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Abstract. We show how a symmetric and fully distributed flocking con-
troller can be synthesized using Deep Learning from a centralized flocking
controller. Our approach is based on Supervised Learning, with the cen-
tralized controller providing the training data, in the form of trajectories
of state-action pairs. We use Model Predictive Control (MPC) for the cen-
tralized controller, an approach that we have successfully demonstrated
on flocking problems. MPC-based flocking controllers are high-performing
but also computationally expensive. By learning a symmetric and dis-
tributed neural flocking controller from a centralized MPC-based one,
we achieve the best of both worlds: the neural controllers have high
performance (on par with the MPC controllers) and high efficiency. Our
experimental results demonstrate the sophisticated nature of the dis-
tributed controllers we learn. In particular, the neural controllers are
capable of achieving myriad flocking-oriented control objectives, includ-
ing flocking formation, collision avoidance, obstacle avoidance, predator
avoidance, and target seeking. Moreover, they generalize the behavior
seen in the training data to achieve these objectives in a significantly
broader range of scenarios. In terms of verification of our neural flock-
ing controller, we use a form of statistical model checking to compute
confidence intervals for its convergence rate and time to convergence.

Keywords: Flocking · Model Predictive Control · Distributed Neural Controller
· Deep Neural Network · Supervised Learning

1 Introduction

With the introduction of Reynolds rule-based model [16,17], it is now possible
to understand the flocking problem as one of distributed control. Specifically, in
this model, at each time-step, each agent executes a control law given in terms
of the weighted sum of three competing forces to determine its next acceleration.
Each of these forces has its own rule: separation (keep a safe distance away
from your neighbors), cohesion (move towards the centroid of your neighbors),
and alignment (steer toward the average heading of your neighbors). Reynolds
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Fig. 1: Neural Flocking Architecture

controller is distributed ; i.e., it is executed separately by each agent, using
information about only itself and nearby agents, and without communication.
Furthermore, it is symmetric; i.e., every agent runs the same controller (same
code).

We subsequently showed that a simpler, more declarative approach to the
flocking problem is possible [11]. In this setting, flocking is achieved when the
agents combine to minimize a system-wide cost function. We presented centralized
and distributed solutions for achieving this form of “declarative flocking” (DF),
both of which were formulated in terms of Model-Predictive Control (MPC) [2].

Another advantage of DF over the ruled-based approach exemplified by
Reynolds model is that it allows one to consider additional control objectives
(e.g., obstacle and predator avoidance) simply by extending the cost function
with additional terms for these objectives. Moreover, these additional terms are
typically quite straightforward in nature. In contrast, deriving behavioral rules
that achieve the new control objectives can be a much more challenging task.

An issue with MPC is that computing the next control action can be compu-
tationally expensive, as MPC searches for an action sequence that minimizes the
cost function over a given prediction horizon. This renders MPC unsuitable for
real-time applications with short control periods, for which flocking is a prime
example. Another potential problem with MPC-based approaches to flocking is
its performance (in terms of achieving the desired flight formation), which may
suffer in a fully distributed setting.

In this paper, we present Neural Flocking (NF), a new approach to the
flocking problem that uses Supervised Learning to learn a symmetric and fully
distributed flocking controller from a centralized MPC-based controller. By doing
so, we achieve the best of both worlds: high performance (on par with the MPC
controllers) in terms of meeting flocking flight-formation objectives, and high
efficiency leading to real-time flight controllers. Moreover, our NF controllers can
easily be parallelized on hardware accelerators such as GPUs and TPUs.

Figure 1 gives an overview of the NF approach. A high-performing centralized
MPC controller provides the labeled training data to the learning agent: a
symmetric and distributed neural controller in the form of a deep neural network
(DNN). The training data consists of trajectories of state-action pairs, where a
state contains the information known to an agent at a time step (e.g., its own
position and velocity, and the position and velocity of its neighbors), and the
action (the label) is the acceleration assigned to that agent at that time step by
the centralized MPC controller.

We formulate and evaluate NF in a number of essential flocking scenarios:
basic flocking with inter-agent collision avoidance, as in [11], and more advanced
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scenarios with additional objectives, including obstacle avoidance, predator avoid-
ance, and target seeking by the flock. We conduct an extensive performance
evaluation of NF. Our experimental results demonstrate the sophisticated nature
of NF controllers. In particular, they are capable of achieving all of the stated
control objectives. Moreover, they generalize the behavior seen in the training
data in order to achieve these objectives in a significantly broader range of scenar-
ios. In terms of verification of our neural controller, we use a form of statistical
model checking [5, 10] to compute confidence intervals for its rate of convergence
to a flock and for its time to convergence.

2 Background

We consider a set of n dynamic agents A = {1, . . . , n} that move according to
the following discrete-time equations of motion:

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < v̄

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < ā
(1)

where pi(k) ∈ R2, vi(k) ∈ R2, ai(k) ∈ R2 are the position, velocity and accelera-
tion of agent i ∈ A respectively at time step k, and dt ∈ R+ is the time step. The
magnitudes of velocities and accelerations are bounded by v̄ and ā, respectively.
Acceleration ai(k) is the control input for agent i at time step k. The acceleration
is updated after every η time steps i.e., η · dt is the control period. The flock
configuration at time step k is thus given by the following vectors (in boldface):

p(k) = [pT1 (k) · · · pTn (k)]T (2)

v(k) = [vT1 (k) · · · vTn (k)]T (3)

a(k) = [aT1 (k) · · · aTn (k)]T (4)

The configuration vectors are referred to without the time indexing as p,
v, and a. The neighborhood of agent i at time step k, denoted by Ni(k) ⊆ A,
contains its N -nearest neighbors, i.e., the N other agents closest to it. We use
this definition (in Section 2.2 to define a distributed-flocking cost function) for
simplicity, and expect that a radius-based definition of neighborhood would lead
to similar results for our distributed flocking controllers.

2.1 Model-Predictive Control

Model-Predictive control (MPC) [2] is a well-known control technique that has
recently been applied to the flocking problem [11,19,20]. At each control step,
an optimization problem is solved to find the optimal sequence of control actions
(agent accelerations in our case) that minimizes a given cost function with respect
to a predictive model of the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded. In the computation
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of the cost function, the predictive model is evaluated for a finite prediction
horizon of T control steps.

MPC-based flocking models can be categorized as centralized or distributed. A
centralized model assumes that complete information about the flock is available
to a single “global” controller, which uses the states of all agents to compute
their next optimal accelerations. The following optimization problem is solved by
a centralized MPC controller at each control step k:

min
a(k|k),...,a(k+T−1|k)< ā

J(k) + λ ·
T−1∑
t=0

‖a(k + t | k)‖2 (5)

The first term J(k) is the centralized model-specific cost, evaluated for T control
steps (this embodies the predictive aspect of MPC), starting at time step k. It
encodes the control objective of minimizing the cost function J(k). The second
term, scaled by a weight λ > 0, penalizes large control inputs: a(k + t | k) are
the predictions made at time step k for the accelerations at time step k + t.

In distributed MPC, each agent computes its acceleration based only on its
own state and its local knowledge, e.g., information about its neighbors:

min
ai(k|k),...,ai(k+T−1|k)< ā

Ji(k) + λ ·
T−1∑
t=0

‖ai(k + t | k)‖2 (6)

Ji(k) is the distributed, model-specific cost function for agent i, analogous to J(k).
In a distributed setting where an agent’s knowledge of its neighbors’ behavior
is limited, an agent cannot calculate the exact future behavior of its neighbors.
Hence, the predictive aspect of Ji(k) must rely on some assumption about
that behavior during the prediction horizon. Our distributed cost functions are
based on the assumption that the neighbors have zero accelerations during the
prediction horizon. While this simple design is clearly not completely accurate,
our experiments show that it still achieves good results.

2.2 Declarative Flocking

Declarative flocking (DF) is a high-level approach to designing flocking algorithms
based on defining a suitable cost function for MPC [11]. This is in contrast to the
operational approach, where a set of rules are used to capture flocking behavior,
as in Reynolds model. For basic flocking, the DF cost function contains two terms:
(1) a cohesion term based on the squared distance between each pair of agents in
the flock; and (2) a separation term based on the inverse of the squared distance
between each pair of agents. The flock evolves toward a configuration in which
these two opposing forces are balanced. The cost function JC for centralized DF,
i.e., centralized MPC (CMPC), is as follows:

JC (p) =
2

|A| · (|A| − 1)
·
∑
i∈A

∑
j∈A,i<j

‖pij‖2 + ωs ·
1

‖pij‖2
(7)
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where ωs is the weight of the separation term and controls the density of the flock.

The cost function is normalized by the number of pairs of agents, |A|·(|A−1|)
2 ;

as such, the cost does not depend on the size of the flock. The control law for
CMPC is given by Eq. (5), with J(k) =

∑T
t=1 J

C (p(k + t | k)).

The basic flocking cost function for distributed DF is similar to that for
CMPC, except that the cost function JDi for agent i is computed over its set of
neighbors Ni(k) at time k:

JD
i (p(k)) =

1

|Ni(k)|
·
∑

j∈Ni(k)

‖pij‖2 + ωs ·
∑

j∈Ni(k)

1

‖pij‖2
(8)

The control law for agent i is given by Eq. (6), with Ji(k) =
∑T
t=1 J

D
i (p(k + t | k)).

3 Additional Control Objectives

The cost functions for basic flocking given in Eqs. (7) and (8) are designed to
ensure that in the steady state, the agents are well-separated. Additional goals
such as obstacle avoidance, predator avoidance, and target seeking are added
to the MPC formulation as weighted cost-function terms. Different objectives
can be combined by including the corresponding terms in the cost function as a
weighted sum.

Cost-Function Term for Obstacle Avoidance. We consider multiple rectangular
obstacles which are distributed randomly in the field. For a set of m rectangular
obstacles O = {O1,O2, ...,Om}, we define the cost function term for obstacle
avoidance as:

JOA(p,o) =
1

|A||O|
∑
iεA

∑
jεO

1∥∥∥pi − o(i)
j

∥∥∥2 (9)

where o is the set of points on the obstacle boundaries and o
(i)
j is the point on

the obstacle boundary of the jth obstacle Oj that is closest to the ith agent.

Cost-Function Term for Target Seeking. This term is the average of the squared
distance between the agents and the target. Let g denote the position of the fixed
target. Then the target-seeking term is as defined as

JTS(p) =
1

|A|
∑
i∈A
‖pi − g‖2 (10)

Cost-Function Term for Predator Avoidance. We introduce a single predator,
which is more agile than the flocking agents: its maximum speed and acceleration
are a factor of fp greater than v̄ and ā, respectively, with fp > 1. Apart from
being more agile, the predator has the same dynamics as the agents, given by
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Eq. (1). The control law for the predator consists of a single term that causes it
to move toward the centroid of the flock with maximum acceleration.

For a flock of n agents and one predator, the cost-function term for predator
avoidance is the average of the inverse of the cube of the distances between the
predator and the agents. It is given by:

JPA (p, ppred) =
1

|A|
∑
iεA

1

‖pi − ppred‖3
(11)

where ppred is the position of the predator. In contrast to the separation term
in Eqs. (5)-(6), which we designed to ensure inter-agent collision avoidance, the
predator-avoidance term has a cube instead of a square in the denominator. This
is to reduce the influence of the predator on the flock when the predator is far
away from the flock.

NF Cost-Function Terms. The MPC cost functions used in our examination of
Neural Flocking are weighted sums of the cost function terms introduced above.
We refer to the first term of our centralized DF cost function JC(p) (see Eq. (7))
as Jcohes(p) and the second as Jsep(p). We use the following cost functions J1,
J2, and J3 for basic flocking with collision avoidance, obstacle avoidance with
target seeking, and predator avoidance, respectively.

J1(p) = Jcohes(p) + ωs · Jsep(p) (12a)

J2(p,o) = Jcohes(p) + ωs · Jsep(p) + ωo · JOA(p,o) + ωt · JTS(p) (12b)

J3(p, ppred) = Jcohes(p) + ωs · Jsep(p) + ωp · JPA(p, ppred) (12c)

where ωs is the weight of the separation term, ωo is the weight of the obstacle
avoidance term, ωt is the weight of the target-seeking term, and ωp is the weight
of the predator-avoidance term. Note that J1 is equivalent to JC (Eq. (7)). The
weight ωs of the separation term is experimentally chosen to ensure that the
distance between agents, throughout the simulation, is at least dmin, the minimum
inter-agent distance representing collision avoidance. Similar considerations were
given to the choice of values for ωo and ωp. The specific values we used for the
weights are: ωs = 2000, ωo = 1500, ωt = 10, and ωp = 500.

We experimented with an alternative strategy for introducing inter-agent
collision avoidance, obstacle avoidance, and predator avoidance into the MPC
problem, namely, as constraints of the form dmin − pij < 0, dmin − ||pi −
o

(i)
j || < 0, and dmin − ||pi − ppred|| < 0, respectively. Using the theory of exact

penalty functions [12], we recast the constrained MPC problem as an equivalent
unconstrained MPC problem by converting the constraints into a weighted
penalty term, which is then added to the MPC cost function. This approach
rendered the optimization problem difficult to solve due to the non-smoothness
of the penalty term. As a result, constraint violations in the form of collisions
were observed during simulation.
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4 Neural Flocking

We learn a distributed neural controller (DNC) for the flocking problem using
training data in the form of trajectories of state-action pairs produced by a CMPC
controller. In addition to basic flocking with inter-agent collision avoidance, the
DNC exhibits a number of other flocking-related behaviors, including obstacle
avoidance, target seeking, and predator avoidance. We also show how the learned
behavior exhibited by the DNC generalizes over a larger number of agents than
what was used during training to achieve successful collision-free flocking in
significantly larger flocks.

We use Supervised Learning to train the DNC. Supervised Learning learns a
function that maps an input to an output based on example sequences of input-
output pairs. In our case, the trajectory data obtained from CMPC contains both
the training inputs and corresponding labels (outputs): the state of an agent in
the flock (and that of its nearest neighbors) at a particular time step is the input,
and that agent’s acceleration at the same time step is the label.

4.1 Training Distributed Flocking Controllers

We use Deep Learning to synthesize a distributed and symmetric neural controller
from the training data provided by the CMPC controller. Our objective is to learn
basic flocking, obstacle avoidance with target seeking, and predator avoidance.
Their respective CMPC-based cost functions are given in Sections 2.2 and 3. All
of these control objectives implicitly also include inter-agent collision avoidance
by virtue of the separation term in Eq. 7.

For each of these control objectives, DNC training data is obtained from
CMPC trajectory data generated for n = 15 agents, starting from initial con-
figurations in which agent positions and velocities are uniformly sampled from
[−15, 15]2 and [0, 1]2, respectively. All training trajectories are 1,000 time steps
in duration.

We further ensure that the initial configurations are recoverable; i.e., no two
agents are so close to each other that they cannot avoid a collision by resorting
to maximal accelerations. We learn a single DNC from the state-action pairs of
all n agents. This yields a symmetric distributed controller, which we use for
each agent in the flock during evaluation.

Basic Flocking. Trajectory data for basic flocking is generated using the cost
function given in Eq. (7). We generate 200 trajectories, each of which (as noted
above) is 1,000 time steps long. The input to the NN is the position and velocity
of each agent along with the positions and velocities of its N -nearest neighbors.
This yields 200 · 1, 000 · 15 = 3M total training samples.

Let us refer to the agent (the DNC) being learned as A0. Since we use
neighborhood size N = 14, the input to the NN is of the form [px0 p

y
0 v

x
0 vy0 p

x
1 p

y
1

vx1 vy1 . . . p
x
14 p

y
14 v

x
14 v

y
14], where px0 , py0 are the position coordinates and vx0 , vy0

velocity coordinates for agent A0, and px1...14, py1...14 and vx1...14, vy1...14 are the
position and velocity vectors of its neighbors. Since this input vector has 60
components, the input to the NN consists of 60 features.
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(a) Basic flocking (b) Obstacle avoid. (c) Predator avoid. (d) Target seeking

Fig. 2: Snapshots of DNC flocking behaviors for 30 agents

Obstacle Avoidance with Target Seeking. For obstacle avoidance with target
seeking, we use CMPC with the cost function given in Eq. (12b). The target is
located beyond the obstacles, forcing the agents to move through the obstacle
field. For the training data, we generate 100 trajectories over 4 different obstacle
fields (25 trajectories per obstacle field). The input to the NN consists of the 92
features [px0 p

y
0 v

x
0 vy0 o

x
0 o

y
0 . . . p

x
14 p

y
14 v

x
14 v

y
14 o

x
14 o

y
14 g

x gy], where ox0 , oy0 is the
closest point on any obstacle to agent A0; ox1...14 , oy1...14 give the closest point on
any obstacle for the 14 neighboring agents, and gx, gy is the target location.

Predator Avoidance. The CMPC cost function for predator avoidance is given in
Eq. (12c). The position, velocity, and the acceleration of the predator are denoted
by ppred, vpred, apred, respectively. We take fp = 1.40; hence v̄pred = 1.40 v̄ and
āpred = 1.40 ā. The input features to the NN are the positions and velocities
of agent A0 and its N -nearest neighbors, and the position and velocity of the
predator. The input with 64 features thus has the form [px0 p

y
0 v

x
0 vy0 . . . p

x
14 p

y
14

vx14 v
y
14 p

x
pred p

y
pred v

x
pred v

y
pred].

5 Experimental Evaluation

This section contains the results of our extensive performance analysis of the
distributed neural flocking controller (DNC), taking into account various control
objectives: basic flocking with collision avoidance, obstacle avoidance with target
seeking, and predator avoidance. As illustrated in Fig. 1, this involves running
CMPC to generate the training data for the DNCs, whose performance we then
compare to that of the DMPC and CMPC controllers. We also show that the
DNC flocking controllers generalize the behavior seen in the training data to
achieve successful collision-free flocking in flocks significantly larger in size than
those used during training. Finally, we use Statistical Model Checking to obtain
confidence intervals for DNC’s correctness/performance.

5.1 Preliminaries

The CMPC and DMPC control problems defined in Section 2.1 are solved using
MATLAB fmincon optimizer. In the training phase, the size of the flock is
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n = 15. For obstacle-avoidance with target-seeking, we use 5 obstacles with the
target located at [60,50]. The simulation time is 100, dt= 0.1 time units, and
η = 3, where (recall) η · dt is the control period. Further, the agent velocity and
acceleration bounds are v̄= 2.0 and ā= 1.5.

We use dmin = 1.5 as the minimum inter-agent distance for collision avoidance,
dobsmin = 1 as the minimum agent-obstacle distance for obstacle avoidance, and

dpredmin = 1.5 as the minimum agent-predator distance for predator avoidance. For
initial configurations, recall that agent positions and velocities are uniformly
sampled from [−15, 15]2 and [0, 1]2, respectively, and we ensure that they are
recoverable; i.e., no two agents are so close to each other that they cannot avoid
a collision when resorting to maximal accelerations. The predator starts at rest
from a fixed location at a distance of 40 from the flock center.

For training, we considered 15 agents and 200 trajectories per agent, each
trajectory 1,000 time steps in length. This yielded a total of 3,000,000 training
samples. Our neural controller is a fully connected feed-forward Deep Neural
Network (DNN), with 5 hidden layers, 84 neurons per hidden layer, and with a
ReLU activation function. We use an iterative approach for choosing the DNN
hyperparameters and architecture where we continuously improve our NN, until
we observe satisfactory performance by the DNC.

For training the DNNs, we use Keras [3], which is a high-level neural network
API written in Python and capable of running on top of TensorFlow. To generate
the NN model, Keras uses the Adam optimizer [8] with the following settings:
lr= 10−2, β1 = 0.9, β2 = 0.999, ε= 10−8. The batch size (number of samples
processed before the model is updated) is 2,000, and the number of epochs
(number of complete passes through the training dataset) used for training is
1,000. For measuring training loss, we use the mean-squared error metric.

For basic flocking, DNN input vectors have 60 features and the number
of trainable DNN parameters is 33,854. For flocking with obstacle-avoidance
and target-seeking, input vectors have 92 features and the number of trainable
parameters is 36,542. Finally, for flocking with predator-avoidance, input vectors
have 64 features and the resulting number of trainable DNN parameters is 34,190.

To test the trained DNC, we generated 100 simulations (runs) for each of the
desired control objectives: basic flocking with collision avoidance, flocking with
obstacle avoidance and target seeking, and flocking with predator avoidance. The
results presented in Tables 1, were obtained using the same number of agents and
obstacles and the same predator as in the training phase. We also ran tests that
show DNC controllers can achieve collision-free flocking with obstacle avoidance
where the numbers of agents and obstacles are greater than those used during
training.

5.2 Results for Basic Flocking

We use flock diameter, inter-agent collision count and velocity convergence [20] as
performance metrics for flocking behavior. At any time step, the flock diameter
D(p) = max(i,j)∈A ‖pij‖ is the largest distance between any two agents in the
flock. We calculate the average converged diameter by averaging the flock diameter
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Fig. 3: Performance comparison for basic flocking with collision avoidance, aver-
aged over 100 test runs.

in the final time step of the simulation over the 100 runs. An inter-agent collision
(IC) occurs when the distance between two agents at any point in time is less than
dmin. The IC rate (ICR) is the average number of ICs per test-trajectory time-

step. The velocity convergence VC (v) = (1/n)
(∑

i∈A ‖vi − (
∑n
j=1 vj)/n‖2

)
is

the average of the squared magnitude of the discrepancy between the velocities of
agents and the flock’s average velocity. For all the metrics, lower values are better,
indicating a denser and more coherent flock with fewer collisions. A successful
flocking controller should also ensure that values of D(p) and VC (v) eventually
stabilize.

Fig. 3 and Table 1 compare the performance of the DNC on the basic-flocking
problem for 15 agents to that of the MPC controllers. Although the DMPC and
CMPC outperform the DNC, the difference is marginal. An important advantage
of the DNC over DMPC is that they are much faster. Executing a DNC controller
requires a modest number of arithmetic operations, whereas executing an MPC
controller requires simulation of a model and controller over the prediction horizon.
In our experiments, on average, the CMPC takes 1209 msec of CPU time for the
entire flock and DMPC takes 58 msec of CPU time per agent, whereas the DNC
takes only 1.6 msec.

Table 1: Performance comparison for BF with 15 agents on 100 test runs
Avg. Conv. Diameter ICR Velocity Convergence

DNC 14.13 0 0.15
DMPC 13.67 0 0.11
CMPC 13.84 0 0.10
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Table 2: DNC Performance Generalization for BF
Agents Avg. Conv. Conv. Avg. Conv. ICR

Diameter Rate (%) Time

15 14.13 100 52.15 0
20 16.45 97 58.76 0
25 19.81 94 64.11 0
30 23.24 92 72.08 0
35 30.57 86 83.84 0.008
40 38.66 81 95.32 0.019

5.3 Results for Obstacle and Predator Avoidance

For obstacle and predator avoidance, collision rates are used as a performance
metric. An obstacle-agent collision (OC) occurs when the distance between an
agent and the closest point on any obstacle is less than dobsmin. A predator-agent
collision (PC) occurs when the distance between an agent and the predator is less

than dpredmin . The OC rate (OCR) is the average number of OCs per test-trajectory
time-step, and the PC rate (PCR) is defined similarly. Our test results show
that the DNC, along with the DMPC and CMPC, is collision-free (i.e., each
of ICR, OCR, and PCR is zero) for 15 agents, with the exception of DMPC
for predator avoidance where PCR = 0.013. We also observed that the flock
successfully reaches the target location in all 100 test runs.

5.4 DNC Generalization Results

Tables 2–3 present DNC generalization results for basic flocking (BF), obstacle
avoidance (OA), and predator avoidance (PA), with the number of agents ranging
from 15 (the flock size during training) to 40. In all of these experiments, we use
a neighborhood size of N = 14, the same as during training. Each controller was
evaluated with 100 test runs. The performance metrics in Table 2 are the average
converged diameter, convergence rate, average convergence time, and ICR.

The convergence rate is the fraction of successful flocks over 100 runs. The
collection of agents is said to have converged to a flock (with collision avoidance)
if the value of the global cost function is less than the convergence threshold.
We use a convergence threshold of J1(p) ≤ 150, which was chosen based on its
proximity to the value achieved by CMPC. We use the cost function from Eq. 12a
to calculate our success rate because we are showing convergence rate for basic
flocking. The average convergence time is the time when the global cost function
first drops below the success threshold and remains below it for the rest of the
run, averaged over all 100 runs. Even with a local neighborhood of size 14, the
results demonstrate that the DNC can successfully generalize to a large number
of agents for all of our control objectives.
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Table 3: DNC Generalization Performance for OA and PA

OA PA

Agents ICR OCR ICR PCR

15 0 0 0 0
20 0 0 0 0
25 0 0 0 0
30 0 0 0 0
35 0.011 0.009 0.013 0.010
40 0.021 0.018 0.029 0.023

5.5 Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of Statistical Model Check-
ing [5,10] to compute confidence intervals for the DNC’s convergence rate to a
flock with collision avoidance and for the (normalized) convergence time. The
convergence rate is the fraction of successful flocks over N runs. The collection
of agent is said to have converged to a successful flock with collision avoidance
if the global cost function J1(p) ≤ 150, where J1(p) is cost function for basic
flocking defined in Eq. 12a.

The main idea of MC is to use N random variables, Z1, . . . , ZN , also called
samples, IID distributed according to a random variable Z with mean µZ , and to
take the sum µ̃Z = (Z1 + . . .+ ZN )/N as the value approximating the mean µZ .
Since an exact computation of µZ is almost always intractable, an MC approach
is used to compute an (ε, δ)-approximation of this quantity.

Additive Approximation [6] is an (ε, δ)-approximation scheme where the mean
µZ of an RV Z is approximated with absolute error ε and probability 1− δ:

Pr[µZ − ε ≤ µ̃Z ≤ µZ + ε] ≥ 1− δ (13)

where µ̃Z is an approximation of µZ . An important issue is to determine the
number of samples N needed to ensure that µ̃Z is an (ε, δ)-approximation of µZ . If
Z is a Bernoulli variable expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be N = 4 ln(2/δ)/ε2,
as in [6]. This results in the additive approximation algorithm [5], defined in
Algorithm 1.

We use this algorithm to obtain a joint (ε, δ)-approximation of the mean
convergence rate and mean normalized convergence time for the DNC. Each
sample Zi is based on the result of an execution obtained by simulating the
system starting from a random initial state, and we take Z = (B,R), where B
is a Boolean variable indicating whether the agents converged to a flock during
the execution, and R is a real value denoting the normalized convergence time.
The normalized convergence time is the time when the global cost function first
drops below the convergence threshold and remains below it for the rest of the
run, measured as a fraction of the total duration of the run. The assumptions
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Algorithm 1: Additive Approximation Algorithm

Input: (ε, δ) with 0 < ε < 1 and 0 < δ < 1
Input: Random variables Zi, IID
Output: µ̃Z approximation of µZ

N = 4 ln(2/δ)/ε2;
for (i=0; i ≤ N ; i++) do

S = S + Zi;

µ̃Z = S/N ; return µ̃Z ;

Table 4: SMC results for DNC convergence rate and normalized convergence
time; ε = 0.01, δ = 0.0001

Agents µ̃CR µ̃CT

15 0.99 0.53
20 0.97 0.58
25 0.94 0.65
30 0.91 0.71
35 0.86 0.84
40 0.80 0.95

about Z required for validity of the additive approximation hold, because RV B
is a Bernoulli variable, the convergence rate is expected to be large (i.e., closer
to 1 than to 0), and the proportionality constraint of the Bernstein inequality is
also satisfied for RV R.

In these experiments, the initial configurations are sampled from the same
distributions as in Section 5.1, and we set ε = 0.01 and δ = 0.0001, to obtain N =
396,140. We perform the required set of N simulations for 15, 20, 25, 30, 35 and
40 agents. Table 4 presents the results, specifically, the (ε, δ)-approximations µ̃CR
and µ̃CT of the mean convergence rate and the mean normalized convergence
time, respectively. While the results for the convergence rate are (as expected) nu-
merically similar to the results in Table 2, the results in Table 4 are much stronger,
because they come with the guarantee that they are (ε, δ)-approximations of the
actual mean values.

6 Related Work

In [18], a flocking controller is synthesized using multi-agent reinforcement learning
(MARL) and natural evolution strategies (NES). The target model from which
the system learns is Reynolds flocking model [16]. For training purposes, a list
of metrics called entropy are chosen, which provide a measure of the collective
behavior displayed by the target model. As the authors of [18] observe, this
technique does not quite work: although it consistently leads to agents forming
recognizable patterns during simulation, agents self-organized into a cluster
instead of flowing like a flock.



14 U. Mehmood et al.

In [9], reinforcement learning and flocking control are combined for the
purpose of predator avoidance, where the learning module determines safe spaces
in which the flock can navigate to avoid predators. Their approach to predator
avoidance, however, isn’t distributed as it requires a majority consensus by the
flock to determine its action to avoid predators. They also impose an α-lattice
structure [13] on the flock. In contrast, our approach is geometry-agnostic and
achieves predator avoidance in a distributed manner.

In [7], an uncertainty-aware reinforcement learning algorithm is developed
to estimate the probability of a mobile robot colliding with an obstacle in an
unknown environment. Their approach is based on bootstrap neural networks
using dropouts, allowing it to process raw sensory inputs. Similarly, a learning-
based approach to robot navigation and obstacle avoidance is presented in [14].
They train a model that maps sensor inputs and the target position to motion
commands generated by the ROS [15] navigation package. Our work in contrast
considers obstacle avoidance (and other control objectives) in a multi-agent
flocking scenario under the simplifying assumption of full state observation.

In [4], an approach based on Bayesian inference is proposed that allows an
agent in a heterogeneous multi-agent environment to estimate the navigation
model and goal of each of its neighbors. It then uses this information to compute
a plan that minimizes inter-agent collisions while allowing the agent to reach its
goal. Flocking formation is not considered.

7 Conclusions

With the introduction of Neural Flocking (NF), we have shown how machine
learning in the form of Supervised Learning can bring many benefits to the
flocking problem. As our experimental evaluation confirms, the symmetric and
fully distributed neural controllers we derive in this manner are capable of
achieving a multitude of flocking-oriented objectives, including flocking formation,
inter-agent collision avoidance, obstacle avoidance, predator avoidance, and target
seeking. Moreover, NF controllers exhibit real-time performance and generalize
the behavior seen in the training data to achieve these objectives in a significantly
broader range of scenarios.

Ongoing work aims to determine whether a DNC can perform as well as
the centralized MPC controller for agent models that are significantly more
realistic than our current point-based model. For this purpose, we are using
transfer learning to train a DNC that can achieve acceptable performance on
realistic quadrotor dynamics [1], starting from our current point-model-based
DNC. This effort also involves extending our current DNC from 2-dimensional
to 3-dimensional spatial coordinates. If successful, and preliminary results are
encouraging, this line of research will demonstrate that DNCs are capable of
achieving flocking with complex realistic dynamics.

For future work, we plan to investigate a distance-based notion of agent neigh-
borhood as opposed to our current nearest-neighbors formulation. Furthermore,
motivated by the quadrotor study of [21], we will seek to combine MPC with
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reinforcement learning in the framework of guided policy search as an alternative
solution technique for the NF problem.
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