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Abstract. We present KReach, a tool for deciding reachability in gen-
eral Petri nets. The tool is a full implementation of Kosaraju’s original
1982 decision procedure for reachability in VASS. We believe this to be
the first implementation of its kind. We include a comprehensive suite of
libraries for development with Vector Addition Systems (with States) in
the Haskell programming language. KReach serves as a practical tool,
and acts as an effective teaching aid for the theory behind the algorithm.
Preliminary tests suggest that there are some classes of Petri nets for
which we can quickly show unreachability. In particular, using KReach
for coverability problems, by reduction to reachability, is competitive
even against state-of-the-art coverability checkers.
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1 Introduction

Petri nets [26] (equivalently, Vector Addition Systems with States [12,14]) are
one of the best-known formalisms in concurrency theory. They form a highly
expressive model which is applicable in a broad range of domains including
software and hardware verification [5,6], chemical modelling [3], and business
processes [22]. Two of the most studied decision problems on Petri nets are
those of coverability and reachability.

Coverability is the central decision problem for verifying safety properties
on Petri nets. The coverability problem asks, given a starting configuration m0

and a target m, whether we can reach, by some sequence of valid transitions
(i.e. by a run), any configuration m′ ≥ m. The problem is known to be EX-
PSPACE-complete [23,27]. Coverability has seen considerable study in recent
years, in particular with a view towards minimising the running time of cover-
ability decision procedures [2,11].

The reachability problem, to which coverability is easily reducible, can cap-
ture both safety and liveness properties of systems [13]. Formally, the reachabil-
ity problem asks if we can, by some run, get from a starting configuration m0

to the target configuration m exactly. Historically, there has been a wide gap
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between the upper and lower bounds, but recently these have been improved to
a non-elementary lower bound [7] and an Ackermannian upper bound [21].

The first complete algorithm for reachability is due to Mayr [24], since fur-
ther developed and simplified by Kosaraju [17] and Lambert [18]. More recently,
a strikingly simple but not yet practical algorithm was obtained by Leroux [20],
based on enumerating Presburger-definable invariants. In this paper we will fo-
cus on Kosaraju’s algorithm. The latter is the subject of an entire book by
Reutenauer [29], since translated into English [28], and more recently presented
in a novel, readable format with contemporary notation by Lasota [19].

In spite of these substantial and sustained theoretical developments, the area
has seen little in the way of practical implementation. We seek to address this
gap by making the following contributions:

– We present a tool, KReach, which we believe to be the first complete im-
plementation of a decision procedure for the general Petri net reachability
problem.

– Noting that the reachability problem is infamous for its complexity—both in
terms of its worst-case runtime, and the impenetrability of its decision pro-
cedures for newcomers—we offer an accessible implementation of Kosaraju’s
algorithm, which can be used as a detailed learning aid.

– We have designed the implementation in a modular and extensible way which
is conducive to development of future improvements to the algorithm.

– We include a number of parameterised example nets which demonstrate
correctness and performance, and can be used to assess further work.

– We provide a full suite of libraries which aid programming with Vector Ad-
dition Systems (with States) in the Haskell programming language.

2 Design and Implementation

Algorithm We will now give a brief overview of Kosaraju’s classic reachabil-
ity algorithm for Petri nets, and explain the translation into code. Note that
Kosaraju’s algorithm operates over VASS—the translation between the two is
immediate, and can be performed while parsing the problem instance.

q⟨1, 0⟩ r ⟨0, 0⟩

t0 [−1, 1]

t1 [0,−1]

(a) We denote ⟨constraints⟩ and
[transitions]. The states of our original
VASS are q and r; the transitions are t0
and t1. Here we are testing reachability
from q(1, 0) to r(0, 0).

q⟨1, 0⟩ r ⟨0, 0⟩

t0 [−1, 1]

[0,−1]

(b) Gex after SCC decomposition. We
now have two components, the second
of which is trivial. The adjoinment is
marked by a dashed arrow. The shaded
rectangles are separate components.

Fig. 1: A simple GVASS, Gex.
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The procedure revolves around Generalized VASS (GVASS), an extension of
VASS. A GVASS G is a sequence (C1, .., Cn), of VASSs annotated with metadata,
most notably constraints on their entry and exit configurations. The exit state
of Ci is adjoined to the entry state of Ci+1 by a transition. Reachability in
our original VASS V is implied by reachability in an induced GVASS G(V ), a
singleton sequence where we constrain the entry and exit configurations as being
equal to our initial m0 and target m. Figure 1a gives an example.

In outline, Kosaraju’s algorithm operates as follows. At each step, given a
strongly-connected GVASS G:

– either G fulfils θ;
– or G violates θ, in which case we can refine G into a finite (possibly empty)

set of modified GVASSs.
This produces a finitely-branching tree of GVASSs in which every branch

forms a strictly descending chain with respect to a well-quasi-ordering [21]. The
algorithm therefore always terminates, and m is reachable from m0 in the root
GVASS G if and only if some GVASS in the tree satisfies θ.

The θ Condition Kosaraju’s main predicate comprises two parts. θ1 is a global
property of the system, while θ2 must hold for each component.

θ1 : There exist pseudo-runs through the GVASS which use every edge in every
component unboundedly many times, and attain unboundedly large values for
every unconstrained coordinate (here a pseudo-run is a run over Zd rather than
over Nd). This condition can be formulated as an integer linear programming
problem. From this we obtain a semilinear set of vectors of variables representing
counts of transition occurrences and values of unconstrained coordinates. If there
is no bounded variable then θ1 holds. Otherwise, one such bounded variable is
“refined” by either constraining the associated coordinate’s value or by unfolding
the associated transition. For example, we may deduce that the number of firings
of t0 never exceeds 1 in our example GVASS Gex; we generate the refinements
as in Figure 2.

q⟨1, 0⟩ r ⟨0, 0⟩
[0,−1]

(a) Refinement when t0 is activated 0 times.

q⟨1, 0⟩ q′ r ⟨0, 0⟩
[−1, 1] [0,−1]

(b) Refinement when t0 is activated 1 time.

Fig. 2: Refinement of Gex by removing bounded transition t0.
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θ2 : Each non-trivial component of the GVASS contains some path from the
initial to the final state, via which all unconstrained coordinates are increased.
The same must also hold if the component’s arcs are reversed. We can evaluate
θ2 using standard algorithms which compute the coverability set. If θ2 fails, then
some coordinate is bounded everywhere in the state space of the component; such
a coordinate is refined by removing it entirely (making it rigid) and encoding its
possible values into the component’s states.

Solving Coverability We are able to reduce from the coverability problem to
the reachability problem in the following way. Suppose we are intending to cover
some vector m—that is, we wish to reach any vector m′ such that m′ ≥ m.
We introduce a new state ∆, and add a transition δ from the final state of
the original VASS to ∆, which subtracts m on activation. As ∆ can only be
reached by subtracting m from our current vector, reaching a vector m′ ≥ m
(i.e. covering m) is equivalent to reaching state ∆. For each vector coordinate we
introduce a looping transition on ∆ which reduces the value of that coordinate
by 1. This ensures that (0, ..., 0) can be reached from any configuration in state ∆.
As a result, covering m in the original net is equivalent to reaching (∆, (0, ..., 0))
in the augmented version.

Implementation KReach is implemented in the Haskell programming lan-
guage. This is a strongly-typed, functional language with lazy evaluation. The
language was chosen for its high level of expressiveness, type-safety, and the ease
of translation between algorithm and implementation.

We represent the algorithm as a function which takes a list of GVASSs, and
returns a KosrajuResult. We perform a depth-first search of the refinement tree,
either finding a refinement which permits reachability (KosarajuHolds) or ex-
hausting all possibilities (KosarajuDoesNotHold). The algorithm is guaranteed
to terminate [17], and so constitutes a full decision procedure for reachability.

The ILP subproblem (θ1) is solved with the SBV (SMT Based Verification)
package, an interface to a variety of SMT solvers. We formulate all the con-
straints as an integer linear program, and evaluate with the ldn function (Linear
Diophantine equations over Naturals).

The coverability subproblem (θ2) is solved by an implementation of the stan-
dard Karp-Miller algorithm for Vector Addition Systems [16]. This algorithm
computes the coverability set—the upward closure of the set of all vectors that
are reachable in a net from some starting vector. The extensible nature of the
code allows the basic implementation to be swapped out for a more optimised
one (e.g. based on [10]) at a later stage.

We ensure that the strongly connected property holds by decomposing the
original GVASS via the SCC implementation found in the Data.Graph module.

Optimisations In spite of the ominous non-elementary complexity lower bound,
some effort was still undertaken to improve the runtime of test cases. A num-
ber of minor improvements have been made over the standard algorithm which
remove unneccessary computations.



KReach: A Tool for Reachability in Petri Nets 409

For example, when constructing refinements for a GVASS G, when a variable
is bounded above by some constant c, Kosaraju suggests to generate refinements
Ri(G) for every i from {0, . . . , c}. Instead, we refine only to Ri(G) for values i
that feature in the corresponding semilinear set.

The algorithm has also been multithreaded with Haskell’s lightweight con-
currency toolkit [1], so that it evaluates refinements in parallel rather than se-
quentially. Any return value of KosarajuHolds will terminate the program.

The program uses the vass library (released as part of this publication) to
parse file formats. By default a parser for MIST’s .spec format1 is provided.
This format is traditionally a representation of coverability problems; KReach
translates these to reachability problems by replacing p ≥ n constraints by p = n
in target places.

3 Installation and Usage

Installation The KReach tool is available from a public GitHub repository.
One can clone the repository in full with the following command:

The program is built against the Haskell stack toolchain2. In order to build
the tool, a locally installed version of stack is required. The tool can be compiled
and locally installed by running stack install in the cloned directory. One
must also ensure that an SMT solver is installed and accessible on the user’s
binary path; z33 and cvc44 are supported. A compiled program binary, along
with benchmarks, is provided on the “Releases” section of the GitHub page.

Usage The compiled kosaraju tool can be interacted with through the com-
mand line. Simple wrapper scripts are provided; the standard invocation is
kreach FILENAME to check reachability, and kcover FILENAME for coverability.
Intermediate output can be hidden by providing the -q (quiet) flag.

Figure 3b shows the relative performance of z3 against cvc4 for growing
inputs. cvc4 tends to far outperform z3 on the constructed ILP problems.

4 Experimental Results

KCover allows us to use benchmarks for the coverability problem as a source
of test cases for the reachability algorithm. The suite provided with the tool
includes also a number of test cases for various aspects of the implementation,
as well as examples from the non-elementary lower bound construction [7].

KReach was evaluated against many problems and solvers from the literature
on coverability. QCover [4] implements coverability based on relaxation to con-
tinuous coverability; ICover [11] refines this further with inductive invariants.
1 https://github.com/pierreganty/mist/wiki
2 https://docs.haskellstack.org/en/stable/README/
3 https://github.com/Z3Prover/z3
4 https://cvc4.github.io

git clone https://github.com/dixonary/kosaraju.git

https://github.com/pierreganty/mist/wiki
https://docs.haskellstack.org/en/stable/README/
https://github.com/Z3Prover/z3
https://cvc4.github.io
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a⟨X, 0⟩ b ⟨0, 0⟩

t0 [−1, 1]

t1 [0,−1]

(a) The parameterized version of our origi-
nal sample case Gex, notated Gex(X). 0 2 4 6 8 10

0

50

100

150

X

T
im

e
[s]

z3
cvc4

(b) Time against Parameter X for
Gex(X) with the supported solvers.

Table 1 includes some specific instances which are representative of the
broader trends in experimental results. On many safe cases, such as Kanban
and Bingham, KReach is able to determine safety faster than state of the art
coverability solvers by finding zero valid refinements (terminating the search
immediately). On some safe nets such as Manufacturing, KReach cannot im-
mediately rule out coverability in this way, and the refinement tree must be
explored. The Bug_Tracking examples induced intractably large ILP problems.
Unsafe cases such as PNCSACover induced large refinement trees, which were
unable to be explored fully within the time limit.

Instance Outcome MIST (s) Qcover (s) Icover (s) KReach (s)
Kanban safe 404 TLE TLE 1
Bingham_h150 safe TLE TLE TLE 533
Manufacturing safe 1 0 0 4
Bug_Tracking_x0 safe MLE 13 33 TLE
PNCSACover unsafe 3 27 59 TLE

Table 1: Sample of test cases. All results were computed on consumer hardware.
MLE = Memory Limit Exceeded (4GB); TLE = Time Limit Exceeded (1 hour).

5 Concluding Remarks

The experimental results suggest that KReach may be a fruitful source of static
invariants for ruling out coverability on some classes of Petri nets. One line
of further work may be to attempt to formally classify those nets for which
Kosaraju’s algorithm is effective in practice.

Further work may also include optimisations based on the novel theoretical
developments in the Ackermannian upper bound proof [21], and building parsers
to enable experiments on instances of problems that are known to reduce to
reachability in Petri nets (e.g., in logic [15,8], concurrent systems [9] or process
calculi [25]).

Data Availability Statement The data analyzed here are available in the
Figshare data repository: https://doi.org/10.6084/m9.figshare.11887956

https://doi.org/10.6084/m9.figshare.11887956
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