
Minimal Coverability Tree Construction
Made Complete and Efficient �

Abstract. Downward closures of Petri net reachability sets can be finitely
represented by their set of maximal elements called the minimal cover-
ability set or Clover. Many properties (coverability, boundedness, ...) can
be decided using Clover, in a time proportional to the size of Clover. So
it is crucial to design algorithms that compute it efficiently. We present a
simple modification of the original but incomplete Minimal Coverability
Tree algorithm (MCT), computing Clover, which makes it complete: it
memorizes accelerations and fires them as ordinary transitions. Contrary
to the other alternative algorithms for which no bound on the size of the
required additional memory is known, we establish that the additional
space of our algorithm is at most doubly exponential. Furthermore we
have implemented a prototype MinCov which is already very competi-
tive: on benchmarks it uses less space than all the other tools and its
execution time is close to the one of the fastest tool.

Keywords: Petri nets · Karp-Miller tree algorithm · Coverability · Min-
imal coverability set · Clover · Minimal coverability tree.

1 Introduction

Coverability and coverability set in Petri nets. Petri nets are iconic as
an infinite-state model used for verifying concurrent systems. Coverability, in
Petri nets, is the most studied property for several reasons: (1) many properties
like mutual exclusion, safety, control-state reachability reduce to coverability, (2)
the coverability problem is EXPSPACE-complete (while reachability is non ele-
mentary), and (3) there exist efficient prototypes and numerous case studies. To
solve the coverability problem, there are backward and forward algorithms. But
these algorithms do not address relevant problems like the repeated coverability
problem, the LTL model-checking, the boundedness problem and regularity of
the traces.

However these problems are EXPSPACE-complete [4, 1] and are also decid-
able using the Karp-Miller tree algorithm (KMT) [11] that computes a finite tree

� The work was carried out in the framework of ReLaX, UMI2000 and also supported
by ANR-17-CE40-0028 project BRAVAS.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 237–256, 2020.
https://doi.org/10.1007/978-3-030-45231-5_13

Alain Finkel1,3, Serge Haddad1,2, and Igor Khmelnitsky1,2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France

{finkel,haddad,khmelnitsky}@lsv.fr
2 Inria, France

3 Institut Universitaire de France, France

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_13&domain=pdf

labeled by a set of ω-markings C ⊆ NP
ω (where Nω is the set of naturals enlarged

with an upper bound ω and P is the set of places) such that the reachability set
and the finite set C have the same downward closure in NP . Thus a marking m is
coverable if there exists some m′ ≥ m with m′ ∈ C. Hence, C can be seen as one
among all the possible finite representations of the infinite downward closure of
the reachability set. This set C allows, for instance, to solve multiple instances
of coverability in linear time linear w.r.t. the size of C avoiding to call many
times a costly algorithm. Informally the KMT algorithm builds a reachability
tree but, in order to ensure termination, substitutes ω to some finite components
of a marking of a vertex when some marking of an ancestor is smaller.

Unfortunately C may contain comparable markings while only the maximal
elements are important. The set of maximal elements of C can be defined in-
dependently of the KMT algorithm and was called the minimal coverability set
(MCS) in [6] and abbreviated as the Clover in the more general framework of
Well Structured Transition Systems (WSTS) [7].

The minimal coverability tree algorithm. So in [5, 6] the author computes
the minimal coverability set by modifying the KMT algorithm in such a way
that at each step of the algorithm, the set of ω-markings labelling vertices is an
antichain. But this aggressive strategy, implemented by the so-called Minimal
Coverability Tree algorithm (MCT), contains a subtle bug and it may compute
a strict under-approximation of Clover as shown in [8, 10].

Alternative minimal coverability set algorithms. Since the discovery of
this bug, three algorithms (with variants) [10, 14, 13] have been designed for
computing the minimal coverability set without building the full Karp-Miller
tree. In [10] the authors proposed a minimal coverability set algorithm (called
CovProc) that is not based on the Karp-Miller tree algorithm but uses a similar
but restricted introduction of ω’s. In [14], Reynier and Servais proposed a mod-
ification of the MCT, called the Monotone-Pruning algorithm (called MP), that
keeps but “deactivates” vertices labeled with smaller ω-markings while MCT
would have deleted them. Recently in [15], the authors simplified their original
proof of correctness. In [16], Valmari and Hansen proposed another algorithm
(denoted below as VH) for constructing the minimal coverability set without
deleting vertices. Their algorithm builds a graph and not a tree as usual. In [13],
Piipponen and Valmari improved this algorithm by designing appropriate data
structures and heuristics for exploration strategy that may significantly decrease
the size of the graph.

Our contributions.

1. We introduce the concept of abstraction as an ω-transition that mimics the
effect of an infinite family of firing sequences of markings w.r.t. coverabil-
ity. As a consequence adding abstractions to the net does not modify its
coverability set. Moreover, the classical Karp-Miller acceleration can be for-
malized as an abstraction whose incidence on places is either ω or null. The
set of accelerations of a net is upward closed and well-ordered. Hence there
exists a finite subset of minimal accelerations and we show that the size of
all minimal acceleration is bounded by a double exponential.

238 A. Finkel et al.

2. Despite the current opinion that ”The flaw is intricate and we do not see
an easy way to get rid of it....Thus, from our point of view, fixing the bug
of the MCT algorithm seems to be a difficult task” [10], we have found a
simple modification of MCT which makes it correct. It mainly consists in
memorizing discovered accelerations and using them as ordinary transitions.

3. Contrary to all existing minimal coverability set algorithms that use an un-
known additional memory that could be non primitive recursive, we show, by
applying a recent result of Leroux [12], that the additional memory required
for accelerations, is at most doubly exponential.

4. We have developed a prototype in order to also empirically evaluate the
efficiency of our algorithm and the benchmarks (either from the literature or
random ones) have confirmed that our algorithm requires significantly less
memory than the other algorithms and is close to the fastest tool w.r.t. the
execution time.

Organization. Section 2 introduces abstractions and accelerations and studies
their properties. Section 3 presents our algorithm and establishes its correctness.
Section 4 describes our tool and discusses the results of the benchmarks. We
conclude and give some perspectives to this work in Section 5. One can find all
the missing proofs and an illustration of the behavior of the algorithm in [9].

2 Covering abstractions

2.1 Petri nets: reachability and covering

Here we define Petri nets differently from the usual way but in an equivalent
manner. i.e. based on the backward incidence matrix Pre and the incidence
matrix C. The forward incidence matrix is implicitly defined by C+Pre. Such
a choice is motivated by the introduction of abstractions in section 2.2.

Definition 1. A Petri net (PN) is a tuple N = 〈P, T,Pre,C〉 where:
– P is a finite set of places;
– T is a finite set of transitions, with P ∩ T = ∅;
– Pre ∈ NP×T is the backward incidence matrix;
– C ∈ ZP×T is the incidence matrix which fulfills:

for all p ∈ P and t ∈ T , C(p, t) +Pre(p, t) ≥ 0.

A marked Petri net (N ,m0) is a Petri net N equipped with an initial marking
m0 ∈ NP .

The column vector of matrix Pre (resp. C) indexed by t ∈ T is denoted
Pre(t) (resp. C(t)). A transition t ∈ T is fireable from a marking m ∈ NP if m ≥
Pre(t). When t is fireable from m, its firing leads to marking m′ def

= m+C(t),

denoted by m t−→ m′. One extends fireability and firing to a sequence σ ∈ T ∗

by recurrence on its length. The empty sequence ε is always fireable and let the
marking unchanged. Let σ = tσ′ be a sequence with t ∈ T and σ′ ∈ T ∗. Then σ

Minimal Coverability Tree Construction Made Complete and Efficient 239

is fireable from m if m t−→ m′ and σ′ is fireable from m′. The firing of σ from
m leads to the marking m′′ reached by σ′ from m′. One also denotes this firing
by m σ−→ m′′.

Definition 2. Let (N ,m0) be a marked net. The reachability set Reach(N ,m0)
is defined by:

Reach(N ,m0) = {m | ∃σ ∈ T ∗ m0
σ−→ m}

In order to introduce the coverability set of a Petri net, let us recall some
definitions and results related to ordered sets. Let (X,≤) be an ordered set. The
downward (resp. upward) closure of a subset E ⊆ X is denoted by ↓E (resp.
↑E) and defined by:

↓E = {x ∈ X | ∃y ∈ E y ≥ x} (resp. ↑E = {x ∈ X | ∃y ∈ E y ≤ x})
A subset E ⊆ X is downward (resp. upward) closed if E =↓E (resp. E =↑E).

An antichain E is a set which fulfills: ∀x �= y ∈ E ¬(x ≤ y ∨ y ≤ x). X is
said FAC (for Finite AntiChains) if all its antichains are finite. A non empty
set E ⊆ X is directed if for all x, y ∈ E there exists z ∈ E such that x ≤ z and
y ≤ z. An ideal is a set which is downward closed and directed. There exists
an equivalent characterization of FAC sets which provides a finite description of
any downward closed set: a set is FAC if and only if every downward closed set
admits a finite decomposition in ideals (a proof of this well-known result can be
found in [3]).

X is well founded if all its (strictly) decreasing sequences are finite. X is well
ordered if it is FAC and well founded. There are many equivalent characteriza-
tions of well order. For instance, a set X is well ordered if and only if for all
sequence (xn)n∈N in X, there exists a non decreasing infinite subsequence. This
characterization allows to design algorithms that computes trees whose finiteness
is ensured by well order. Let us recall that (N,≤) and (NP ,≤) are well ordered
sets.

We are now ready to introduce the cover (also called the coverability set) of
a net and to state some of its properties.

Definition 3. Let (N ,m0) be a marked Petri net. Cover(N ,m0), its coverabil-
ity set, is defined by:

Cover(N ,m0) =↓Reach(N ,m0)

Since the coverability set is downward closed and NP is FAC, it admits a
finite decomposition in ideals. The ideals of NP can be defined in an elegant way
as follows. One first extends the sets of naturals and integers: Nω = N ∪ {ω}
et Zω = Z ∪ {ω}. Then one extends the order relation and the addition to Zω:
for all n ∈ Z, ω > n and for all n ∈ Zω, n + ω = ω + n = ω. NP

ω is also a
well ordered set and its members are called ω-markings. There is a one-to-one
mapping between ideals of NP and ω-markings. Let m ∈ NP

ω . Define �m� by:

�m� = {m′ ∈ NP | m′ ≤ m}

240 A. Finkel et al.

�m� is an ideal of NP (and all ideal can be defined in such a way). Let Ω be a
set of ω-markings, �Ω� denotes the set

⋃
m∈Ω�m�. Due to the above properties,

there exists a unique finite set with minimal size Clover(N ,m0) ⊆ Np
ω such that:

Cover(N ,m0) = �Clover(N ,m0)�

A more general result can be found in [3] for well structured transition systems.

Example 1. The marked net of Figure 1 is unbounded. Its Clover is the following
set:

{pi, pbk + pm, pl + pm + ωpba, pl + pbk + ωpba + ωpc}
For instance, the marking pl+pbk+αpba+βpc is reached thus covered by sequence
t1t

α+β
5 tβ6 .

pi

pl

pbk

pm

pba

pc

t1

t2

t3 t4

t5

t6

Fig. 1. An unbounded Petri net

2.2 Abstraction and acceleration

In order to introduce abstractions and accelerations, we generalize the transitions
to allow the capability to mark a place with ω tokens.

Definition 4. Let P be a set of places. An ω-transition a is defined by:

– Pre(a) ∈ NP
ω its backward incidence;

– C(a) ∈ ZP
ω its incidence with Pre(a) +C(a) ≥ 0.

For sake of homogeneity, one denotes Pre(a)(p) (resp. C(a)(p)) by Pre(p, a)
(resp. C(p, a)). An ω-transition a is fireable from an ω-marking m ∈ NP

ω if

m ≥ Pre(a). When a is fireable from m, its firing leads to the ω-marking m′ def
=

m+C(a), denoted as previously m a−→ m′. One observes that if Pre(p, a) = ω
then for all values of C(p, a), m′(a) = ω. So without loss of generality, one
assumes that for all ω-transition a, Pre(p, a) = ω implies C(p, a) = ω.

In order to define abstractions, we first define the incidences of a sequence σ of

ω-transitions by recurrence on its length. As previously, we denote Pre(p, σ)
def
=

Minimal Coverability Tree Construction Made Complete and Efficient 241

Pre(σ)(p) and C(p, σ)
def
= C(σ)(p). The base case corresponds to the definition

of an ω-transition. Let σ = tσ′, with t an ω-transition and σ′ a sequence of
ω-transitions, then:

– C(σ) = C(t) +C(σ′);
– for all p ∈ P

• if C(p, t) = ω then Pre(p, σ) = Pre(p, t);
• else Pre(p, σ) = max(Pre(p, t),Pre(p, σ′)−C(p, t)).

One checks by recurrence that σ is firable from m if and only if m ≥ Pre(σ)
and in this case, m σ−→ m+C(σ).

An abstraction of a net is an ω-transition which concisely expresses the be-
haviour of the net w.r.t. covering (see Proposition 1). One will observe that a
transition t of a net is by construction (with σn = t for all n) an abstraction.

Definition 5. Let N = 〈P, T,Pre,C〉 be a Petri net and a be an ω-transition.
a is an abstraction if for all n ≥ 0, there exists σn ∈ T ∗ such that for all p ∈ P
with Pre(p, a) ∈ N:

1. Pre(p, σn) ≤ Pre(p, a);
2. If C(p, a) ∈ Z then C(p, σn) ≥ C(p, a);
3. If C(p, a) = ω then C(p, σn) ≥ n.

The following proposition justifies the interest of abstractions.

Proposition 1. Let (N ,m0) be a marked Petri net, a be an abstraction and m
be an ω-marking such that: �m� ⊆ Cover(N ,m0) and m a−→ m′. Then �m′� ⊆
Cover(N ,m0).

Proof. Pick some m∗ ∈ �m′�. Denote n = max(m∗(p) | m′(p) = ω)
and � = max(Pre(p, σn), n−C(p, σn) | m(p) = ω). Let us define m� ∈ �m� by:

– If m(p) < ω then m�(p) = m(p);
– Else m�(p) = �.

Let us check that σn is fireable from m�. Let p ∈ P ,

– If m(p) < ω then m�(p) = m(p) ≥ Pre(p, a) ≥ Pre(p, σn);
– Else m�(p) = � ≥ Pre(p, σn).

Let us show that m� +C(σn) ≥ m∗. Let p ∈ P ,

– If m(p) < ω and C(p, a) < ω then m�(p) + C(p, σn) ≥ m(p) + C(p, a) =
m′(p) ≥ m∗(p);

– If m(p) < ω and C(p, a) = ω then m�(p) + C(p, σn) ≥ C(p, σn) ≥ n ≥
m∗(p) ;

– If m(p) = ω then m�(p) +C(p, σn) ≥ n−C(p, σn) +C(p, σn) = n ≥ m∗(p).

An easy way to build new abstractions consists in concatenating them.

242 A. Finkel et al.

Proposition 2. Let N = 〈P, T,Pre,C〉 be a Petri net and σ be a sequence of
abstractions. Then the ω-transition a defined by Pre(a) = Pre(σ) and C(a) =
C(σ) is an abstraction.

We now introduce the underlying concept of the Karp and Miller construc-
tion.

Definition 6. Let N = 〈P, T,Pre,C〉 be a Petri net. One says that a is an
acceleration if a is an abstraction such that C(a) ∈ {0, ω}P .

The following proposition provides a way to get an acceleration from an
arbitrary abstraction.

Proposition 3. Let N = 〈P, T,Pre,C〉 be a Petri net and a be an abstraction.
Define a′ an ω-transition as follows. For all p ∈ P :

– If C(p, a) < 0 then Pre(p, a′) = C(p, a′) = ω;
– If C(p, a) = 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = 0;
– If C(p, a) > 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = ω.

Then a′ is an acceleration.

Let us study more deeply the set of accelerations. First we equip the set of
ω-transitions with a“natural” order w.r.t. covering.

Definition 7. Let P be a set of places and two ω-transitions a and a′.

a ≤ a′ if and only if Pre(a) ≤ Pre(a′) ∧C(a) ≥ C(a′)

In other words, a ≤ a′ if given any ω-marking m, if a′ is fireable from m
then a is also fireable and its firing leads to a marking greater or equal that the
one reached by the firing of a′.

Proposition 4. Let N be a Petri net. Then the set of abstractions of N is
upward closed. Similarly, the set of accelerations is upward closed in the set of
ω-transitions whose incidence belongs to {0, ω}P .
Proposition 5. The set of accelerations of a Petri net is well ordered.

Proof. The set of accelerations is a subset of NP × {0, ω}P (where P is the set
of places) with the order obtained by iterating cartesian products of sets (N,≤)
and ({0, ω},≥). These sets are well ordered and the cartesian product preserves
this property. So we are done.

Since the set of accelerations is well ordered and it is upward closed, it is equal
to the upward closure of the finite set of minimal accelerations. Let us study the
size of a minimal acceleration. Given some Petri net, one denotes d = |P | and
e = maxp,t(max(Pre(p, t),Pre(p, t) +C(p, t)).

We are going to use the following result of Jérôme Leroux (published on
HAL in June 2019) which provides a bound for the lengths of shortest sequences
between two markings m1 and m2 mutually reachable.

Minimal Coverability Tree Construction Made Complete and Efficient 243

Theorem 1. (Theorem 2, [12]) Let N be a Petri net, m1,m2 be markings,

σ1, σ2 be sequences of transitions such that m1
σ1−→ m2

σ2−→ m1. Then there exist

σ′
1, σ

′
2 such that m1

σ′
1−→ m2

σ′
2−→ m1 fulfilling:

|σ′
1σ

′
2| ≤ ||m1 −m2||∞(3de)(d+1)2d+4

One deduces an upper bound on the size of minimal accelerations.
Let v ∈ NP

ω . One denotes ||v||∞ = max(v(p) | v(p) ∈ N).

Proposition 6. Let N be a Petri net and a be a minimal acceleration.

Then ||Pre(a)||∞ ≤ e(3de)(d+1)2d+4

.

Proof. Let us consider the net N ′ = 〈P ′, T ′,Pre′,C′〉 obtained from N by
deleting the set of places {p | Pre(p, a) = ω} and adding the set of transitions
T1 = {tp | p ∈ P ′} with Pre(tp) = p et C(tp) = −p. Observe that d′ ≤ d and
e′ = e.
One denotes P1 = {p | Pre(p, a) < ω = C(p, a)}. One introduces m1 the
marking obtained by restricting Pre(a) to P ′ and m2 = m1 +

∑
p∈P1

p.
Let {σn}n∈N be a family of sequences associated with a. Let n∗ = ||Pre(a)||∞+1.
Then σn∗ is fireable in N ′ from m1 and its firing leads to a marking that covers
m2. By concatenating some occurrences of transitions of T1, one gets a firing
sequence in N ′ m1

σ1−→ m2. Using the same process, one gets a firing sequence
m2

σ2−→ m1.

Let us apply Theorem 1. There exists a sequence σ′
1 with m1

σ′
1−→ m2 and |σ′

1| ≤
(3de)(d+1)2d+4

since ||m1−m2||∞ = 1. By deleting the transitions of T1 occurring

in σ′
1, one gets a sequence σ′′

1 ∈ T ∗ such that m1
σ′′
1−→ m′

2 ≥ m2 with |σ′′
1 | ≤

(3de)(d+1)2d+4

.
The ω-transition a′, defined byPre(p, a′) = Pre(p, σ′′

1) for all p ∈ P ′,Pre(p, a′) =
ω for all p ∈ P \ P ′ and C(a′) = C(a), is an acceleration whose associated
family is {σ′′

1
n}n∈N. By definition of m1, a

′ ≤ a. Since a is minimal, a′ = a.

Observing that |σ′′
1 | ≤ (3de)(d+1)2d+4

, one gets ||Pre(a)||∞ = ||Pre(a′)||∞ ≤
e(3de)(d+1)2d+4

.

Thus given any acceleration, one can easily obtain a smaller acceleration
whose (representation) size is exponential.

Proposition 7. Let N be a Petri net and a be an acceleration.
Then the ω-transition trunc(a) defined by:

– C(trunc(a)) = C(a);
– for all p such that Pre(p, a) �= ω,

Pre(p, trunc(a)) = min(Pre(p, a), e(3de)(d+1)2d+4

) ;
– for all p such that Pre(p, a) = ω, Pre(p, trunc(a)) = ω.

is an acceleration.

Proof. Let a′ ≤ a, be a minimal acceleration. For all p such that Pre(p, a) �= ω,

Pre(p, a′) ≤ e(3de)(d+1)2d+4

. So a′ ≤ trunc(a). Since the set of accelerations is
upward closed, one gets that trunc(a) is an acceleration.

244 A. Finkel et al.

3 A coverability tree algorithm

3.1 Specification and illustration

As discussed in the introduction, to compute the clover of a Petri net, most
algorithms build coverability trees (or graphs), which are variants of the Karp
and Miller tree with the aim of reducing the peak memory during the execution.
The seminal algorithm [6] is characterized by a main difference with the KMT
construction: when finding that the marking associated with the current vertex
strictly covers the marking of another vertex, it deletes the subtree issued from
this vertex, and when the current vertex belonged to the removed subtree it sub-
stitutes it to the root of the deleted subtree. This operation drastically reduces
the peak memory but as shown in [8] entails incompleteness of the algorithm.

Like the previous algorithms that ensure completeness with deletions, our
algorithm also needs additional memory. However unlike the other algorithms,
it memorizes accelerations instead of ω-markings. This approach has two advan-
tages. First, we are able to exhibit a theoretical upper bound on the additional
memory which is doubly exponential, while the other algorithms do not have
such a bound. Furthermore, accelerations are reused in the construction and
thus may even shorten the execution time and peak space w.r.t. the algorithm
in [6].

Before we delve into a high level description of this algorithm, let us present
some of the variables, functions, and definitions used by the algorithm. Algorithm
1, denoted from now on as MinCov takes as an input a marked net (N ,m0)
and constructs a directed labeled tree CT = (V,E, λ, δ), and a set Acc of ω-
transitions (which by Lemma 2 are accelerations). Each v ∈ V is labeled by an
ω-marking, λ(v) ∈ NP

ω . Since CT is a directed tree, every vertex v ∈ V , has
a predecessor (except the root r) denoted by prd(v) and a set of descendants
denoted by Des(v). By convention, prd(r) = r. Each edge e ∈ E is labeled by a
firing sequence δ(e) ∈ To ·Acc∗, consisting of an ordinary transition followed by a

sequence of accelerations (which by Lemma 1 fulfills λ(prd(v))
δ(prd(v),v)−−−−−−−→ λ(v)).

In addition, again by Lemma 1, m0
δ(r,r)−−−→ λ(r). Let γ = e1e2 . . . ek ∈ E∗ be

a path in the tree, we denote by δ(γ) := δ(e1)δ(e2) . . . δ(ek) ∈ (T ∪ Acc)∗. The
subset Front ⊂ V is the set of vertices ‘to be processed’.

MinCov may call function Delete(v) that removes from V a leaf v of CT and
function Prune(v) that removes from V all descendants of v ∈ V except v itself
as illustrated in the following figure:

uv v vDelete(u) Prune(v)

First MinCov does some initializations, and sets the tree CT to be a single
vertex r with marking λ(r) = m0 and Front = {r}. Afterwards the main loop

Minimal Coverability Tree Construction Made Complete and Efficient 245

builds the tree, where each iteration consists in processing some vertex in Front
as follows.

MinCov picks a vertex u ∈ Front (line 3). From λ(u), MinCov fires a sequence
σ ∈ Acc∗ reaching some mu that maximizes the number of ω produced, i.e.
|{p ∈ P | λ(u)(p) �= ω ∧ mu(p) = ω}|. Thus in σ, no acceleration occurs twice
and its length is bounded by |P |. Then MinCov updates λ(u) withmu (line 5) and
the label of the edge incoming to u by concatenating σ. Afterwards it performs
one of the following actions according to the marking λ(u):

– Cleaning (line 7): If there exists u′ ∈ V \ Front with λ(u′) ≥ λ(u). The
vertex u is redundant and MinCov calls Delete(u)

– Accelerating (lines 8-16): If there exists u′, an ancestor of u with λ(u′) <
λ(u) then an acceleration can be computed. The acceleration a is deduced
from the firing sequence labeling the path from u′ to u. MinCov inserts a into
Acc, calls Prune(u′) and pushes back u′ in Front.

– Exploring (lines 18 - 25): Otherwise MinCov calls Prune(u′) followed by
Delete(u′) for all u′ ∈ V with λ(u′) < λ(u) since they are redundant.
Afterwards, it removes u from Front and for all fireable transition t ∈ T
from λ(u), it creates a new child for u in CT and inserts it into Front.

For a detailed example of a run of the algorithm see Example 2 in [9].

3.2 Correctness Proof

We now establish the correctness of Algorithm 1 by proving the following prop-
erties (where for all W ⊆ V , λ(W) denotes

⋃
v∈W λ(v)):

– its termination;
– the incomparability of ω-markings associated with vertices in V :

λ(V) is an antichain;
– its consistency: �λ(V)� ⊆ Cover(N ,m0);
– its completeness: Cover(N ,m0) ⊆ �λ(V)�.

We get termination by using the well order of NP
ω and Koenig Lemma.

Proposition 8. MinCov terminates.

Proof. Consider the following variation of the algorithm.

Instead of deleting the current vertex when its marking is smaller or equal than
the marking of a vertex, one marks it as ‘cut’ and extract it from Front.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is not an ancestor of v, one marks them as
‘cut’ and extract from Front those who are inside.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is an ancestor of v, say v∗, one marks those
on the path from v∗ to v (except v) as ‘accelerated’, one marks the other vertices

246 A. Finkel et al.

Algorithm 1: Computing the minimal coverability set

MinCov(N ,m0)
Input: A marked Petri net (N ,m0)
Data: V set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω; δ : E → ToAcc
∗;

CT = (V,E, λ, δ) a labeled tree;Acc a set of ω-transitions;
Output: A labeled tree CT = (V,E, λ, δ)

1 V ← {r}; E ← ∅; Front ← {r}; λ(r) ← m0; Acc ← ∅; δ(r, r) ← ε
2 while Front �= ∅ do
3 Select u ∈ Front
4 Let σ ∈ Acc∗ a maximal fireable sequence of accelerations from λ(u)

// Maximal w.r.t. the number of ω’s produced

5 λ(u) ← λ(u) +C(σ)
6 δ((prd(u), u)) ← δ((prd(u), u)) · σ
7 if ∃u′ ∈ V \Front s.t. λ(u′) ≥ λ(u) then Delete(u) // λ(u) is covered

8 else if ∃u′ ∈ Anc(V) s.t. λ(u) > λ(u′) then
// An acceleration was found between u and one of u’s

ancestors

9 Let γ ∈ E∗ the path from u′ to u in CT
10 a ← NewAcceleration()
11 foreach p ∈ P do
12 if C(p, δ(γ)) < 0 then Pre(p, a) ← ω; C(p, a) ← ω
13 if C(p, δ(γ)) = 0 then Pre(p, a) ← Pre(p, δ(γ)); C(p, a) ← 0
14 if C(p, δ(γ)) > 0 then Pre(p, a) ← Pre(p, δ(γ)); C(p, a) ← ω

15 end
16 a ← trunc(a); Acc ← Acc ∪ {a}; Prune(u′); Front = Front ∪ {u′} ;

17 else
18 for u′ ∈ V do

// Remove vertices labeled by markings covered by λ(u)
19 if λ(u′) < λ(u) then Prune(u′); Delete(u′)
20 end
21 Front ← Front \ {u}
22 foreach t ∈ T ∧ λ(u) ≥ Pre(t) do

// Add the children of u
23 u′ ← NewNode(); V ← V ∪ {u′}; Front ← Front ∪ {u′});

E ← E ∪ {(u, u′)}
24 λ(u′) ← λ(u) +C(t); δ((u, u′)) ← t

25 end

26 end

27 end
28 return CT

Minimal Coverability Tree Construction Made Complete and Efficient 247

of the subtree as ‘cut’ and inserts v again in Front with the marking of v∗. All
the markings of the subtree in Front are extracted from it.

All the vertices marked as ‘cut’ or ‘accelerated’ are ignored for comparisons and
discovering accelerations. This alternative algorithm behaves as the original one
except that the size of the tree never decreases and so if the algorithm does
not terminate the tree is infinite. Since this tree is finitely branching, due to
Koenig Lemma it contains an infinite path. On this infinite path, no vertex can
be marked as ‘cut’ since it would belong to a finite subtree. Observe that the
marking labelling the vertex following an accelerated subpath has at least one
more ω than the marking of the first vertex of this subpath. So there is an infinite
subpath with unmarked vertices in V . But NP

ω is well-ordered, so there should
be two vertices v and v′, where v′ is a descendant of v with λ(v′) ≥ λ(v), which
contradicts the behaviour of the algorithm.

Since we are going to use recurrence on the number of iterations of the main
loop of Algorithm 1, we introduce the following notations: CTn = (Vn, En, λn, δn),
Frontn, and Accn are the the values of variables CT, Front, and Acc at line 2
when n iterations have been executed.

Proposition 9. For all n ∈ N, λ(Vn \ Frontn) is an antichain. Thus on termi-
nation, λ(V) is an antichain.

Proof. Let us introduce V ′ := V \ Front and V ′
n := Vn \ Frontn. We are going

to prove by induction on the number n of iterations of the while-loop that V ′
n is

an antichain. MinCov initializes variables V and Front at line 1. So V0 = {r} and
Front0 = {r}, therefore V ′

0 = V0 \ Front0 = ∅ is an antichain.
Assume that V ′

n = Vn \ Frontn is an antichain. Modifying V ′
n can be done by

adding or removing vertices from Vn and removing vertices from Frontn while
keeping them in Vn. The actions that MinCov may perform in order to modify the
sets V and Front are: Delete (lines 7 and 19), Prune (lines 16 and 19), adding
vertices to V (line 23), adding vertices to Front (lines 16 and 23), and removing
vertices from Front (line 21).
• Both Delete and Prune do not add new vertices to V ′. Thus the antichain
feature is preserved.
• MinCov may add vertices to V only at line 23 where it simultaneously adds
them to Front and therefore does not add new vertices to V ′. Thus the antichain
feature is preserved.
• Adding vertices to Front may only remove vertices from V ′

n. Thus the antichain
feature is preserved.
• MinCov can only add a vertex to V ′ when it removes it from Front while keeping
it in V . This is done only at line 21. There the only vertex MinCov may remove
(line 21) is the working vertex u. However if (in the iteration) MinCov reaches
line 21 then it did not reach line 7 hence, (1) all markings of λ(V ′

n) ⊆ λ(Vn) are
either smaller or incomparable to λn+1(u). Moreover, MinCov has also reached
line 18-20, where (2) it performs Delete on all vertices u′ ∈ V ′

n ⊆ Vn with
λn(u

′) < λn+1(u). Let us denote by V ′′
n ⊆ V ′

n the set V ′ at the end of line

248 A. Finkel et al.

20. Due to (1) and (2), marking λn+1(u) is incomparable to any marking in
λn+1(V

′′
n). Since V ′′

n ⊆ V ′
n, λn+1(V

′′
n) is an antichain. Combining this fact with

the incomparability between λn+1(u) and any marking in λn+1(V
′′
n), we conclude

that the set λn+1(V
′
n+1) = λn+1(V

′′
n) ∪ {λn+1(u)} is an antichain.

In order to establish consistency, we prove that the labelling of vertices and
edges is compatible with the firing rule and that Acc is a set of accelerations.

Lemma 1. For all n ∈ N, for all u ∈ Vn \ {r}, λn(prd(u))
δ(prd(u),u)−−−−−−−→ λn(u)

and m0
δ(r,r)−−−→ λn(r).

Proof. Let us prove by induction on the number n of iterations of the main loop
that for all v ∈ Vn, the assertions of the lemma hold. Initially, V0 = {r} and
λ0(r) = m0. Since m0

ε−→ m0 = λ0(r) the base case is established.
Assume that the assertions hold for CTn. Observe that MinCov may change the
labeling function λ and/or add new vertices in exactly two places: at lines 4-6
and at lines 22-25. Therefore in order to prove the assertion, we show that after
each group of lines it still holds.
• After lines 4-6: MinCov computes (1) a maximal fireable sequence σ ∈ Acc∗n
from λn(u) (line 4), and updates u’s marking to mu = λn(u) + C(σ) (line 5).

Since the assertions hold for CTn, (2) if u �= r, λn(prd(u))
δ(prd(u),u)−−−−−−−→ λn(u) else

m0
δ(r,r)−−−→ λn(r). By concatenation, we get λn(prd(u))

δ(prd(u),u)σ−−−−−−−−→ mu if u �= r

and otherwise m0
δ(r,r)σ−−−−→ mu which establishes that the assertions hold after

line 6.
• After lines 22-25: The vertices for which λ is updated at these lines are the
children of u that are added to the tree. For every fireable transition t ∈ T from
λ(u), MinCov creates a child vt for u (lines 22-23). The marking of any child

vt is set to mn+1(v) := mn+1(u) + C(t) (line 24). Therefore since λn+1(u)
t−→

λn+1(vt), the assertions hold.

Lemma 2. At any execution point of MinCov, Acc is a set of accelerations.

Proof. At most one acceleration is added per iteration. Let us prove by induction
on the number n of iterations of the main loop that Accn is a set of accelerations.
Since Acc0 = ∅, the base case is straightforward.
Assume that Accn is a set of accelerations and consider Accn+1. In an itera-
tion, MinCov may add an ω-transition a to Acc. Due to the inductive hypothe-
sis, δ(γ) is a sequence of abstractions where γ is defined at line 9. Consider b,
the ω-transition defined by Pre(b) = Pre(δ(γ)) and C(b) = C(δ(γ)). Due to
Proposition 2, b is an abstraction. Due to Proposition 3, the loop of lines 11-15
transforms b into an acceleration a. Due to Proposition 7, after truncation at
line 16, a is still an acceleration.

Proposition 10. �λ(V)� ⊆ Cover(N ,m0).

Minimal Coverability Tree Construction Made Complete and Efficient 249

Proof. Let v ∈ V . Consider the path u0, . . . , uk of CT from the root r = u0

to uk = v. Let σ ∈ (T ∪ Acc)∗ denote δ(prd(u0), u0) · · · δ(prd(uk), uk). Due to
Lemma 1, m0

σ−→ λ(v). Due to Lemma 2, σ is a sequence of abstractions. Due to
Proposition 2, the ω-transition a defined by Pre(a) = Pre(σ) and C(a) = C(σ)
is an abstraction. Due to Proposition 1, �λ(v)� ⊆ Cover(N ,m0).

The following definitions are related to an arbitrary execution point of MinCov
and are introduced to establish its completeness.

Definition 8. Let σ = σ0t1σ1 . . . tkσk with for all i, ti ∈ T and σi ∈ Acc∗. Then
the firing sequence m σ−→ m′ is an exploring sequence if:

– There exists v ∈ Front with λ(v) = m
– For all 0 ≤ i ≤ k, there does not exist v′ ∈ V \ Front

with m+C(σ0t1σ1 . . . tiσi) ≤ λ(v′).

Definition 9. Let m̂ be a marking. Then m̂ is quasi-covered if:

– either there exists v ∈ V \ Front with λ(v) ≥ m̂;
– or there exists an exploring sequence m σ−→ m′ ≥ m̂.

In order to prove completeness of the algorithm, we want to prove that at
the beginning of every iteration, any m ∈ Cover(N ,m0) is quasi-covered. To
establish this assertion, we introduce several lemmas showing that this assertion
is preserved by some actions of the algorithm with some prerequisites. More pre-
cisely, Lemma 3 corresponds to the deletion of the current vertex, Lemma 4 to the
discovery of an acceleration, Lemma 5 to the deletion of a subtree whose mark-
ing of the root is smaller than the marking of the current vertex and Lemma 6
to the creation of the children of the current vertex.

Lemma 3. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov and u ∈ V be a leaf in CT such that the following
items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;
3. For all a ∈ Acc fireable from λ(u), λ(u) = λ(u) +C(a);
4. There exists v ∈ V \ {u} such that λ(v) ≥ λ(u).

Then all m ∈ Cover(N ,m0) are quasi-covered after performing Delete(u).

Lemma 4. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ V such that the following items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v).

Then all m ∈ Cover(N ,m0) are quasi-covered after performing Prune(u) and
then adding u to Front.

250 A. Finkel et al.

Lemma 5. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov, u ∈ Front and u′ ∈ V such that the following
items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v);
4. λ(u′) < λ(u) and u is not a descendant of u′.

Then after performing Prune(u′); Delete(u′),

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−−→ λ(v).

Lemma 6. Let CT , Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ Front such that the following items
hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) ∪ {λ(u)} is an antichain;
3. For all a ∈ Acc fireable from λ(u), λ(u) = λ(u) +C(a).

Then after removing u from Front and for all t ∈ T fireable from λ(u), adding
a child vt to u in Front with marking of vt defined by λu(vt) = λ(u) +C(t), all
m ∈ Cover(N ,m0) are quasi-covered.

Proposition 11. At the beginning of every iteration, all m ∈ Cover(N ,m0)
are quasi-covered.

Proof. Let us prove by induction on the number of iterations that all m ∈
Cover(N ,m0) are quasi-covered.
Let us consider the base case. MinCov initializes V and Front to {r} and λ(r) to
m0. By definition, for all m ∈ Cov(N ,m0) there exists σ = t1t2 · · · tk ∈ T ∗ such

that m0
σ−→ m′ ≥ m. Since V \ Front = ∅, this firing sequence is an exploring

sequence.
Assume that all m ∈ Cover(N ,m0) are quasi-covered at the beginning of some
iteration. Let us examine what may happen during the iteration. In lines 4-6,
MinCov computes the maximal fireable sequence σ ∈ Acc∗n from λn(u) (line 4)
and sets u’s marking to mu := λn(u) + C(σ) (line 5). Afterwards, there are
three possible cases: (1) either mu is covered by some marking associated with a
vertex out of Front, (2) either an acceleration is found, (3) or MinCov computes
the successors of u and removes u from Front.

Line 7. MinCov calls Delete(u). So CTn+1 is obtained by deleting u. More-
over, λ(u′) ≥ mu. Let us check the hypotheses of Lemma 3. Assertion 1
follows from induction since (1) the only change in the data is the increas-
ing of λ(u) by firing some accelerations and (2) u belongs to Front so cannot

Minimal Coverability Tree Construction Made Complete and Efficient 251

cover intermediate markings of exploring sequences. Assertion 2 follows from
Proposition 9 since V \ Front is unchanged. Assertion 3 follows immediately
from lines 4-6. Assertion 4 follows with v = u′. Thus using this lemma the
induction is proved in this case.

Lines 8-16. Let us check the hypotheses of Lemma 4. Assertions 1 and 2 are
established as in the previous case. Assertion 3 holds due to Lemma 1, and
the fact that no edge has been added since the beginning of iteration. Thus
using this lemma the induction is proved in this case.

Lines 18-25. We first show that the hypotheses of Lemma 6 hold before line 21.

Let us denote the values of CT and Front after line 20 by ĈTn and F̂rontn.
Observe that for all iteration of Line 19 in the inner loop, the hypotheses
of Lemma 5 are satisfied. Therefore, in order to apply Lemma 6 it remains
only to check assertions 2 and 3 of this lemma. Assertion 2 holds since (1)
λ(V \Front) is an antichain, (2) due to Line 7 there is no w ∈ V \Front such
that λ(w) ≥ λ(u), and (3) by iteration of Line 19 all w ∈ V \Front such that
λ(w) < λ(u) have been deleted. Assertion 3 holds due to Line 5 (all useful
enabled accelerations have been fired) and Line 8 (no acceleration has been
added).

Lines 21-25 correspond to the operations related to Lemma 6. Thus using
this lemma, the induction is proved in this case.

The completeness of MinCov is an immediate consequence of the previous
proposition.

Corollary 1. When MinCov terminates, Cover(N ,m0) ⊆ �λ(V)�.

Proof. By Proposition 11 all m ∈ Cover(N ,m0) are quasi-covered. Since on
termination, Front is empty for all m ∈ Cover(N ,m0), there exists v ∈ V such
that m ≤ λ(v).

4 Tool and benchmarks

In order to empirically evaluate our algorithm, we have implemented a prototype
tool which computes the clover and solves the coverability problem. This tool is
developed in the programming language Python, using the Numpy library. It can
be found on GitHub3. All benchmarks were performed on a computer equipped
by Intel i5-8250U CPU with 4 cores, 16GB of memory and Ubuntu Linux 18.03.

Minimal coverability set. We compare MinCov with the tool MP [14], the tool
VH [16], and the tool CovProc [10]. We have also implemented the (incomplete)
minimal coverability tree algorithm denoted by AF in order to measure the ad-
ditional memory needed for the (complete) tools. Both MP and VH tools were
sent to us by the courtesy of the authors. The tool MP has an implementation

3 https://github.com/IgorKhm/MinCov

252 A. Finkel et al.

in Python and another in C++. For comparison we selected the Python one to
avoid biases due to programming language.

We ran two kinds of benchmarks: (1) 123 standard benchmarks from the
literature in Table 1, (which were taken from [2]), (2) 100 randomly generated
Petri nets also in Table 1, since the benchmarks from the literature do not
present all the features that lead to infinite state systems. These random Petri
nets have the following properties: (1) 50 < |P |, |T | < 100, (2) the number
of places connected of each transition is bounded by 10, and (3) they are not
structurally bounded. The execution time of the tools was limited to 900 seconds.

Table 1 contains a summary of all the instances of the benchmarks. The first
column shows the number of instances on which the tool timed out. The time
column consists of the total time on instances that did not time out plus 900
seconds for any instance that led to a time out. The #Nodes column consists of
the peak number of nodes in instances that did not time out on any of the tools
(except CovProc which does not provide this number). For MinCov we take the
peak number of nodes plus accelerations. In the benchmarks from the literature

Table 1. Benchmarks for clover

123 benchmarks from the literature 100 random benchmarks

T/O Time #Nodes

MinCov 16 18127 48218
VH 15 14873 75225
MP 24 23904 478681
CovProc 49 47081 N/A

AF 19 19223 45660

T/O Time #Nodes

MinCov 14 13989 61164
VH 15 13692 208134
MP 21 21726 755129
CovProc 80 74767 N/A

AF 16 15888 63275

we observed that the instances that timed out from MinCov are included in
those of AF and MP. However there were instances the timed out on VH but did
not time out on MinCov and vice versa. MinCov is the second fastest tool, and
compared to VH it is 1.2 times slower. A possible explanation would be that VH is
implemented in C++. As could be expected, w.r.t. memory requirements MinCov
has the least number of nodes. In the benchmarks from the literature MinCov

has approximately 10 times less nodes then MP and 1.6 times less then VH. In the
random benchmarks these ratio are significantly higher.
Coverability. We compare MinCov to the tool qCover [2] on the set of bench-
marks from the literature in Table 2. In [2], qCover is compared to the most
competitive tools for coverability and achieves a score of 142 solved instances
while the second best tool achieves a score of 122. We split the results into

counted the number of instances on which the tools failed (columns T/O) and
the total time (columns Time) as in Table 1.

We observed that the tools are complementary, i.e. qCover is faster at proving
that an instance is safe and MinCov is faster at proving that an instance is unsafe.

Minimal Coverability Tree Construction Made Complete and Efficient 253

safe instances (not coverable) and unsafe ones (coverable). In both categories we

Table 2. Benchmarks for the coverability problem (60 unsafe and 115 safe)

Time Unsafe T/O Unsafe Time safe T/O safe T/O Time

MinCov 1754 1 51323 53 54 53077
qCover 26467 26 11865 11 37 38332
MinCov ‖ qCover 1841 2 13493 11 13 15334

Therefore, by splitting the processing time between them we get better results.
The third row of Table 2 represents a parallel execution of the tools, where the
time for each instance is computed as follows:

Time(MinCov ‖ qCover) = 2min (Time(MinCov),Time(qCover)) .

Combining both tools is 2.5 times faster than qCover and 3.5 times faster than
MinCov. This confirms the above statement. We could still get better results by
dynamically deciding which ratio of CPU to share between the tools depending
on some predicted status of the instance.

5 Conclusion

We have proposed a simple and efficient modification of the incomplete mini-
mal coverability tree algorithm for building the clover of a net. Our algorithm
is based on the introduction of the concepts of covering abstractions and accel-
erations. Compared to the alternative algorithms previously designed, we have
theoretically bounded the size of the additional space. Furthermore we have
implemented a prototype which is already very competitive.

From a theoretical point of view, we plan to study how abstractions and
accelerations, could be defined in the more general context of well structured
transition systems. From an experimental point of view, we will follow three
directions in order to increase the performance of our tool. First as in [13], we
have to select appropriate data structures to minimize the number of compar-
isons between ω-markings. Then we want to precompute a set of accelerations
using linear programming as the correctness of the algorithm is preserved and
the efficiency could be significantly improved. Last we want to take advantage
of parallelism in a more general way than simultaneously running several tools.

254 A. Finkel et al.

References

1. Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition
systems. In: Proceedings of MFCS 2011. LNCS, vol. 6907, pp. 108–119 (2011)

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 480–496.
Springer (2016)

3. Blondin, M., Finkel, A., McKenzie, P.: Well behaved transition systems. Logical
Methods in Computer Science 13(3), 1–19 (2017)

4. Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689–
713 (2013)

5. Finkel, A.: Reduction and covering of infinite reachability trees. Information and
Computation 89(2), 144–179 (1990)

6. Finkel, A.: The minimal coverability graph for Petri nets. In: Advances in Petri
Nets. LNCS, vol. 674, pp. 210–243 (1993)

7. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete
WSTS. Logical Methods in Computer Science 8(4), 1–35 (2012)

8. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Tech. rep., Université Libre de Bruxelles, Bel-
gium (2005), http://www.lsv.fr/Publis/PAPERS/PDF/FGRV-ulb05.pdf

9. Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal coverability tree construction
made complete and efficient (2020), https://hal.inria.fr/hal-02479879

10. Geeraerts, G., Raskin, J.F., Van Begin, L.: On the efficient computation of the min-
imal coverability set of Petri nets. International Journal of Fundamental Computer
Science 21(2), 135–165 (2010)

11. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

12. Leroux, J.: Distance between mutually reachable Petri net configurations (Jun
2019), https://hal.archives-ouvertes.fr/hal-02156549, preprint

13. Piipponen, A., Valmari, A.: Constructing minimal coverability sets. Fundamenta
Informaticae 143(3–4), 393–414 (2016)

14. Reynier, P.A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. Fundamenta Informaticae 122(1–2), 1–30 (2013)

15. Reynier, P.A., Servais, F.: On the computation of the minimal coverability set of
Petri nets. In: Proceedings of Reachability Problems 2019. LNCS, vol. 11674, pp.
164–177 (2019)

16. Valmari, A., Hansen, H.: Old and new algorithms for minimal coverability sets.
Fundamenta Informaticae 131(1), 1–25 (2014)

Minimal Coverability Tree Construction Made Complete and Efficient 255

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

256 A. Finkel et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

	Minimal Coverability Tree Construction Made Complete and Efficient
	1 Introduction
	2 Covering abstractions
	2.1 Petri nets: reachability and covering
	2.2 Abstraction and acceleration

	3 A coverability tree algorithm
	3.1 Specification
 and illustration
	3.2 Correctness Proof

	4 Tool and benchmarks
	5 Conclusion
	References

