite subtle. In particular, parallel DFS
does not fully respect a global depth-first ordering, since each worker maintains
its own search stack, yet the correctness of NDFS depends on the search order.
Also, to realise speedups, the implementation avoids locking shared data struc-
tures by using atomics. This raises the question whether the implementation of
a parallel model checker, meant to verify the correctness of safety-critical sys-
tems, is itself correct. For this reason the original paper [25] contains a detailed
pen-and-paper correctness proof, which is based on a number of invariants.

1.2 Related Work

To raise the level of confidence in model checkers, one approach is to certify each
of their individual runs. Obviously, the counterexample returned by a model
checker is itself a certificate that can easily be verified independently. However,
double-checking the absence of errors is harder. Namjoshi [33] proposed to in-
strument a µ-calculus model checker, to generate a deductive proof that can
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be checked independently, also in case the property holds. Recently, an IC3-
style symbolic LTL model checker has been extended with deductive proofs as
well [16]. However, these approaches do not prove correctness of the model check-
ing algorithm, but only validate its outcome for each specific use.

Alternatively, one can formalise the model checking algorithm and its correct-
ness proof in an interactive theorem prover. An early example of this approach
was the verification of a model checker for the modal µ-calculus in Coq [43]. A
framework for verifying sequential depth-first search algorithms was developed
in Isabelle [27,28], and applied to the verification of NDFS with partial order
reduction [9] as well as a model checker for timed automata [47]. The recent
formalisations of Tarjan’s SCC algorithm [10] fit in the same line of research.
These approaches require to model and verify the algorithm in an interactive
theorem prover, allowing one to use the full power of the theorem prover.

If one wishes to verify the code of the algorithm directly, yet another ap-
proach is to model the algorithm and its specification in a (semi-)automated
program verifier, where the code is enriched with sufficient annotations to prove
its correctness. This approach was followed for several standard sequential graph
algorithms in Why3 [46] and for sequential NDFS in Dafny [37]. However, there
is hardly any work on automated verification of parallel graph algorithms. Raad
et al. [38] verified four concurrent graph algorithms in the context of CoLoSL,
but the proofs have not been automated. Sergey et al. [42] verified a concurrent
spanning tree algorithm, but interactively, through an embedding in Coq.

To support the verification of shared-memory parallel software, program ver-
ifiers typically use concurrent separation logic. VeriFast [20] aims at sequential
and multi-threaded C and Java programs. VerCors [6] verifies concurrent pro-
grams in Java and OpenCL, by applying a correctness-preserving translation into
a sequential imperative language, delegating the generation of the verification
conditions to Viper [32] and their verification ultimately to Z3 [31].

1.3 Contributions and Outline

This paper discusses the mechanical verification of the parallel NDFS algorithm
of Laarman et al. [25] using VerCors. To the best of our knowledge, this is the
first mechanical verification of a parallel graph (and model checking) algorithm.

Section 2 recalls both sequential and parallel NDFS (§2.1–2.2), and gives pre-
liminaries on concurrency verification with VerCors (§2.3). It also explains that
parallel NDFS uses various colour markings on the input graph to administer
the status of the nested searches of workers. Some of these colours are local to a
single worker, while other colours are globally shared among all workers.

Section 3.1 presents our new (informal) correctness proof of parallel NDFS,
that is based on a number of global invariants on the possible colour configu-
rations. The main challenge lies in proving completeness, which is particularly
difficult since workers can delegate the detection of accepting cycles to other
workers. To be able to mechanise our completeness proof, we contribute a new
invariant (Lemma 4) that guarantees the preservation of so-called special paths.
This allows to circumvent using the complicated inductive argument used by [25].



Section 3.2 discusses how parallel NDFS is specified in VerCors. In particular,
this requires the specification of permissions, to verify data race-free access to
shared data structures. Moreover, we encode the colour maps and the transition
relation of the input automaton as matrices, which greatly contribute to the feasi-
bility of proof checking. We also explain how atomic updates are specified, which
was left implicit in the high-level pseudo code. Similarly, we implement asym-
metric termination detection: if one worker finds a counterexample, all workers
can terminate immediately; if, on the other hand, all workers have completely
finished their exploration, only then may one conclude that the model is correct.

Section 3.3 explains the techniques to formalise the full functional correctness
proof in VerCors. In particular, this requires the distribution of permissions and
invariants over threads and locks, and the introduction of auxiliary ghost state
to track the precise progress of the various nested search phases of all workers.

Section 4 demonstrates how our verification is reused to verify optimisations
to the algorithm. In particular, we check the optimisation “early cycle detection”
that, for weak LTL properties, detects all cycles in the outer search instead of
the nested inner search. We also propose and verify a repair to the “all-red”
extension, by inserting an extra check that was missing in [25]. This extension
improves the speedup of parallel NDFS by sharing more global information.

Finally, Section 5 concludes with a perspective on reusing our techniques for
verifying other parallel graph algorithms.

2 Preliminaries

Section 2.1 recalls the standard sequential NDFS algorithm for finding reachable
accepting cycles in automata. We verified a parallel version of NDFS, which is
introduced in Section 2.2. The verification has been performed with VerCors;
Section 2.3 gives prerequisites on concurrency verification and separation logic.

Before discussing the NDFS algorithms, let us first recall the basic definitions
of automata and accepting cycles. An automaton G is a quadruple (S, sI , succ,A)
consisting of a finite set S of states, an initial state sI ∈ S, a next-state relation
succ : S → 2S and a set A ⊆ S of accepting states. A path in G is a sequence
P = s0, . . . , sn+1 of S-states so that si+1 ∈ succ(si) for every 0 ≤ i ≤ n. The
notation |P | , n+ 2 denotes the length of P , P [i] , si the ith state on P , and
P [i..] the subpath si, . . . , sn+1. Any state s is defined to be reachable (in G) if
there exists an (sI , s)-path. Any path P is a cycle whenever P [0] = P [|P | − 1]
and 1 < |P |. Finally, any cycle P is accepting if P [i] ∈ A for some 0 ≤ i < |P |.

2.1 Nested Depth-First Search

Figure 1 presents a standard, sequential implementation of NDFS, consisting
of two nested DFS searches: dfsblue and dfsred. The blue search processes
successors recursively in DFS order, marking them blue when done on line 8. The
colour cyan indicates a partially explored state, i.e., not all of its successors have
been visited yet by the blue search. Just before backtracking from an accepting
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1 void dfsblue(s)
2 s.color1 := cyan;
3 for t ∈ succ(s) do
4 if t.color1 = white then
5 dfsblue(t);

6 if s ∈ A then
7 dfsred(s);

8 s.color1 := blue;

9 void dfsred(s)
10 s.color2 := pink;
11 for t ∈ succ(s) do
12 if t.color1 = cyan then
13 report cycle; exit;

14 if t.color2 = white then
15 dfsred(t);

16 s.color2 := red;

Fig. 1: A standard sequential implementation of nested DFS.

state, dfsblue calls the red search on line 7, to report any accepting cycle. This
colours a state red after processing its successors recursively on line 16. The pink
colour denotes states that are only partially explored by dfsred5.

It is straightforward to see that NDFS is sound, meaning that it only reports
true accepting cycles. To see that NDFS is also complete, i.e., finds an accepting
cycle if one exists, observe that dfsred will indeed be started from every ac-
cepting state. This in itself is not enough: the red search ignores states marked
red in a previous call. It is essential that dfsred explores accepting states in the
right order. The crucial insight is that dfsred only visits cyan and blue states
and that accepting states coloured blue cannot be part of any accepting cycle.

The correctness of NDFS has been verified with Dafny [37]. We ported this
correctness proof to VerCors as the basis for the verification of parallel NDFS.

2.2 Parallel Nested Depth-First Search

A naive strategy for parallelising NDFS is swarming [18]: running several in-
stances of NDFS in parallel, each working on a private set of colours. Swarmed
NDFS tends to find accepting cycles faster, since its workers are expected to ex-
plore different parts of the input graph. The correctness of swarmed NDFS with
respect to sequential NDFS is almost immediate, except for termination han-
dling: workers only share information about the exit condition. We also verified
swarmed NDFS in VerCors, as a stepping stone for verifying parallel NDFS.

Laarman et al. improve on the swarming algorithm by sharing information
of the red search in the backtrack phase. Figure 2 presents the improved algo-
rithm. Here every line of code is supposed to be executed atomically. The entry
point is pndfs(sI , n), which spawns n parallel instances of dfsblue(sI , tid) in
the fashion of swarming. However, the red colourings are shared now, by which
workers can guarantee that certain states are, or will be, sufficiently explored. So
the red states can now be skipped in both the red search (line 19) and the blue
search (line 4). PNDFS thus improves performance, since workers prune each
other’s search space. At the same time this significantly complicates the correct-
ness argument, since workers may now prevent each other from finding accepting

5 In the sequential algorithm, pink and red do not need to be distinguished, but having
the distinction here makes the parallel version easier to explain.



1 void dfsblue(s, tid)
2 s.color [tid ] := cyan;
3 for t ∈ succ(s) do
4 if t.color [tid ] = white ∧ ¬t.red then
5 dfsblue(t, tid);

6 if s.acc ∧ ¬s.red then
7 s.count := s.count + 1;
8 dfsred(s, tid);

9 s.color [tid ] := blue;

10 void pndfs(s,nthreads)
11 par tid = 0 to nthreads do
12 dfsblue(s, tid);

13 report no cycle;

14 void dfsred(s, tid)
15 s.pink [tid ] := true;
16 for t ∈ succ(s) do
17 if t.color [tid ] = cyan then
18 report cycle; exit all;

19 if ¬t.pink [tid ] ∧ ¬t.red then
20 dfsred(t, tid);

21 if s.acc then
22 s.count := s.count − 1;
23 await s.count = 0;

24 s.pink [tid ] := false, s.red := true;

Fig. 2: An implementation of parallel NDFS, where the red colours are shared.

cycles. Moreover, if multiple workers initiated dfsred from the same accepting
state s, they must now finish their red search simultaneously for the algorithm
to be correct. The await synchroniser on line 23 ensures this, by blocking thread
execution until s.count—the number of workers in dfsred(s, ·)—reaches 0.

The original correctness argument of Laarman et al. relies on a complicated
inductive invariant stating that not all accepting cycles can be missed due to
pruning. However, this invariant is unsuitable for use in a (semi-)automated
verifier. Section 3 discusses the verification of pndfs and provides a new invariant
on the red colours that allows its correctness to be proven mechanically. It also
discusses how our verification handles concurrency and thread synchronisation.

2.3 Concurrency Verification with VerCors

Before discussing the actual verification, let us first briefly introduce VerCors, an
automated program verifier for parallel programs. VerCors uses concurrent sep-
aration logic with permissions as its logical foundation. Its annotation language
contains fractional permission predicates of the form Perm(s, π), in the style of
Boyland [7], that capture the notion of ownership enforced by separation logic,
where s is a shared memory location (e.g., a class field) and π ∈ (0, 1]Q a frac-
tional value. The fractional permissions denote access rights: if π = 1 it denotes
write access to s, whereas π < 1 denotes a read access to s. Sometimes Perm(s)
is written as shorthand for ∃π : Perm(s, π), to indicate some ownership of s.
Soundness of the underlying logic ensures that the total sum of permissions for
any shared memory location does not exceed 1, which implies data race freedom.

In addition to ownership predicates, the annotation language supports the ∗∗
connective, which is the separating conjunction of separation logic. The assertion
P ∗∗Q expresses that the ownerships captured by P and Q are disjoint, e.g., it is
disallowed that both express write access to the same shared location. Ownership
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predicates can be split into disjoint parts and be combined as follows:

Perm(s, π1 + π2) ⇐⇒ Perm(s, π1) ∗∗ Perm(s, π2)

A standard pattern in concurrency verification is to split and distribute the
ownership of all shared memory over threads and locks. Clarifying the latter; in
case multiple threads need to write to a common footprint of shared memory,
the ownerships to this footprint are typically protected by a resource invariant.
Threads can then only use the resources protected by this invariant when they
execute atomic instructions (i.e., when no other threads can interfere). For more
details we refer to the standard papers on concurrent separation logic [34,8,44].

3 Automated Verification of Parallel NDFS

This section elaborates on the verification of pndfs with VerCors [35]. Section 3.1
presents and discusses our new correctness argument for pndfs, which includes
the new invariant on the red colours and a proof of its correctness. Sections 3.2
and 3.3 discuss the mechanisation of this proof in VerCors.

3.1 Correctness of pndfs

The soundness proof of pndfs is not very different from the soundness argument
of sequential NDFS: every time report cycle is executed, a witness cycle can be
found. The main challenge lies in proving completeness, i.e., proving that if there
exists any accepting cycle, pndfs will report it. This is difficult since workers can
obstruct each other’s red searches and thereby prevent the detection of accepting
cycles. This section proposes a new key invariant and completeness proof that
is suitable for deductive verification.

We start by introducing a number of low-level invariants on the local configu-
rations of colours that can arise during a run of pndfs. Let Cyantid be the set of
cyan-coloured states {s ∈ S | s.color [tid ] = cyan} private to worker tid , and like-
wise for Whitetid , Bluetid and Pink tid . Moreover, let Red be the set of globally
red states, and succ(X) ,∪s∈Xsucc(s) the successor set of a given set X ⊆ S.

Lemma 1. pndfs maintains the following global invariants during execution:

1.1. ∀tid : succ(Bluetid ∪ Pink tid) ⊆ Bluetid ∪ Cyantid ∪ Red
1.2. succ(Red) ⊆ Red ∪∪tid(Pink tid \ Cyantid)
1.3. ∀tid : A ∩ Bluetid ⊆ Red
1.4. ∀tid : A ∩ Pink tid ⊆ Cyantid

1.5. ∀tid : Pink tid ⊆ Bluetid ∪ Cyantid

1.6. ∀tid : |A ∩ Pink tid | ≤ 1

Proof. The proof basically checks their preservation by each line of the program.

Invariants 1.1 –1.5 are reused from [25], whereas 1.6 is new and needed for
the new completeness proof. Proving completeness amounts to proving that not
all reachable accepting cycles can be missed due to search space pruning. To help
proving this, we identify a new class of paths, which we call tid-special paths.



Definition 1 (Special path). Any path P = s0, . . . , sn+1 is defined to be tid-
special if s0 ∈ Pink tid , sn+1 ∈ Cyantid , and none of the states on P are red, i.e.,
sk 6∈ Red for every k such that 0 ≤ k ≤ n+ 1.

Any path P is special if P is tid -special for some worker tid . Intuitively, the
existence of a tid -special path during execution of pndfs means that (i) worker
tid is doing a red search, since it has pink states, and (ii) this worker will even-
tually find an accepting cycle, unless other workers obstruct this path. Thus the
above definition allows to formally define obstruction: a worker tid is obstructed
(will miss an accepting cycle) if any state on a tid -special path is coloured red.

Our main strategy for proving completeness involves showing that every time
a worker gets obstructed, a new special path can be found. A direct consequence
of this is that not all accepting cycles can be missed: upon termination of pndfs,
there are no more cyan or pink states. To help prove this, we use the following
property (taken from [25], but rephrased to handle our special paths), that allows
to find special paths by using the colouring invariants.

Lemma 2. If invariants 1.1–1.6 are satisfied, then every path P = s0, . . . , sn+1

with s0 ∈ Red and sn+1 ∈ A \ Red contains a special subpath.

Proof. The original handwritten proof from [25] shows that this lemma follows
from invariants 1.1 –1.6 , by induction on P . ut

The original completeness proof of [25] performs induction on the number of
obstructed accepting cycles, to show the absence of such cycles upon termination
as a result of Lemma 2. However, such an argument is out of reach for Hoare-style
reasoning, since it is not an inductive invariant. We propose a new invariant that
is inductive, which builds on the insight that, under certain colouring conditions,
new special paths can always be found when workers get obstructed, as is shown
by Lemma 3. In particular, pndfs guarantees that if there exists a special path
before executing line 24, then there also exists a special path after its execution.

Lemma 3. For any non-red state r ∈ S \ Red that is on a tid-special path, if:

i. r ∈ A =⇒ succ(r) ⊆ Red, and
ii. r ∈ A ∩ Pink tid =⇒ Pink tid = {r},

then there still exists a special path after adding r to Red.

Proof. Let P = s0 . . . sn+1 be a tid-special path and assume that r is on P , so
that r = s` for some ` such that 0 ≤ ` ≤ n+ 1. Since Pink tid 6= ∅, worker tid is
performing dfsred that was started from some accepting state a ∈ A ∩ Pink tid.
Then a 6= r, as otherwise s0 = a due to ii., which by i. would contradict that P
is special. Moreover, since sn+1 ∈ Cyantid there exists a (sn+1, a)-path Q (this
is a standard property of dfsblue; the path Q must be on the recursive call
stack). Then Lemma 2 applies on the path s`, . . . , sn+1, Q[1..] and gives a new
special path when considering Red ∪ {r} as the new set of red states. ut

Lemma 3 implies that every time an accepting cycle is missed due to pruning,
there is always another accepting cycle that will eventually be reported. This is
enough to establish completeness of pndfs, via the following key invariant.
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Lemma 4. The pndfs algorithm maintains the global invariant that either:

4.1. All reachable accepting cycles contain an accepting state that is not red; or
4.2. There exists a special path.

Proof. The interesting case is showing that this invariant remains preserved after
making a non-red state s ∈ Pink tid \ Red red (on line 24 of Fig. 2), by some
worker tid that is doing a red search from some accepting state a ∈ A ∩ Pink tid .

– Suppose s 6∈ A. If s is on a special path, then Invariant 4.2 is reestablished
due to Lemma 3, and otherwise the key invariant remains preserved.

– Suppose s ∈ A. Then s = a by Invariant 1.6 . Since worker tid is about to
finish its red exploration, we have that (†) Pink tid = {s} (i.e., all other pink
states have been fully explored) and consequently that (‡) succ(s) ⊆ Red .
Furthermore, due to the await s instruction on line 23 we have that (†) and
(‡) hold for all workers that are doing a red exploration that involves s. If s
is on a special path, then Invariant 4.2 is reestablished due to Lemma 3. So
now suppose that s is on an accepting cycle P . Without loss of generality,
assume that P [0] = s. Then (‡) implies that 1 < |P | and that P [1] ∈ Red .
Thus Lemma 3 applies on the path P [1..] to establish Invariant 4.2 . ut

The next theorem shows how Lemma 4 allows deriving completeness of par-
allel NDFS. In particular, it shows that no accepting cycles can exist when all
threads have terminated, in which case all the theorem’s premises are fulfilled.

Theorem 1. If for every worker tid it holds that Pink tid = ∅, Cyantid = ∅ and
sI ∈ Bluetid , then there does not exist a reachable accepting cycle.

Proof. Towards a contradiction, suppose that there exists an accepting cycle P
that is reachable via an (sI , P [0])-path Q. Due to the theorem’s premises no
special paths can exist, and therefore by Lemma 4 there is an accepting state
on P that is not red. Without loss of generality, assume that (†) P [0] ∈ A \ Red .
Since Q[0] ∈ Blue0 (since there is at least one worker), by induction on Q to-
gether with Lemma 1 we have that P [0] ∈ Red , which contradicts (†). ut

All the above invariants and proof steps have been encoded in VerCors, which
was highly non-trivial. While mechanising the proofs, many implicit proof steps
had to be made explicit. Section 3.3 further details the proof mechanisation.

3.2 Encoding of pndfs in VerCors

Graph structures are notoriously difficult to handle in separation logics, as they
usually rely on pointer aliasing, which complicates ownership handling and pre-
vents easy use of the frame rule [38]. However, since automata have a fixed and
finite set of states, we can overcome this limitation by representing the input
automata as an |S|× |S| adjacency matrix. This does not impose serious restric-
tions: other automata encodings can be transformed at the specification level
to an adjacency matrix, e.g., via model fields in the style of JML [11,29]. The
suitability of adjacency matrices for deductive verification is confirmed by [24].



1 enum Color {white, cyan, blue};
2 int N ; // the number of automata states (equal to |S|)
3 int nthreads ; // the total number of participating workers
4 bool[N ][N ] G; // adjacency matrix representation of the input automaton
5 bool[N ] acc; // the encoding of the set of accepting states
6 Color[nthreads ][N ] color ; // the colour sets for dfsblue (one for each thread)
7 bool[nthreads ][N ] pink ; // the pink colour sets for dfsred (one per thread)
8 bool[N ] red ; // the global set of red colourings
9 bool abort ; // global termination flag

10

11 resource resource invariant , · · · ; // full definition is deferred to Fig. 4.
12

13 bool Path(int s, int t, seq〈int〉 P ) , // the encoding of (s, t)-paths in G
14 0 ≤ s, t < N ∧ 0 < |P | ∧ P [0] = s ∧ P [|P | − 1] = t ∧
15 (∀i : 0 ≤ i < |P | ⇒ 0 ≤ P [i] < N)∧(∀i : 0 ≤ i < |P |−1⇒ G[P [i]][P [i+1]]);

16 bool Path(seq〈int〉 P ) , 0 < |P | ∧ Path(P [0], P [|P | − 1], P );

17 bool ExPath(int s, int t, int n) , ∃P : n ≤ |P | ∧ Path(s, t, P );

18 bool SpecialPath(seq〈int〉 P, int tid) , // the encoding of tid-special paths
19 pink [tid ][P [0]] ∧ color [tid ][P [|P | − 1]] = cyan ∧ ∀i : 0 ≤ i < |P | ⇒ ¬red [P [i]];

20 bool ExSpecialPath(int tid) , ∃P : 1 < |P | ∧ Path(P ) ∧ SpecialPath(P, tid);
21

22 /∗ An excerpt of the top-level contract (further discussed in Section 3.3). ∗/
23 ensures \result⇒(∃a : 0≤a<N∧acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2));
24 ensures (∃a : 0≤a<N∧acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2))⇒\result;
25 bool pndfs(int sI);

Fig. 3: The automata representation and an excerpt of pndfs’s top-level contract.

Figure 3 shows the encoding of the input automaton G in VerCors. The
thread-local colour sets are represented as matrices of dimension nthreads×|S|, so
that each thread tid uses color [tid ][·] and pink [tid ][·] to administrate their (local)
status of exploration. The sets of red and accepting states are shared between
threads and thus encoded as |S|-sized Boolean arrays. The succ function can now
be defined such that t ∈ succ(s) whenever G[s][t] is true for every 0 ≤ s, t < N .

This encoding of automata, together with an encoding of the definition of
paths (on lines 13–17) is sufficient to express the main correctness property that
is proven by VerCors. More specifically, line 23 expresses soundness : a positive
return value indicates the existence of an accepting cycle. Line 24 expresses
completeness : if there exists an accepting cycle, then pndfs returns positively.

Atomic operations. The handwritten correctness argument of [25] for Figure 2
assumes that all program lines are executed atomically. This is reflected in the
VerCors encoding: all updates to shared memory are made within atomic oper-
ations, which specification-wise all give access to the same shared resources. For
example, the assignment s.pink [tid ] := true on line 15 (Fig. 2) is implemented
as the atomic operation “atomic { pink [tid ][s] := true }”. On the specification
level, the atomic sub-program receives all the missing access rights required for
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the assignment, which are otherwise protected by the resource invariant declared
on line 11 (Fig. 3). The exact definition of resource invariant is deferred to
§3.3, and the type resource is the type of separation logic assertions. Moreover,
the await instruction on line 23 (Fig. 2) is implemented as a busy while-loop
that only stops when s.count = 0, which is checked atomically in every iteration.

Termination handling. The pseudocode in Figure 2 uses an “exit all” com-
mand to terminate all threads when an accepting cycle has been found. However,
this mechanism was left implicit. Our formalisation in VerCors makes the termi-
nation system explicit: it consists primarily of a global abort flag that is declared
on line 9 in Figure 3. All workers regularly poll this flag to determine whether
they continue or not. The abort flag is set to true by the main thread—the thread
that started pndfs and spawned all worker threads on line 11 of Fig. 2—as soon
as one of the workers returns with an accepting cycle.

3.3 Verification of pndfs in VerCors

One major challenge of concurrency verification is finding a proper distribution
of shared-memory ownership, that allows proving memory safety as well as any
functional properties of interest. This section starts by discussing how we dis-
tribute the ownership of the input automaton over threads and the resource
invariant, in such a way that Invariants 1.1 –1.6 and 4.1 –4.2 can be encoded.

To prove the preservation of these invariants after every computation step,
auxiliary bookkeeping is needed on the specification level. For example, to mech-
anise the proof of Lemmas 3 and 4 we need to make explicit that all workers
tid with Pink tid 6= ∅ are doing a red search that was started from some root
state a ∈ A ∩ Pink tid . This auxiliary bookkeeping is maintained in the resource
invariant, via auxiliary ghost state, which is explained later. Finally, we give the
fully annotated version of pndfs and explain how completeness is proven from
Lemma 4, by applying the VerCors encoding of Theorem 1.

Ownership distribution. We start by explaining how the ownership of the
automaton encoding (lines 2–8 in Fig. 3) is distributed among workers and the
resource invariant. First observe that all colouring invariants express global prop-
erties that span over (i) the shared red colourings, as well as (ii) the local con-
figurations color [tid ] and pink [tid ] of every worker tid . To define the ownership
distribution for (i), observe that the only way to distribute the access rights to
red to enable all threads to regain write access, is to let the resource invariant
protect full ownership of red . The resource invariant therefore fully captures the
properties about red states expressed in Lemmas 1 and 4. However, to be able
to specify that, it also requires partial ownership of all thread-local colourings.

Figure 4 presents the full resource invariant, that includes: access rights to
both global and thread-local colourings on lines 2–4; the encoding of Lemma 1 on
lines 10–17 and 22; and the encoding of Lemma 4 on lines 30–32. In addition, the
resource invariant holds partial ownership of the abort flag on line 8, to ensure
that global termination is only announced when an accepting cycle is found.



1 resource resource invariant ,
2 Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc) ∗∗
3 (∀tid , s : Perm(color [tid ][s], 1

2
) ∗∗Perm(pink [tid ][s], 1

2
)) ∗∗

4 (∀s : Perm(red [s], 1)) ∗∗
5 termination() ∗∗ colourings() ∗∗ dfsred status() ∗∗ keyinvariant();
6

7 resource termination() , // Resources for termination handling.
8 Perm(abort , 1

2
) ∗∗ abort ⇒ ∃s : acc[s] ∧ ExPath(sI , s, 1) ∧ ExPath(s, s, 2);

9

10 resource colourings() , // The low-level colouring invariant encodings.
11 ∀tid , s : (color [tid ][s] = blue ∨ pink [tid ][s])⇒ ∀s′ ∈ succ(s) :
12 color [tid ][s′] = blue ∨ color [tid ][s′] = cyan ∨ red [s′] ∗∗ // Inv. 1.1
13 ∀s : red [s]⇒ ∀s′ ∈ succ(s) :
14 red [s′] ∨ ∃tid : pink [tid ][s′] ∧ color [tid ][s′] 6= cyan ∗∗ // Inv. 1.2
15 ∀tid , s : (acc[s] ∧ color [tid ][s] = blue)⇒ red [s] ∗∗ // Inv. 1.3
16 ∀tid , s : (acc[s] ∧ pink [tid ][s])⇒ color [tid ][s] = cyan ∗∗ // Inv. 1.4
17 ∀tid , s : pink [tid ][s]⇒ (color [tid ][s] = cyan ∨ color [tid ][s] = blue); // 1.5
18

19 /∗ Auxiliary ghost state for proving Lemma 3 and preserving Inv. 4. ∗/
20 resource dfsred status() , ∀tid : (
21 Perm(exploringred [tid ], 1

2
) ∗∗Perm(redroot [tid ], 1

2
) ∗∗Perm(waiting [tid ], 1

2
) ∗∗

22 ∀s : pink [tid ][s]⇒ (exploringred [tid ] ∧ (acc[s]⇒ s = redroot [tid ])) ∗∗ // 1.6
23 exploringred [tid ]⇒ acc[redroot [tid ]] ∧
24 (∀s : pink [tid ][s]⇒ ExPath(redroot [tid ], s, 1)) ∧
25 (∀s : color [tid ][s] = cyan⇒ ExPath(s, redroot [tid ], 1)) ∧
26 (¬waiting [tid ]⇒ ¬red [redroot [tid ]]) ∧
27 (waiting [tid ]⇒ ∀s : pink [tid ][s]⇔ s = redroot [tid ])

)
28

29 /∗ The encoding of Lemma 4, from which completeness of pndfs follows. ∗/
30 resource keyinvariant() ,
31 (∀s : acc[s] ∧ ExPath(sI , s, 1) ∧ ExPath(s, s, 2)⇒ ¬red [s]) ∨
32 (∃tid : ExSpecialPath(tid));

Fig. 4: The full definition of the resource invariant. Several bound checks have
been omitted for presentational clarity.

Observe that the resource invariant holds a lot of quantified information. As a
result, we experienced that proving the reestablishment of resource invariant

after finishing atomics is expensive performance-wise. To make verification more
efficient, we extracted all atomic operations (e.g., colour updates) into separate
methods and prove their contracts in a function-modular way. This improves
performance, as it cuts the problem of verifying dfsred and dfsblue into smaller
sub-problems that are individually more manageable for the SMT solver.

Finally, Figure 5 presents an excerpt of the contract of dfsblue, which shows
the ownership pattern of all threads. Notably, every thread tid receives the re-
maining ownership of color [tid ] and pink [tid ] on line 4. Thus threads can always
read from their thread-local colour fields, and may write to them while doing so

258 W. Oortwijn et al.



Automated Verification of Parallel Nested DFS 259

1 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc);
2 context 0 ≤ s < N ;
3 context 0 ≤ tid < nthreads ;
4 context ∀t : 0 ≤ t < N ⇒ Perm(color [tid ][t], 1

2
) ∗∗Perm(pink [tid ][t], 1

2
);

5 requires color [tid ][s] = white;
6 requires ∀t : (0 ≤ t < N ∧ color [tid ][t] = cyan)⇒ ExPath(t, s, 1);
7 ensures \result⇒ ∃a : 0 ≤ a < N ∧ acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2);
8 ensures ¬\result⇒ ∀t : color [tid ][t] = cyan⇔ \old(color [tid ][t]) = cyan;
9 ensures ¬\result⇒ pink [tid ] = \old(pink [tid ]) ∧ color [tid ][s] = blue;

10 bool dfsblue(s, tid)
11 · · ·

Fig. 5: The ownership specification in the contract dfsblue for thread tid . An-
notations of the form context P abbreviate requires P ; ensures P .

atomically. This distribution of ownership matches with the encoding of atomic
operations discussed earlier. Line 7 expresses soundness of dfsblue, captured
in the resource invariant (line 8 of Fig. 4) on global termination. This allows to
deduce soundness of pndfs from the resource invariant, after all threads have
terminated as result of the detection of an accepting cycle.

Auxiliary ghost state. As mentioned earlier, to prove that pndfs also pre-
serves the (encodings of) Invariants 1.1 –1.6 and 4.1 –4.2 after every computa-
tion step, additional ghost state needs to be maintained. In particular, we need
to make explicit that every worker tid with Pink tid 6= ∅ is doing a dfsred search
that was started from some root state a ∈ A ∩ Pink tid . In addition, the proof of
Lemma 3 needs that there exists an (s, a)-path for every s ∈ Cyantid . To prove
the preservation of Lemma 4 we also need that, if worker tid is not yet executing
the await instruction, we have that a 6∈ Red , and otherwise that Pink tid = {a}.

This extra information is encoded in the loop invariant on lines 20–27 (Fig-
ure 4), via three ghost arrays, named exploringred , redroot and waiting . Firstly,
exploringred administrates which workers are doing a red search. For verification
purposes we added ghost code to the program, to set exploringred [tid ] to true
whenever dfsred(a, tid) is invoked by worker tid from a blue search, and back
to false whenever dfsred(a, tid) returns. Secondly, redroot stores the root state
on which dfsred was invoked. Finally, waiting administrates which workers are
executing an await instruction. These three ghost arrays together are closely re-
lated to the s.count fields in the program of Figure 2, via the following invariant:
∀s : s.count = |{tid | exploringred [tid ] ∧ redroot [tid ] = s ∧ ¬waiting [tid ]}|.

Establishing that pndfs adheres to the invariants in Lemmas 1 and 4 was
highly non-trivial and required various complex auxiliary lemmas to be encoded
and proven. These are all encoded in VerCors as ghost methods : side-effect-free
helper methods on which the lemma is encoded in the method’s contract [21,22].
Induction proofs, for example, are encoded using either loop invariants or recur-
sion. Application of a lemma then translates to a function call on the specification
level. The proofs in Section 3.1 are all encoded and applied in this way.



1 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc) ∗∗Perm(abort , 1
2
);

2 context ∀tid , s : Perm(color [tid ][s], 1
2
) ∗∗Perm(pink [tid ][s], 1

2
);

3 context ∀tid : Perm(exploringred [tid ], 1
2
) ∗∗Perm(redroot [tid ], 1

2
);

4 context ∀tid : Perm(waiting [tid ], 1
2
);

5 context 0 ≤ sI < N ;
6 requires ∀tid , s : ¬exploringred [tid ] ∧ color [tid ][s] = white ∧ ¬pink [tid ][s];
7 ensures \result⇒ (∃a : acc[a] ∧ ExPath(sI , a, 1) ∧ ExPath(a, a, 2));
8 ensures (∃a : acc[a] ∧ ExPath(sI , a, 1) ∧ ExPath(a, a, 2))⇒ \result;
9 bool pndfs(sI)

10 par tid = 0 to nthreads
11 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc);
12 context ∀s : Perm(color [tid ][s], 1

2
) ∗∗Perm(pink [tid ][s], 1

2
);

13 context Perm(term[tid ], 1
2
) ∗∗Perm(exploringred [tid ], 1

2
);

14 context Perm(redroot [tid ], 1
2
) ∗∗Perm(waiting [tid ], 1

2
);

15 requires ¬exploringred [tid ] ∧ ∀s : color [tid ][s] = white ∧ ¬pink [tid ][s];
16 ensures ¬abort ⇒ ∀s : color [tid ][s] 6= cyan ∧ ¬pink [tid ][s];
17 ensures ¬abort ⇒ color [tid ][sI ] = blue;
18 do
19 bool found := dfsblue(sI , tid);
20 if found then
21 atomic { abort := true; } // initiate global termination.

22 atomic { if ¬abort then theorem one() }; // apply Thm. 1’s encoding.
23 return abort ;

Fig. 6: The annotated version of pndfs, extending the excerpt given in Figure 3.

Correctness of pndfs. Figure 6 gives the annotated version of pndfs6 that
extends the excerpt given earlier, in lines 23–25 of Figure 3. The main thread
requires partial ownership of all thread-local colour fields on line 2 and distributes
these over the appropriate threads on line 12. The contract associated to the
parallel block (lines 11–17) is called an iteration contract and assigns pre- and
postconditions to every parallel instance. For more details on iteration contracts
we refer to [5]. Most importantly, the iteration contract of each thread holds
enough resources to satisfy all the preconditions of dfsblue, on line 19.

Soundness of pndfs (line 7) is proven as follows. Suppose that all threads have
terminated and abort has been set to true. In that case, the resource invariant
states that an accepting cycle has been found. This information can be retrieved
by briefly obtaining the resource invariant in ghost code on line 22, which directly
allows to deduce soundness. Note that this information is not lost upon releasing
the resource invariant, as it is a Boolean property and thus duplicable.

To prove completeness, suppose that abort is still false when all workers have
terminated. This implies that Pink tid = ∅ and Cyantid = ∅ for every worker tid
(line 16), as well as sI ∈ Bluetid (line 17), since all threads started their blue

6 Observe that every thread reads abort in their contract on lines 16–17, even though
they do not have the required access rights to do so. This is resolved by adding some
auxiliary ghost state, but this is omitted for presentational clarity.
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1 void dfsblue(s, tid)
2 s.color [tid ] := cyan;
3 for t ∈ succ(s) do
4 if t.color [tid ] = cyan then
5 if s.acc ∨ t.acc then
6 report cycle; exit all;

7 if t.color [tid ] = white then
8 if ¬t.red then
9 dfsblue(t, tid);

10 if s.acc ∧ ¬s.red then
11 s.count := s.count + 1;
12 dfsred(s, tid);

13 s.color [tid ] := blue;

(a) The “early cycle detection” extension

1 void dfsblue(s, tid)
2 allred := true;
3 s.color [tid ] := cyan;
4 for t ∈ succ(s) do
5 if t.color [tid ] = white then
6 if ¬t.red then

dfsblue(t, tid);

7 if ¬t.red then allred := false;

8 if allred then
9 await s.count = 0;

10 s.red := true;

11 else if s.acc ∧ ¬s.red then
12 s.count := s.count + 1;
13 dfsred(s, tid);

14 s.color [tid ] := blue;

(b) The “all-red” extension

Fig. 7: Two extensions (highlighted grey) to dfsblue that improve work sharing.

search from sI . Combining this information with the information in the resource
invariant allows one to prove all the premises of Theorem 1. Therefore its ghost
method encoding can be applied on line 22, from which completeness is derived.

The encoding of parallel NDFS in VerCors [35] comprises roughly 2500 lines
of code (of which ∼85% is proof overhead), which includes the mechanisation of
all proof steps described in §3.1. The verification time is about 140s, measured
on a Macbook with an Intel Core i5 CPU with 2,9 GHz, and 8Gb memory.

4 Optimisations

One major benefit of mechanically verified code is that optimisations can be
applied with full confidence. Without verification, changes to critical code are
often avoided, to ensure that no errors are introduced. A verified algorithm allows
to apply optimisations easily, as these often do not change the outer contract, at
most requiring only minor adaptions to the invariants. We illustrate this with two
optimisations, for which [25] experimentally demonstrated improved speedup.

“Early cycle detection” checks already in the blue search if an accepting cycle
is closed, cf. lines 4–6 in Figure 7a. It is known that for weak LTL properties,
all accepting cycles will be found in the blue search when applying early cycle
detection. To show that this optimisation indeed preserves all invariants, we
simply inserted these 3 lines in the VerCors specification. The proof introduces
a case distinction on whether s or t is accepting and constructs a witness path.
This adds another 10 lines: two for the case distinction and four in each branch
to show that a witness accepting cycle exists. Collectively, these extra 13 lines
constitute indeed very little effort to prove this particular optimisation correct.

The second optimisation, called “all-red”, checks if all successors of s became
red during the blue search (lines 2 and 7 in Figure 7b). If so, we can mark s.red



early (lines 8–10). This optimisation is important, since it allows the global red
colour to spread even in portions of the graph that are not under an accepting
state, thereby allowing more pruning. However, this optimisation only preserves
the invariants if we wait until s.count = 0 (on line 9). This test was erroneously
omitted in [25]7. Fortunately, the version in Figure 7b is correct, which has now
been checked in VerCors in a straightforward manner.

5 Conclusion

This paper presents the first automated deductive verification of a parallel graph
algorithm: we verified soundness and completeness of parallel nested depth-first
search using VerCors. We also show that this mechanisation is helpful in quickly
discovering whether optimisations of the algorithm preserve its correctness.

Many of the presented verification techniques, e.g., the use of separate con-
tracts for single statements, the way we handle termination, and the construction
of explicit witnesses through ghost variables, will be useful for the verification of
other similar algorithms. Moreover, our encoding of parallel nested DFS closely
resembles the implementation of such an algorithm in mainstream programming
languages like C++ and Java. It would be interesting to investigate how our
VerCors encoding can be automatically deployed on multi-core architectures,
for example to enable comparing its performance and scalability with LTSmin.

There are many possibilities to extend the line of research on the verifica-
tion of parallel model checking algorithms initiated in this paper. First, one may
consider to extend the scope of this verification closer towards the actual effi-
cient C-implementation in LTSmin. This would involve verifying the underlying
concurrent hash table to store visited states (a simplified version of which has
been verified before with VerCors [1]), the encoding of the colours as “bits” in
the hash table buckets, and the use of CAS to manipulate these bits.

One might consider alternative parallel NDFS versions, notably [15], which
shares the blue colour, invoking a repair procedure when the depth-first order is
violated. Both algorithms have been reconciled in [14], sharing both blue and red.
This work could be extended to a wealth of other optimisations like partial-order
reduction, or other parallel model checking algorithms, for example [26,4,40].

Our work can be considered as a first step towards a library for the verification
of graph-based (multi-core) model checking algorithms. It will be an interesting
line of future work to continue this: developing a full-fledged verification library
for common subtasks, like graph manipulations and termination detection.

Acknowledgments and data availability statement. This work is partially
supported by the NWO VICI 639.023.710 Mercedes project and by the NWO
TOP 612.001.403 VerDi project. The datasets for this case study are available
at: https://doi.org/10.4121/uuid:36c00955-5574-44d9-9b26-340f7a1ea03b.

7 Wan Fokkink and his students Stefan Vijzelaar and Pieter Hijma already found in
2012 that the “all-red” extension required an extra check ’await s.count = 0’ in [25],
and wondered whether ’await s.count ≤ 1’ would be sufficient. Independently, Akos
Hajdu reported this omission in 2015.
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