
MUST: Minimal Unsatisfiable Subsets
Enumeration Tool?

Jaroslav Bend́ık and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna}@fi.muni.cz

Abstract. In many areas of computer science, we are given an unsat-
isfiable set of constraints with the goal to provide an insight into the
unsatisfiability. One of common approaches is to identify minimal un-
satisfiable subsets (MUSes) of the constraint set. The more MUSes are
identified, the better insight is obtained. However, since there can be
up to exponentially many MUSes, their complete enumeration might be
intractable. Therefore, we focus on algorithms that enumerate MUSes
online, i.e. one by one, and thus can find at least some MUSes even in
the intractable cases.
Since MUSes find applications in different constraint domains and new
applications still arise, there have been proposed several domain agnos-
tic algorithms. Such algorithms can be applied in any constraint domain
and thus theoretically serve as ready-to-use solutions for all the emerg-
ing applications. However, there are almost no domain agnostic tools, i.e.
tools that both implement domain agnostic algorithms and can be easily
extended to support any constraint domain. In this work, we close this
gap by introducing a domain agnostic tool called MUST. Our tool out-
performs other existing domain agnostic tools and moreover, it is even
competitive to fully domain specific solutions.

Keywords: Minimal unsatisfiable subsets · Unsatisfiability analysis ·
Infeasibility analysis · MUS · Diagnosis.

1 Introduction

In various areas of computer science, we are given a set C of constraints with the
goal to determine whether the set is satisfiable, i.e. whether all the constraints
can hold simultaneously. In the case where the set is shown to be unsatisfiable,
we are often interested in analysing the unsatisfiability. Identification of minimal
unsatisfiable subsets (MUSes) of C is a kind of such analysis. A set M ⊆ C is
a MUS of C iff M is unsatisfiable and all proper subsets of M are satisfiable.
The more MUSes are identified, the better insight into the unsatisfiability of C
is obtained. However, the complete MUS enumeration is often intractable since

? This research was supported by ERDF ”CyberSecurity, CyberCrime
and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16 019/0000822).

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 135–152, 2020.
https://doi.org/10.1007/978-3-030-45190-5 8

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_8&domain=pdf
http://orcid.org/0000-0001-9784-3028
http://orcid.org/0000-0002-0711-9552
https://doi.org/10.1007/978-3-030-45190-5_8

136 J. Bend́ık and I. Černá

there can be up to exponentially many MUSes w.r.t. the number of constraints in
C. Therefore, several online MUS enumeration algorithms (e.g. [3,29,22,1,25,10])
were proposed, i.e. algorithms that identify MUSes gradually, one by one, and
thus identify at least some MUSes even in the intractable cases.

Various applications of MUSes arise for example in requirements analy-
sis [4,6], during formal equivalence checking [15], proof based abstraction refine-
ment [23], Boolean function bi-decomposition [12], circuit error diagnosis [21],
type debugging in Haskell [30], or proof explanation in symbolic model check-
ing [20]. The domain of the constraint sets ranges from Boolean formulas [23,14],
over temporal logic formulas [4,6], to transition state predicates constraining
transition systems [20]. Since the list of constraint domains where MUSes find
an application is quite long and new applications still arise, there have been pro-
posed several domain agnostic MUS enumeration algorithms (e.g. [3,22,9,7,10]).
Such algorithms can be used in an arbitrary constraint domain, and thus theo-
retically serve as ready-to-use solutions for any constraint domain where MUSes
might eventually find an application.

Unfortunately, there is no available domain agnostic tool implementation of
the algorithms that would actually serve as a ready-to-use solution for an ar-
bitrary constraint domain. Although the papers that present existing domain
agnostic algorithms provide results of an experimental evaluation, it is often the
case that the implementation is either not publicly available [4,3], or there is a
hard-coded support for a particular constraint domain [10,20]. The closest to a
domain agnostic tool is a tool by Liffiton et al. [22] where the authors imple-
ment their domain agnostic MUS enumeration algorithm MARCO. Their tool
currently supports the SAT and the SMT domains and can be relatively eas-
ily extended to support also another constraint domains. However, our recent
evaluation [8] of contemporary domain agnostic algorithms in various constraint
domains has shown that the efficiency of the algorithms (including MARCO)
varies a lot in different constraint domains. There is no silver bullet algorithm
that would be efficient in all the domains. Thus, to deal with a particular con-
straint domain, one has to wisely choose from individual algorithms.

In this work, we present the first stable release of our domain agnostic tool,
called MUST, for MUS enumeration. The tool implements several domain agnostic
MUS enumeration algorithms and currently provides support for 3 constraint
domains: SAT, SMT, and LTL. Moreover, due to a modular architecture of the
tool, the tool can be easily extended to support another constraint domain: it
requires only to implement an API for communication with a satisfiability solver
for the constraint domain. We also provide a guidance on which algorithms are
suitable for which kinds of input constraint systems.

To demonstrate the efficiency of our tool, we experimentally compare it to
the tool by Liffiton et al. [22] in the SAT and SMT domains, and we show
that our tool clearly wins in both the domains. Moreover, we also provide a
comparison with two contemporary tools that are tailored to the SAT domain:
MCSMUS [1] and FLINT [25]. The results show that MUST is competitive to the two

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 137

domain specific solutions. Moreover in case of many benchmarks, MUST actually
significantly dominates the other tools.

Finally, to advocate the practical applicability of our tool in industrial set-
tings, we provide a use case from the area of requirements analysis. In partic-
ular, we have employed our tool in the European Unions Horizon 2020 project
called AMASS. The project focused on development and verification of cyber-
physical systems in the largest industrial markets including automotive, railway,
aerospace, space, and energy. One of the verification tasks is to verify that re-
quirements on the system are consistent, i.e., to ensure that there can be even
built a system that satisfies the requirements. If the requirements are found to
be inconsistent, an identification of minimal inconsistent (unsatisifable) subsets
of the requirements helps to fix the conflicts among the requirements. Our tool
has proved to be very efficient in dealing with this task.

2 Preliminaries

2.1 Basic Definitions

We are given a set C = {c1, c2, . . . , cn} of constraints such that each subset of C
is either satisfiable or unsatisfiable. The notion of satisfiability varies in particular
constraint domains. We only assume that if a set N , N ⊆ C, is satisfiable then
all subsets of N are also satisfiable. Dually, if a set K, K ⊆ C, is unsatisfiable
then all supersets of K are also unsatisfiable. We will use C to denote the input
set of constraints throughout the whole paper.

Definition 1 (MUS). A subset N of C is a minimal unsatisfiable subset (MUS)
of C if and only if N is unsatisfiable and for all c ∈ N the set N\{c} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. Also,
there can be up to exponentially many MUSes w.r.t. the number of constraints
in C (see the Sperner’s theorem [28]).

Definition 2 (critical constraint). Let U be an unsatisfiable subset of C and
c ∈ U . The constraint c is critical for U if and only if U \ {c} is satisfiable.

Note that U is a MUS of C if and only if all constraints in U are critical for
U . Furthermore, if c is critical for U then c has to be contained in every MUS
of U .

Example 1. We illustrate the concepts on a small example. Assume that we are
given a set C of four Boolean satisfiability constraints: c1 = a, c2 = ¬a, c3 = b,
and c4 = ¬a∨¬b. Clearly, the whole set is unsatisfiable as the first two constraints
are negations of each other. There are two MUSes: {c1, c2}, {c1, c3, c4}. As for the
critical constraints, we can for example see that c1 is the only critical constraint
for C, and that c1, c2 are critical for {c1, c2, c3}.

138 J. Bend́ık and I. Černá

Algorithm 1: Domain Agnostic Shrinking

input : an unsatisfiable set S of constraints
input : a set crits of constraints that are critical for S
output: A MUS of S

1 for c ∈ S \ crits do
2 if not CheckSat(S \ {c}) then
3 S ← S \ {c}

4 return S

2.2 Shrink

Let us now define an operation, called Shrink, that is used in our tool to identify
individual MUSes.

– Shrink(S, crits) takes an unsatisfiable subset S of C together with a set
crits of constraints that are critical for S and returns a MUS Smus of S.

We say that S is shrunk into a MUS Smus. The shrinking is maintained in
in our algorithms as a black-box subroutine and thus can be implemented using
any available single MUS extraction algorithm. Especially, we can implement the
operation using a domain specific solution and thus indirectly exploit domain
specific properties of particular constraint domains.

To shed more light on how a shrinking can be done, we describe in Algo-
rithm 1 a domain agnostic single MUS extraction approach that forms the basis
of many contemporary domain specific solutions. To find a MUS of S, the al-
gorithm iteratively attempts to remove individual constraints in S \ crits from
S, checking each new set for satisfiability, and keeping only the changes that
preserve S to be unsatisfiable. The most expensive part of the shrinking are the
satisfiability checks. In total, the algorithm performs |S| − |crits| satisfiability
checks. Domain specific algorithms (e.g. [5,24,1,19]) that are based on Algo-
rithm 1 are often able to further reduce the number of performed satisfiability
checks by exploiting domain specific properties of particular constraint domains.

2.3 Unexplored Subsets

Our algorithms for MUS enumeration during their computation gradually explore
satisfiability of individual subsets of C. The explored subsets are those, whose
satisfiability is already known by the algorithm whereas unexplored subsets are
those whose satisfiability is not determined yet. We use Unexplored to denote
the set of all unexplored subsets of C. Recall that all subsets of a satisfiable set
are also satisfiable. Thus, if a set S is determined to be satisfiable, then not just
S but also all of its subsets become explored. Dually, if a set U is determined
to be unsatisfiable, then all supersets of U become explored. We further classify
unexplored subsets as follows:

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 139

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Fig. 1: Illustration of Example 2. We encode individual subsets of C as bit-
vectors; for example, the subset {c1, c3, c4} is written as 1011.

Definition 3 (Minimal Unexplored Subset). A set S is a minimal unex-
plored subset, if S is unexplored and for all c ∈ S is S \ {c} explored.

Definition 4 (Maximal Unexplored Subset). A set S is a maximal unex-
plored subset, if S is unexplored and for all c ∈ C \ S is S ∪ {c} explored.

Details on how we actually store, maintain, and use unexplored subsets are
described later in Section 4.2. Here, we conclude by defining the concept of
minable critical constraints:

Definition 5 (minable critical). Let N be an unsatisfiable subset of C such
that N ∈ Unexplored, and let c ∈ N . The constraint c is a minable critical
constraint for N if N \ {c} 6∈ Unexplored.

Example 2. Let us illustrate the concepts on an example. Assume that we are
given the same set of four constraints as in Example 1: c1 = a, c2 = ¬a, c3 = b,
and c4 = ¬a ∨ ¬b. Fig. 1 shows a possible state of exploration of the power-set.
Satisfiable subsets are drawn with a solid border and unsatisfiable ones with a
dashed border. There are 2 explored unsatisfiable subsets (red color), 7 explored
satisfiable subsets (green color), and 7 unexplored subsets (black color). There
are two minimal unexplored subsets: {c2} and {c1, c3, c4}, and three maximal
unexplored subsets: {c1, c2, c3}, {c1, c3, c4} and {c2, c3, c4}. As for the minable
critical constraints, we can for example see that c2 is minable critical for the set
{c1, c2, c3}, and that all constraints are minable critical for the set {c1, c3, c4}.

3 Implemented Algorithms

Our tool currently implements three domain agnostic algorithms for online MUS
enumeration: MARCO [22], TOME [7], and ReMUS [9]. MARCO was originally
developed by Liffiton et al. [22]; the other two algorithms are originally ours.
All the three algorithms are based on a common scheme that we call seed-shrink
scheme. In this section, we first describe the base scheme and then briefly com-
ment also on the individual algorithms.

140 J. Bend́ık and I. Černá

Algorithm 2: Seed-Shrink Scheme

input : an unsatisfiable set C of constraints
output: All MUSes of C

1 Unexplored ← P(C)
2 while there is a seed do
3 S ← find a seed
4 crits ← collect minable critical constraints for S
5 Smus ← Shrink(S, crits)
6 Unexplored ← Unexplored \ {T |T ⊂ Smus or Smus ⊆ T ⊆ C}
7 output Smus

3.1 Seed-Shrink Scheme

The seed-shrink scheme is shown in Algorithm 2. The computation starts by
initializing the set Unexplored to P(C), i.e. all subsets of C are initially un-
explored. Subsequently, the scheme iteratively identifies all MUSes of C. Each
iteration starts by finding a so called seed, i.e. an unexplored subset that is un-
satisfiable. Subsequently, the set crits of all constraints that are minable critical
for the seed are collected and the shrinking procedure is used to find a MUS of
the seed. The iteration is concluded by marking all subsets and supersets of the
MUS as explored (the subsets are necessarily satisfiable, and the supersets are
unsatisfiable). The computation terminates once there is no more seed.

The scheme does not specify how to find a seed; this part differs for individual
algorithms implementing the scheme. In general, to find a seed, the algorithms
check several unexplored subsets for satisfiability and reduce the set Unexplored.
The difference between the algorithms is in which and how many subsets they
check, and how large is the resultant seed. In general, the smaller the seed is,
the easier is to shrink it. On the other hand, unsatisfiable subsets are naturally
more concentrated among the larger subsets, thus looking for a seed among small
unexplored subsets might come with the price of checking many unexplored sub-
sets for satisfiability. Individual seed-shrink algorithms make a different trade-off
between the size of identified seeds and the number of satisfiability checks that
are performed to identify the seeds. In some constraint domains, it is worth to
find a small seed even if it requires performing many satisfiability checks, and
in other constraint domains the situation is exactly the opposite. The optimal
choice of a seed-shrink algorithm thus differs for individual constraint domains.

MARCO [22] searches for a seed S among the maximal unexplored subsets and
often performs only few satisfiability checks to identify a seed. Since maximal
unexplored subsets are usually very large, the seeds identified by MARCO are
generally hard to be shrunk. Yet, in some constraint domains, such as SAT
and SMT, the size of the seed has just a negligible effect on the complexity
of the shrinking. In particular, in the SAT and SMT domains, contemporary
satisfiability solvers can extract an unsat core of the seed S, i.e. unsatisfiable,
yet not necessarily minimal, subset of S. The extraction comes with almost no

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 141

overhead compared to an ordinary check for satisfiability, and the unsat core
is usually very close, in terms of cardinality, to a MUS of S. Thus, instead of
shrinking the whole S, the unsat core is passed to the shrinking procedure.

TOME [7] identifies seeds iteratively as follows. Each iteration of the algorithm
starts by picking a minimal unexplored subset N1 and a maximal unexplored
subset Np such that N1 ⊆ Np. Subsequently, TOME builds a chain N1 ⊂ N2 ⊂
· · · ⊂ Np of unexplored subsets. Such a chain necessarily either contains only
unsatisfiable subsets, only satisfiable subsets, or it contains an element Ni such
that ∀j, 1 ≤ j < i, is Nj satisfiable and ∀k, i ≤ k ≤ p, is Nk unsatisfiable. In the
first case, it is guaranteed that N1 is a MUS. In the second case, the chain does
not give us any seed. Finally, in the third case, TOME finds Ni using binary
search (which takes only O(log2 p) satisfiability checks). Subsequently Ni is used
as a seed for the shrinking procedure and shrunk into a MUS.

There are no guarantees on distribution of satisfiable and unsatisfiable sub-
sets on the chain, since the subsets are unexplored. In the best case, where N1

is unsatisfiable, TOME identifies a MUS using just a single satisfiability check.
In the worst case, the whole chain is satisfiable and TOME has to build another
chain. Based on our experience, TOME on average performs more satisfiability
checks to find a seed than MARCO does, but the seeds are much smaller than in
the case of MARCO. Thus, TOME is efficient especially in constraint domains
where the size of the seed highly affects the complexity of the shrinking.

ReMUS [9] is based on the following observation: if C, Ck, and M are unsatis-
fiable sets such that Ck ⊆ C and M is a MUS of Ck, then M is necessarily also
a MUS of C. Note that the smaller Ck is the smaller seeds are in Ck. ReMUS
tends to identify Ck that is very small, yet contains many MUSes, and searches
for seeds in Ck. In particular, the very first seed S is found among the maximal
unexplored subsets of C0 = C and then shrunk to a MUS Smus. To find a next
seed, ReMUS chooses C1 such that Smus ⊆ C1 ⊆ S, and searches for a seed S1

among maximal unexplored subsets of C1. If a seed S1 is identified, then it is
again shrunk to a MUS S1

mus and again used to reduce the search space, i.e. the
a next seed S2 is searched for in a set C2 such that S1

mus ⊆ C2 ⊆ S1. The search
space reduction is recursively repeated as long as possible. Once the current
search space is completely explored, ReMUS backtracks from the recursion and
searches for a seed on the previous recursion level. Moreover, ReMUS employs
several heuristics to pre-emptively backtrack from a search space that contains
a lot of unexplored subsets but only few MUSes.

The larger the input set C of constraints is, the more extensive recursive
reduction is possible, and thus the smaller seeds can be found. We recommend to
use ReMUS, rather than MARCO or TOME, if the input constraint set contains
at least hundreds of constraints and hundreds of MUSes, no matter what the
constraint domain is.

For a more elaborated description of the three algorithms, please refer to the
original papers [22,7,9] or to our recent work [8] where we have experimentally
compared the algorithms in various constraint domains.

142 J. Bend́ık and I. Černá

4 Architecture of the Tool

Our tool is implemented in C++ and is available under the MIT license at:

https://github.com/jar-ben/mustool

The tool consists of six logical components: SatSolver, Explorer, Master, Al-
gorithms, Heuristics, and Initializer. In the following section 4.1 we provide a
brief description of the individual components. Subsequently, in Sections 4.2 and
4.3 we provide a more detailed description of Explorer and SatSolver. Finally, in
Section 4.4, we give instructions on how to install and use our tool.

4.1 Logical Components

SatSolver SatSolver (declared in SatSolver.h) is the only domain specific part
of our tool. It provides the functionality for checking sets of constraints for
satisfiability, and implements the shrinking procedure. Also, SatSolver copes
with parsing the input set of constraints (provided by the user) and exporting
the identified MUSes in particular domain specific formats. A more detailed
description of SatSolver is provided in Section 4.3.

Explorer Explorer (declared in Explorer.h) maintains the set Unexplored of all
unexplored subsets and handles related operations including: marking sets as
explored, obtaining unexplored subsets, and mining critical constraints based on
the set Unexplored. For more information, see Section 4.2.

Master Master (declared in Master.h) is the coordinator of the whole computa-
tion. In particular, it holds an instance of Explorer and an instance of SatSolver
and provides wrappers for calling their methods. Moreover, it runs a MUS enu-
meration algorithm that is specified by the user via a command line argument
(see below).

Algorithms The algorithms MARCO [22], TOME [7], and ReMUS [9] are
declared in Master (Master.h) and implemented in marco.cpp, tome.cpp, and
remus.cpp, respectively. All calls to SatSolver and Explorer are made via the
wrappers defined in Master. This means that any improvement to Explorer and
especially to SatSolver (i.e. a more efficient shrinking procedure or satisfiability
solver) is immediately reflected by all the algorithms.

Heuristics There are several heuristics that are bound to the wrappers defined
in Master, and thus can be exploited by all the three algorithms. For example, in
the wrapper for invoking the shrinking procedure, we provide two heuristics for
computing critical constraints for the set that is being shrunk. One of the two
heuristics uses Explorer to compute critical constraints based on the set Unex-
plored. The other heuristic uses SatSolver to obtain additional critical constraints
that cannot be mined from Unexplored.

https://github.com/jar-ben/mustool

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 143

Initializer Initializer (implemented in main.cpp) parses the command line ar-
guments provided by the user, and creates, sets-up, and runs the Master.

4.2 Explorer

Since there can be up to exponentially many unexplored subsets w.r.t. the num-
ber of constraints in C, it is intractable to represent them explicitly. Instead, we
adopt a symbolic representation that was first proposed by Liffiton et al. [22]
and subsequently used in many other works (e.g. [1,20,10]).

Given a set C = {c1, c2, . . . , cn} of constraints, we introduce a set X =
{x1, x2, . . . , xn} of Boolean variables, and maintain two Boolean formulas, map+

and map−, over X such that each model of map+ ∧ map− corresponds to an
unexplored subset and vice versa. The formulas are maintained as follows:

• Initially map+ = map− = True since all of P(C) are unexplored.
• To mark a satisfiable set N ⊆ C and all its subsets as explored we add to

map+ the clause
∨

i:ci 6∈N xi.
• Symmetrically, to mark an unsatisfiable set N ⊆ C and all its supersets as

explored we add to map− the clause
∨

i:ci∈N ¬xi.

We use the SAT solver miniSAT [18] to hold and query the formulas map+ and
map−. To get an arbitrary element of Unexplored , we can ask miniSAT for a
model of map+∧map−. However, in our algorithms, we need to be able to obtain
two specific kinds of unexplored subsets.

First, given a set N , N ⊆ C, we need to be able to find a maximal unexplored
subset of N . We exploit that miniSAT allows the user to fix values of some
variables and also to set the default polarity of variables, i.e. the default value
assignment to variables in decision points during the solving. To get a maximal
unexplored subset of N , we fix the values of the variables {xi|ci 6∈ N} to False,
set the default polarity to True, and ask miniSAT for a model of map+ ∧map−.

Second, given an unexplored N , N ⊆ C, we need to find a minimal unexplored
subset B of N (this is used by TOME while constructing a chain of unexplored
subsets). To do this, we fix the values of the variables {xi|ci 6∈ N} to False, set
the default polarity to False, and ask miniSAT for a model of map+. Note that
we do not include map− in the query. Intuitively, map− requires an absence of
constraints and since N satisfies map−, every subset of N also satisfies map−.

As for the implementation, we integrate miniSAT via it’s C API and we main-
tain two instances of the solver. One instance holds the formula map+ ∧map−

whereas the other instance holds just map+. Both the instances are used in-
crementally, i.e. the formulas are incrementally build during the whole MUS
enumeration and simplified (internally by miniSAT) when possible. Let us note
that Liffiton et al. also incrementally use miniSAT in their tool1. However, they
maintain just the whole conjunction map+ ∧ map− since a separate mainte-
nance of map− or map+ would not bring any speed-up in case of their MUS
enumeration algorithm.

1 https://sun.iwu.edu/%7eliffito/marco/

https://sun.iwu.edu/%7eliffito/marco/

144 J. Bend́ık and I. Černá

Finally, Explorer provides one more functionality. Given an unexplored subset
N , Explorer can collect minable critical constraints of N . Recall that a constraint
c ∈ N is minable critical for N iff N \ {c} is explored. All the minable critical
constraints can be determined based on the formula map+∧map−. In particular,
if we simplify the formula by fixing the variables {xi|ci 6∈ N} to False, then
values of some variables from {xi|ci ∈ N} will be implied to be True. These
implicants correspond to the minable critical constraints. This observation has
been already exploited by Liffiton et al. [22] and they use miniSAT to obtain
the implicants in their tool. However, the miniSAT’s procedure for computing
the implicants is not dedicated solely to this purpose; it is optimized w.r.t. the
overall satisfiability solving process. Therefore, a use of miniSAT for this task
brings an unnecessary overhead. In our tool, we directly compute the implicants
from the formula map+ instead of using a SAT solver to do it.

4.3 SatSolver

SatSolver (declared in SatSolver.h) is an abstract class stating all the domain
specific functionality that needs to be implemented (in a derived class) to support
a particular constraint domain in our tool. There are three methods that have
to be implemented by every derived class:

– toString(N) takes as an input a set N , N ⊆ C, and returns a textual
representation of the constraints contained in N (e.g. in the SMT-LIB 2
format if N is a set of SMT constraints). We use this method to output the
identified MUSes.

– solve(N, core = False, extension = False) takes as an input a subset N
of C and returns True iff N is satisfiable and False otherwise. Moreover,
solve takes two optional Boolean parameters, core and extension, with de-
fault values set to False. If core is set to True and N is unsatisfiable, solve
also finds an unsat core of N , i.e. an unsatisfiable M such that M ⊆ N .
Similarly, if extension is set to True and N is satisfiable, solve finds an
extension of N , i.e. a satisfiable set M such that N ⊆ M ⊆ C. We use the
unsat cores in our tool to reduce seeds before shrinking. The extensions are
used to further prune the set Unexplored when an unexplored subset is found
to be satisfiable.

– constructor(filepath). Every derived class of SatSolver has to implement
its constructor. The constructor accepts a path filepath to a file that specifies
the input set C of constraints in some domain specific format (e.g. SMT-
LIB 2 for SMT formulae). We invoke the constructor during the initialisation
phase of our tool and its goal is to parse the input set of constraints and
internally store the constraints for future manipulations. SatSolver is the
only one of the six logical components of our tool that directly works with
particular constraints of C. All the other components work just with a bit-
vector representation of subsets of C. For example, if C = {c1, c2, c3, c4} is a
set of four constraints and K = {c1, c2}, the bitvector representation of K is
1100. Therefore, whenever another component communicates with SatSolver,

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 145

e.g. invokes the procedure solve(N), it passes the bit-vector representation
of N to SatSolver and SatSolver converts it to particular constraints.

Besides the above three methods that have to be implemented by every de-
rived class, SatSolver defines and implements a method that can be overridden
by a derived class:

– shrink(N, crits) performs the shrinking, i.e. it takes an unsatisfiable set
N together with a set crits of constraints that are critical for N and returns
a MUS of N . The default domain agnostic implementation of this method
is carried out by Algorithm 1 (Section 2.2).

Currently, our tool supports 3 constraint domains via the following 4 derived
classes of SatSolver:

– MSHandle (implemented in MSHandle.cpp) provides a functionality for the
Boolean CNF domain, i.e. the set of constraints is a set of Boolean clauses.
The input and output format is the DIMACS CNF format. For shrinking,
we integrate two single MUS extraction tools: muser2 [5] by Belov and Silva,
and a tool [1] by Bacchus and Katsirelos. Finally, we use miniSAT [18] to
implement the method solve. Besides checking N for satisfiability, we also
use miniSAT to obtain an unsat core or an extension of N . In particular, an
unsat core is directly provided by miniSAT. To get an extension of N , we
obtain a model π of N from miniSAT and collect the set {c|c ∈ C ∧ π |= c}
of all constraints in C that are satisfied by π.

– Z3Handle (implemented in Z3Handle.cpp) processes SMT constraints that
are represented in the SMT-LIB2 format. We use z3 [16] to parse the in-
put and to implement solve. Moreover, in the same way as in the case of
MSHandle, we obtain unsat cores from z3 and we also obtain models of sat-
isfiables formulas to compute their extensions. The shrinking is implemented
using our custom procedure.

– SpotHandle (implemented in SpotHandle.cpp) supports the LTL domain.
We use SPOT [17] to implement solve and the default domain agnostic
implementation of shrink. In this case, we do not provide support for com-
puting non-trivial unsat cores and non-trivial extension. Therefore, if an
extension or unsat core is required while calling solve(N), we simply use
N itself (N is a trivial unsat core/extension of N).

– NuxmvHandle (implemented in NuxmvHandle.cpp) is another alternative
for the LTL domain. Instead of SPOT, it uses nuXmv [11] as a satisfiability
solver, which is, based on our experience, much more efficient than SPOT.
However, nuXmv’s license2 is more restrictive than the SPOT’s license and
thus not every user of our tool might use it. In this case, we also do not
support an extraction of non-trivial unsat cores and extensions.

If anyone wants to add support for another constraint domain to our tool, it
is enough to implement a derived class of SatSolver. For example, the implemen-
tation of SpotHandle takes only 45 lines of code, including several empty lines

2 https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License

https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License

146 J. Bend́ık and I. Černá

caused by formatting and lines containing only closing brackets (”}”). Therefore,
we claim our tool to be indeed domain agnostic and ready-to-use solution for
any constraint domain.

4.4 Installation and Execution of the Tool

For detailed installation and usage instructions, please follow the README.md
file at: https://github.com/jar-ben/mustool.

Briefly, our tool can be built either in lightweight settings with support
only for SAT domain, or with support also for the SMT and/or LTL domains.
Whereas in the SAT domain, we use miniSAT that can be built very quickly,
the z3 and SPOT solvers that we use in the SMT and LTL domains can take
several hours to install. Once you have installed all the solvers you want to use,
our tool can be simply built with an invocation of the command ”make”.

To run our tool in its default settings, execute:

./must input file,

where input file specifies the input file of constraints, and it has to have either
.cnf, smt2, or .ltl extension. Based on the extension, Master selects and uses an
appropriate derived class of SatSolver. To specify a MUS enumeration algorithm
to be used, invoke the tool by:

./must -a alg input file,

where alg can be either marco, tome, or remus (the default one). To see all the
available settings, run

./must -h.

5 Experimental Evaluation

5.1 Evaluated Tools

The only other existing MUS enumeration tool that can be seen as domain agnos-
tic is the implementation3 of the domain agnostic algorithm MARCO (invented
by Liffiton et al. [22] and implemented by Liffiton and Zhao). In the following,
we refer to the tool as MARCO. Currently, MARCO supports the SAT and SMT do-
mains and can also relatively easily be extended to support another constraint
domains. Here, we provide results of an experimental comparison of our tool
MUST with MARCO in both the SAT and SMT domains. Moreover, to demonstrate
that our domain agnostic tool can be competitive even to fully domain specific
solutions, we include a comparison with two state-of-the-art MUS enumeration
tools from the SAT domain: MCSMUS4 [2] and FLINT5 [25].

Due to the space limitation, we show here only results achieved by the best
(default) configurations of our tool. In particular, in both domains, we use the

3 https://sun.iwu.edu/%7emliffito/marco/
4 https://bitbucket.org/gkatsi/mcsmus/src
5 The tool was kindly provided to us by its author, Nina Narodytska.

https://github.com/jar-ben/mustool
https://sun.iwu.edu/%7emliffito/marco/
https://bitbucket.org/gkatsi/mcsmus/src

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 147

algorithm ReMUS. As for the shrinking, in SMT domain, we use our custom
shrinking solution, and in the SAT domain we employ a single MUS extraction
algorithm by Bacchus and Katsirelos [1]. Complete results of the evaluation are
available at: https://www.fi.muni.cz/%7exbendik/research/must.

All experiments were run using a time limit of 3600 seconds and computed on
an Intel(R) Core(TM) i5-4690 CPU, 3.50GHz, 16 GB memory machine running
Arch Linux 4.19.69-1-lts. The comparison criterion used in our evaluation is the
number of identified MUSes within the given time limit.

5.2 Benchmarks

In the SAT domain, we used a collection of 291 Boolean CNF benchmarks that
were taken from the MUS track of the SAT 2011 Competition6. This collection
has been used in many recent MUS related papers (e.g. [22,7,9,25,2]), including
the ones that present MARCO, FLINT, and MCSMUS. The benchmarks range in their
size from 70 to 16 million constraints and use from 26 to 4.4 million variables.
In case of 28 benchmarks, all the evaluated algorithms identified all the MUSes
within the given time limit. Since the comparison criterion of our evaluation is
the number of identified MUSes, the 28 benchmarks are irrelevant for the eval-
uation (all three tools found the same number of MUSes for these benchmarks).
Therefore, only the remaining 263 benchmarks are the subject of our evaluation.

In the SMT domain, we used a collection of 433 benchmarks that were taken
from the QF UF, QF IDL, QF RDL, QF LIA and QF LRA divisions of the li-
brary SMT-LIB7. Also this collection has been already used in several works, e.g.
in the work by Cimatti et al. [13] or in our recent papers [9,8]. The benchmarks
range in their size from 70 to 16 million constraints and use from 26 to 4.4 million
variables. In case of 249 benchmarks, both the evaluated algorithms identified
all the MUSes. Therefore, we focus here on the remaining 184 benchmarks.

5.3 Results

In Figs. 2a, 2b, and 2c, we provide scatter plots that compare pair-wise MUST

with the other tools in the SAT domain, and in Fig. 2d a scatter plot comparing
MUST with MARCO in the SMT domain. Each point in a scatter plot corresponds
to a single benchmark and shows the number of MUSes identified by the two
algorithms. The x-coordinate of a point is given by the algorithm that labels
the x-axis and the y-coordinate is given by the algorithm that labels the y-axis.
Moreover, note that each scatter plot contains three additional numbers that are
above/on right/in the right corner of the plot. These numbers show the number
of points that are above/below/on the diagonal, respectively.

In the SMT domain, MUST conclusively dominates MARCO: it found more, less,
and the same number of MUSes as MARCO in case of 100, 32, and 52 benchmarks,
respectively. In the SAT domain, MUST outperforms on majority of benchmarks

6 http://www.cril.univ-artois.fr/SAT11/
7 http://www.smt-lib.org/

https://www.fi.muni.cz/%7exbendik/research/must
http://www.cril.univ-artois.fr/SAT11/
http://www.smt-lib.org/

148 J. Bend́ık and I. Černá

100

101

102

103

104

105

106

100 101 102 103 104 105 106

85

162

16

#
 M

U
Se

s
FL

IN
T

MUSes MUST

(a) MUST vs. FLINT, SAT domain

100

101

102

103

104

105

106

100 101 102 103 104 105 106

61
184

18

#
 M

U
Se

s
M

AR
CO

MUSes MUST

(b) MUST vs. MARCO, SAT domain

100

101

102

103

104

105

106

100 101 102 103 104 105 106

138

114

11

#
 M

U
Se

s
M

CS
M

U
S

MUSes MUST

(c) MUST vs. MCSMUS, SAT domain

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32

100

52

#
 M

U
Se

s
M

AR
CO

MUSes MUST

(d) MUST vs. MARCO, SMT domain

Fig. 2: Scatter plots comparing the number of produced MUSes.

both MARCO and FLINT. Finally, MCSMUS outperforms MUST in case of 52 percent
of benchmarks and is worse than MUST in case of 43 percent of benchmarks. Still,
this is a very good result since MUST is a domain agnostic tool whereas MCSMUS

is tailored to the SAT domain.

Besides the pair-wise comparison of the algorithms, we also provide an overall
ranking of the algorithms on individual benchmarks in the SAT domain. In
particular, assume that for a benchmark B both MUST and MCSMUS found 100
MUSes, FLINT found 80 MUSes, and MARCO found 50 MUSes. In such a case, MUST
and MCSMUS share the 1st (best) rank for B , FLINT is 3rd, and MARCO is on the
4th position. In Fig. 3 we show the average ranking (from all benchmarks) of all
algorithms for each subsequent 60 seconds of the computation. We can see that
MARCO ranked the worse during the whole computation. FLINT ranked quite well
during the first 600 seconds, but then its performance degraded. Finally, MUST
and MCSMUS maintained the best and the second best ranking, respectively. This
might be quite surprising since MCSMUS is slightly better than MUST in Fig. 2c.

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 149

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 600 1200 1800 2400 3000 3600

av
er

ag
e

ra
nk

in
g

time in seconds

MUST MARCO FLINT MCSMUS

Fig. 3: Average ranking in time.

The thing is that MUST mostly ranks either as 1st or 2nd on a benchmark and
rarely ranks as 4th, whereas MCSMUS more often ranks as 3rd or 4th.

Finally, let us recall that our tool contains also implementation of the algo-
rithm MARCO and thus one might be interesting in comparing the performance
of MARCO in our tool and MARCO in the tool MARCO. In the SAT domain,
we found our implementation to be more efficient, equal, and less efficient than
MARCO in case of 68, 6, and 26 percent of benchmarks, respectively. In the SMT
domain, our implementation is better, equal, and worse in 37, 29, 34 percent
of benchmarks, respectively8. Therefore, shall anyone want to use the algorithm
MARCO, we recommend to use our implementation.

6 Case Study

During the last 4 years, we participated on the European Union’s Horizon 2020
project called AMASS [26]. The project brought together researchers from aca-
demia and engineers from large industrial companies such as Honeywell, Alstom,
or Infineon. The project focused on improving the process of development and
certification of Cyber-Physical Systems in markets such as automotive, railway,
aerospace, space, and energy. Among others, this included the development of
techniques for assessing quality of system specification/requirements and this is
where our tool found an application.

Establishing the requirements is an important stage in all development. In
general, the requirements can be expressed either informally, e.g. using a natural
language, or formally by employing a kind of mathematical logic such as the
Linear Temporal Logic (LTL). The formalization removes ambiguity and allows
to employ various model-based techniques, such as model checking. Moreover,
we get the opportunity to verify the requirements earlier, even before any system
model is built. In particular, we can verify that the requirements are consistent
(satisfiable), i.e. that there can be even built a system that satisfies all the
requirements. If the requirements are inconsistent, they need to be refined.

8 See the appendix https://www.fi.muni.cz/%7exbendik/research/must

https://www.fi.muni.cz/%7exbendik/research/must

150 J. Bend́ık and I. Černá

requirements
expressed in a natural

language

set C of requirements
expressed in a
temporal logic

formalization consistency
check

inconsistent

MUS enumeration toola set K of MUSes of C

consistent

enumerating several
MUSes of C

refining C
based on K

Fig. 4: Application of MUS enumeration in requirements analysis.

Within the AMASS project, we proposed a scheme [6] that exploits MUSes
to help the user to establish a consistent set of requirements. A basic workflow
of the scheme is depicted in Fig. 4. The process starts by introducing a set of
requirements in some natural-language like format, yet using a restricted gram-
mar that avoids ambiguities. In the next step, the requirements are formalized
using LTL and gathered in a set C. Subsequently, C is checked for consistency. If
C is consistent, then the software development process can continue with a next
stage. Otherwise, a MUS enumeration tool is used to identify a set K of MUSes
of C, and the user uses K to refine C. The MUS identification and refinement
steps are repeated until the set of requirements becomes consistent.

We implemented the scheme in AMASS as a part of a so-called V&V man-
ager [27]: a tool for validation and verification of the system model and system
requirements. Our industrial partners employed the scheme on a set of industrial
benchmarks, and evaluated two contemporary MUS enumeration tools from the
LTL domain: our MUST, and Looney by Bauch et al. [4]. They found MUST to be
faster by several orders of magnitude. Unfortunately, the industrial benchmarks
are confidential and cannot be published in this paper. Yet, authors of Looney

indeed acknowledge in their paper that Looney can handle only small input con-
straint sets containing just low tens of constraints. On the other hand, MUST was
shown [8] to be able to efficiently work with hundreds of constraints.

7 Conclusion

We presented a tool, called MUST, for online enumeration of Minimal Unsatisfi-
able Subsets (MUSes). MUST implements three contemporary domain agnostic
MUS enumeration algorithms, i.e. algorithms that can be applied in any con-
straint domain. Currently, the tool supports enumeration in the SAT, SMT and
LTL domains, and can be easily extended to support another domains. Therefore,
we classify the tool itself as domain agnostic; it serves as (an almost) ready-to-
use solution for any domain where MUSes already find or eventually will find
an application. We experimentally compared MUST to a domain agnostic tool
by Liffiton et al. [22] in the SAT and SMT domains, and we showed that MUST
conclusively dominates in both domains. Moreover, we showed that MUST is
even competitive to contemporary tools that are tailored for the SAT domain.

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 151

References

1. Fahiem Bacchus and George Katsirelos. Using minimal correction sets to more
efficiently compute minimal unsatisfiable sets. In CAV (2), volume 9207 of LNCS,
pages 70–86. Springer, 2015.

2. Fahiem Bacchus and George Katsirelos. Finding a collection of MUSes incremen-
tally. In CPAIOR, volume 9676 of LNCS, pages 35–44. Springer, 2016.

3. James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of
constraints using hitting set dualization. In PADL, pages 174–186. Springer, 2005.

4. Jǐŕı Barnat, Petr Bauch, Nikola Beneš, Luboš Brim, Jan Beran, and Tomáš Kra-
tochv́ıla. Analysing sanity of requirements for avionics systems. FAoC, 2016.

5. Anton Belov and João Marques-Silva. MUSer2: An efficient MUS extractor. JSAT,
8:123–128, 2012.

6. Jaroslav Bend́ık. Consistency checking in requirements analysis. In ISSTA, pages
408–411. ACM, 2017.

7. Jaroslav Bend́ık, Nikola Beneš, Ivana Černá, and Jǐŕı Barnat. Tunable online
MUS/MSS enumeration. In FSTTCS, volume 65 of LIPIcs, pages 50:1–50:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

8. Jaroslav Bend́ık and Ivana Černá. Evaluation of domain agnostic approaches for
enumeration of minimal unsatisfiable subsets. In LPAR, volume 57 of EPiC Series
in Computing, pages 131–142. EasyChair, 2018.

9. Jaroslav Bend́ık, Ivana Černá, and Nikola Beneš. Recursive online enumeration of
all minimal unsatisfiable subsets. In ATVA, volume 11138 of LNCS, pages 143–159.
Springer, 2018.

10. Jaroslav Bend́ık, Elaheh Ghassabani, Michael W. Whalen, and Ivana Černá. Online
enumeration of all minimal inductive validity cores. In SEFM, volume 10886 of
LNCS, pages 189–204. Springer, 2018.

11. Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
The nuxmv symbolic model checker. In CAV, volume 8559 of LNCS, pages 334–342.
Springer, 2014.

12. Huan Chen and João Marques-Silva. Improvements to satisfiability-based boolean
function bi-decomposition. In VLSI-SoC, pages 142–147. IEEE, 2011.

13. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Computing small
unsatisfiable cores in satisfiability modulo theories. JAIR, 40:701–728, 2011.

14. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, volume 1855 of LNCS,
pages 154–169. Springer, 2000.

15. Orly Cohen, Moran Gordon, Michael Lifshits, Alexander Nadel, and Vadim
Ryvchin. Designers work less with quality formal equivalence checking. In De-
sign and Verification Conference (DVCon). Citeseer, 2010.

16. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

17. Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 - A framework for LTL
and ω-automata manipulation. In ATVA, volume 9938 of LNCS, pages 122–129,
2016.

18. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, volume 2919
of LNCS, pages 502–518. Springer, 2003.

152 J. Bend́ık and I. Černá

19. Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. Efficient generation
of inductive validity cores for safety properties. In SIGSOFT FSE, pages 314–325.
ACM, 2016.

20. Elaheh Ghassabani, Michael W. Whalen, and Andrew Gacek. Efficient generation
of all minimal inductive validity cores. In FMCAD, pages 31–38. IEEE, 2017.

21. Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by cs-trees with
mark set in diagnosis from first principles. IEEE Trans. Systems, Man, and Cy-
bernetics, Part B, 29(2):281–286, 1999.

22. Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-Silva. Fast,
flexible MUS enumeration. Constraints, pages 1–28, 2015.

23. Kenneth L. McMillan and Nina Amla. Automatic abstraction without counterex-
amples. In TACAS, volume 2619 of LNCS, pages 2–17. Springer, 2003.

24. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Accelerated deletion-based
extraction of minimal unsatisfiable cores. JSAT, 9:27–51, 2014.

25. Nina Narodytska, Nikolaj Bjørner, Maria-Cristina Marinescu, and Mooly Sagiv.
Core-guided minimal correction set and core enumeration. In IJCAI, pages 1353–
1361. ijcai.org, 2018.

26. AMASS project partners. Project AMASS (Architecture-driven, Multi-concern
and Seamless Assurance and Certification of Cyber-Physical Systems). https://
amass-ecsel.eu/. [Online; Accessed: 2019-22-10].

27. AMASS project partners. Project AMASS, deliverable D3.6: Prototype for
Architecture-Driven Assurance (c). https://amass-ecsel.eu/content/deliverables.
[Online; Accessed: 2019-22-10].

28. Emanuel Sperner. Ein satz über untermengen einer endlichen menge. Mathema-
tische Zeitschrift, 27(1):544–548, 1928.

29. Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M. Provan. Ex-
ploring the duality in conflict-directed model-based diagnosis. In AAAI. AAAI
Press, 2012.

30. Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Interactive type debugging
in haskell. In Haskell, pages 72–83. ACM, 2003.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://amass-ecsel.eu/
https://amass-ecsel.eu/
https://amass-ecsel.eu/content/deliverables
http://creativecommons.org/licenses/by/4.0/

	MUST: Minimal Unsatisfiable Subsets Enumeration Tool
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Shrink
	2.3 Unexplored Subsets

	3 Implemented Algorithms
	3.1 Seed-Shrink Scheme

	4 Architecture of the Tool
	4.1 Logical Components
	4.2 Explorer
	4.3 SatSolver
	4.4 Installation and Execution of the Tool

	5 Experimental Evaluation
	5.1 Evaluated Tools
	5.2 Benchmarks
	5.3 Results

	6 Case Study
	7 Conclusion
	References

