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Abstract. We describe a set of simple features that are sufficient in order to make
the satisfiability problem of logics interpreted on trees TOWER-hard. We exhibit
these features through an Auxiliary Logic on Trees (ALT), a modal logic that essen-
tially deals with reachability of a fixed node inside a forest and features modalities
from sabotage modal logic to reason on submodels. After showing that ALT ad-
mits a TOWER-complete satisfiability problem, we prove that this logic is captured
by four other logics that were independently found to be TOWER-complete: two-
variables separation logic, quantified computation tree logic, modal logic of heaps
and modal separation logic. As a by-product of establishing these connections, we
discover strict fragments of these logics that are still non-elementary.

1 Introduction

In mathematical logic there is a well-known trade-off between expressive power and
complexity, where weaker languages cannot capture interesting properties of complex
systems, whereas finding solutions of a given problem is infeasible for richer languages.
For instance, many verification tasks, such as reachability and homomorphisms queries,
happen to be expressible in monadic second-order logic (MSO) [15]. This logic is
however not usable in practice, as its satisfiability problem SAT(MSOQ) is undecidable
in general and was famously proved by Rabin [36] to be decidable but non-elementary
when the logic is interpreted on trees or on one unary function. A more recent analysis
that uses the hierarchy of non-elementary ranking functions [38] classifies SAT(MSO)
on these two structures as TOWER-complete, i.e. complete for the class of problems of
time complexity bounded by a tower of exponentials, whose height is an elementary
function of the input.

In order to bypass these problems, a general approach is to design restrictions of
MSO that can solve complex reasoning tasks while being more appealing complexity-
wise. An example of this is given by the framework of temporal logics, formalisms that
describe the evolution of reactive systems [24]. Among the various temporal logics, from
the classical linear temporal logic (LTL) [39] and computation tree logic (CTL) [13], as
well as their fragments [2,33], to the more recently developed interval temporal logics
[7,8], the main common feature of this framework is perhaps the ability to check whether
the system can evolve to a certain configuration, i.e. a reachability query. In this context,
we recall the landmark result on the satisfiability of CTL, shown EXPTIME-complete
by Fisher and Ladner [23]. Another possibility to deal with the complexity of MSO
is to restrict the second-order quantifications to specific submodels. This is the idea
behind ambient logic [16], separation logic [37] and more generally bunched logics [35]
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and graphs logics [1]. These logics provide primitives for reasoning about resource
composition, mainly by adding a spatial conjunction ¢ * y which requires to split a
model into two disjoint pieces, one satisfying ¢ and the other satisfying y. Similar
ideas are developed in sabotage modal logics, where the formula 4 ¢, headed by the
sabotage modality 4, states that ¢ must hold in a graph obtained by removing one
edge from the current model [4,21]. Within these logics, we highlight the quantifier-free
fragment of separation logic restricted to the * operator, denoted here with SL(x) and
whose satisfiability problem is proved to be PSPACE-complete in [12].

Once a framework provides a solid foundation for reasoning tasks, a natural step is to
extend its expressiveness while keeping its complexity in check. Sometimes the additional
capabilities do not change the complexity of the logic, as for example SL(x) extended
with reachability predicates, whose satisfiability problem is still PSPACE-complete [20].
However, it often happens that the new features make the problem jump to higher
complexity classes and, sometimes, reach MSO. We pinpoint two instances of this:

— SL(x) enriched with first-order quantifiers, albeit less expressive than MSO inter-

preted on one unary function, has a TOWER-complete satisfiability problem [9].

— CTL enriched with propositional quantifiers has an undecidable satisfiability problem

on general models. On trees (i.e. QCTLY), the problem is TOWER-complete [28].
Consequently, it is natural to ask ourselves why the additional features made the problem
harder. Answering this question requires to study the interplays between the various op-
erators of the logic, searching for a sufficient set of conditions explaining its complexity.

Our motivation. Second-order features often lead to logics with TOWER-hard satisfia-
bility problems, as illustrated above for first-order SL(x) and QCTLI. A good amount of
research has been done independently on these logics [5,9,17,28], culminating with the
TOWER-hardness of SL(x) with two quantified variables [17] and the TOWER-hardness
of QCTL! with just one temporal operator between exists-finally EF and exists-next
EX [5] (see Section 4 for the definitions). Connections between these two formalisms
have not been explicitly developed so far, perhaps because of the quite different logics:
QCTL is built on top of propositional calculus and it is interpreted on infinite trees,
whereas SL(x) does not feature propositional symbols and it is essentially interpreted
on finite structures. Nevertheless, we argue that these and other logics are related not
only as they are fragments of MSQ, but also as they share a form of reachability and an
ability of reasoning on submodels which is sufficient to obtain TOWER-hard logics.

Our contribution. We explicit these common features that lead to TOWER-hard logics
by relying on an Auxiliary Logic on Trees (ALT), introduced in Section 2. ALT reasons
about reachability of a fixed target node inside a finite forest and features modalities from
sabotage logics to reason on submodels. Here, reachability should be understood as the
ability to reach the target node in at least one step, starting from a “current” node which
can be updated thanks to the existential modality somewhere (U) [26]. In Section 3, we
take a look at the expressive power of ALT and show that SAT(ALT) is TOWER-hard.
In Section 4, we then display how ALT is captured by first-order SL(*) and QCTL,
as well as modal logic of heaps (MLH) and modal separation logics (MSL), two other
logics introduced in [17] and [18], respectively. In this context, beside exposing that
all these logics are TOWER-hard because of the way they reason about reachability and
submodels, we discover interesting sublogics that are still TOWER-complete:
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— QCTL restricted to E(p U y) modalities, where ¢, y are Boolean combinations of
atomic propositions, or to the EF modality, which can be nested at most once.

— the common fragment of MLH and MSL having Boolean connectives and the modal-
ities <), (U) and . Notice that this logic does not have propositional symbols.

2 The definition of an Auxiliary Logic on Trees

We introduce an Auxiliary Logic on Trees (ALT). Its formulae are from the grammar:

=T 1eAp | @ | T|IGI(U)o| 40| ¢

As we will soon clarify, the symbol (U) is borrowed from Goranko and Passy paper
on modal logic with universal modality [26]. Similarly, readers who are familiar with
sabotage modal logics will recognise in 4 the sabotage modality [4], and in Q* its Kleene
closure (i.e. 4 applied an arbitrary number of times). These two operators modify the
model during the evaluation of a formula, making ALT a relation-changing modal logic
(following the terminology used in [3]). However, contrary to most modal logics, ALT
does not feature classical propositional symbols. Instead, this logic only features two
interpreted atomic propositions T and G. Roughly speaking, T stands for “the target
node is reachable” whereas G stands for “the target node is not reachable”. The formal
definitions will be given soon in order to clarify these two sentences.

Let NV be countably infinite set of nodes. A (finite) forest F: N —¢; N is a partial
function (encoding the standard parent relation) that

— has a finite domain of definition, i.e. dom(F) % {n € N | F(n) is defined} is finite;
- is acyclic, i.e. for every n € dom(F) and 6 > 1, Fo(n) # n.

Here, 79 denotes § > 0 Sfunctional composition(s) of F. Albeit non-standard, our defini-
tion of finite forests over an infinite set of nodes simplifies the forthcoming definitions.
Besides, in Section 3.2 we show how restricting N to a finite set does not change the
expressive power nor the complexity of ALT.

We denote the image of F as ran(F) & {n’ | F(n) = n’ for some n € dom(F)}.
Given a finite set X, we denote with | X| its cardinality. Let n, n’ be two nodes. As usual,
nis a F-descendant of n’ (alternatively, n’ is an F-ancestor of n) whenever F°(n) = n’
for some § > 1. In this case, if 5§ = 1 then n is a F-child of n’ (alternatively, n’ is the
F-parent of n). We drop the prefix 7- from these terms when it is clear from the context.
Given two forests F, F’, we say that F' is a subforest of F, written 7/ C F, whenever
F(n) = F'(n) for every n € dom(F”’). Figure 1 intuitively represents two forests (every
“o” represents a node), the one on the left being a subforest of the one on the right.

ALT is interpreted on pointed forests (F,t,n), where F is a forest and t,n € N are
respectively called the target node and the current evaluation node. The satisfaction
relation F is defined (throughout the paper, we omit standard clauses for T, A, 7) as:
(F,t,n)ET & nis a P-descendant of t.

(F,t,n)EG & ne dom(F) and (F,t,n) ¥ T.

(F.t,n E(Uygp & thereisn’ € N s.t. (F,t,n) k .

F.t.nE@e & thereis F/ s.t. F/ C F, [dom(F")|+1 = |[dom(F)|, (F',t,n) E @.
(F,t.n)E 40 & thereis F/ s.t. 7/ C F and (F/,t,n) E @.
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Fig. 1. Subforest relation

We denote with L the contradiction = T. The standard connectives V and = are defined
as usual. The semantics of T and G is pretty straightforward. As a visual aid, the nodes in
Figure 1 satisfying T are the ones in the dark grey area, whereas the ones in the light grey
area satisfy G. As stated before, the semantics given to (U) ¢ is the one of the existential
modality somewhere [26], stating that there is a way to change the current evaluation
node so that ¢ becomes true. Its dual operator [U] g £ - (U) =g is the universal modality
everywhere. The semantics given to 4 ¢ is the one of the sabotage modality from [4],
which requires to find one edge of the forest that, when removed, makes the model satisfy
@. Lastly, the Q* modality, here called repeated sabotage operator, can be seen as the
operator obtained by applying 4 an arbitrary number of times. Indeed, by inductively
defining Qk @ (k € N) as the formula ¢ for k = 0 and otherwise (k > 1) as 4 Qk_l o,
it is easy to see that (F,t,n) E 4@ is equivalent to 3k € N. (F,t,n) E Qk Q.

Given a pointed forest (F,t, n), we denote with 7(G), the set of its garbage nodes:
the set of elements in dom(F) that are not descendants of t, i.e. 7(G), “ {n € dom(F) |
V6 > 1, Fo(n) # t}. Then, F(G), is equivalent to {n € N | (F,t,n) F G}. We omit
the subscript t from 7(G), when it is clear from the context. We augment the standard
precedence rules of propositional logic so that the modalities (U), 4 and ‘* have the
same precedence as —. For instance, the formula (U) T A G should be read as ((U) T) AG.

Satisfiability problem. As usual, given a logic £ and one of its interpretations F on
a class of structures €, the satisfiability problem of &, denoted with SAT(R) when the
interpretation is clear from the context, takes as input a formula ¢ of & and asks whether
there is a structure MM € € such that M F @. If the answer is positive, then @ is satisfiable.

Where does ALT come from? A preliminary definition of ALT was introduced in [31]
to reason on the complexity of separation logic. As such, in [31] ALT features the separat-
ing conjunction ¢ * y from separation logic, stating that the forest can be partitioned into
two disjoint subforests, one satisfying ¢ and one satisfying y. This binary operator gener-
alises both 4 and ‘* operators (we show how in Section 4). Hence, the TOWER-hardness
of the satisfiability problem for the logic defined here cannot be inherited from [31]
and must be proved (Section 3). Unfortunately, the proof does not give any indication
on whether or not the two versions of ALT have the same expressive power. What is
clear is that the two logics analyse the model in a different way: the * operator is able to
reason on the model in a “concurrent” way, whereas 4 and ‘* doitin a “sequential” one.
Let us draw an example of this. Let (F,t,n) be a pointed forest. We aim at defining a
formula #ch,, >2 stating that the target node t has at least two children. First, we define
#chyy, >1 (the formula for just one child) as (U)(T A - 4 G). Intuitively, #ehyre > 2
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can then be defined with the s operator simply as the formula #ch;, >1 * #ch, >1,
stating that it is possible to partition the forest into two subforests having both at least
one child of t. With the 4 operator, this property is instead defined as

#chypy 222 (U) (TA~ 4 G A (- inDom A#ch,, >1)).

where inDom®TV G states that the current evaluation node is in the domain of the
forest. This definition of #ch, >2 requires to find one child of t (as encoded by the
“(UNTA- 4 G A-- 7 part of the formula) and remove it from the model (as expressed
by the “4(—~ inDom A- - part). Only afterwards we check for the existence of a second
child of t. This form of “sequential reasoning” (that can be often avoided when using
the * operator), is used in almost all the formulae of the next sections: we first find a
node satisfying a certain property, we remove it from the structure, and only afterwards
we check if the model satisfy a second property. This principle only works well for
monotonic properties: with respect to the definition of #chy , >2, the set of children of
t monotonically decreases when considering subforests. Thus, finding a child of t in the
subforest, implies finding a child of t in the original forest.

3 On the complexity and expressive power of ALT

In this section, we show that SAT(ALT) is TOWER-hard by reduction from the satisfiabil-
ity problem of Propositional Interval Temporal Logic on finite words (Section 3.3). The
proof adapts the arguments used in [31] for the version of ALT featuring the separating
conjunction *. The reduction is somewhat non-intuitive and in [31] it is given without
explaining why more direct ways fail. Here, we clarify this issue which is related to
the fact that ALT cannot deduce any property of the portion of a pointed forest (F,t, n)
corresponding to the nodes in 7(G), except for the size of 7 (G) and the query n € F(G).
This is done in Section 3.2, by relying on a notion of Ehrenfeucht-Frassé games for ALT.

3.1 Towards the TOWER-hardness of SAT(ALT): how to encode finite words.

As a first step, we define a correspondence between finite words and specific pointed
forests. As usual, we define the set of finite words on a finite alphabet X as the closure
under Kleene star *. To ease our modelling, we suppose = ¥ [1, n] to be the alphabet
of natural numbers between 1 and n. Let w = a,---a; be a k-symbols word in X* and
M = {ny,---,n.} be a set of k nodes. Let N; (i € [1, k]) be a set of a; + 1 nodes different
fromn,- -+, n, and so that for each distinct i, j € [1, k], Nian = (. Lastly, let t be a node
not in M U Uie[l,kJ N;. A pointed forest (F,t, n) encodes w w.r.t. the sets M, N,---, N,
iff (D) F(n,) =t, AI) forall i€[1, k — 1] F(n;) = n,y, D) for all i €[1, k] and n’ €N,
F(n') = n; and (IV) every F-descendant of t belongs to a set among M, Ny, -+, N,.

We call the path from n; to ny, the main path of F. The nodes of this path are the
ones in M, and can be characterised as being the only descendants of t with at least
one child. Moreover, n; is the only node of the main path having the same number of
descendants and children. We say that a node n € dom(F) encodes the symbol a € =
if it is a descendant of t and it has exactly a + 1 children that are not in M. Then, the
nodes in M are the only ones encoding symbols, where n; encodes a; for any i € [1, k].
For instance, Figure 2 shows an encoding of the word 1121.
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Formula Intended meaning

1 1 2 1
size(G) = B |F(G)| = B.
R R R #desc > f (F,t,n) E T and n has at least f descendants.
np n n3 Ny t

#child > f (F,t,n) E T and n has at least f children.

Fig. 2. Encoding of 1121. Table 1. Formulae and their meaning on (F,t, n).

In order to characterise the class of pointed forests encoding finite words, we adapt
the formulae of [31] shown in Table 1 (where their semantics is described). Let (F,t, n)
be a pointed forest and let f§ € N. The formula size(G) > f is inductively defined as:
size(@G) >0 € T, size(G) > f+1 £ (U) (G A 4(-inDom A size(G) > §)).
Notice how, in the definition of size(G) > f+1, we use the same principle used to encode
#chtrg >?2 at the end of Section 2: we first find a node in F(G), remove it from the model,
and then find other § elements of F(G). The formulae #desc > f and #child > g

(again, we refer to Table 1 for their semantics) are instead defined as:

#desc > f £ 4*( [U]-G AT A ¢(~inDomA size(G) > f) )
\,-/ . _

F(G) is empty.Removing n lead to a set of garbage nodes of size at least f.

#child>0 & T, #child > f+1 £ #desc > f+1 A - /(T A-#desc > 1).
- -

~
Whenever f nodes of dom(F) are removed, if n still reaches t then it has at least one descendant.

Given s € {size(G), #chy ., #desc, #child}, we write s = f§ fors > fA-s > f+1.
For instance, #child = f is the formula that checks whether n has exactly f children
and it is a descendant of t. We can now conclude the encoding of finite words.

Let (F,t, n) be a pointed forest encoding w € >* and let M be the set of nodes in its
main path. Let us recall two properties of our encoding: (I) a node n’ encodes a symbol
of w iff n” € M, and (IT) the node encoding the first symbol of v is the only node in
M with the same number of descendants and children. To reflect (I) we denote with
symb the formula #desc > 1. For (II), given S C X, we introduce the formula 1stg that
checks if the current evaluation node corresponds to the first node of the main path and
encodes a symbol in S. It is defined as \/ﬁes(#desc =f+1A#child =g+ 1). The
following statement formalises the connection between this formula and property (II)
stated above.

Lemma 1. Let w € 3F. Let (F,t,n) be a pointed forest encoding . Let n| be the first
node in the main path of F. For every S C %, (F,t,n) E (U) 1stg iff (F,t,n|) F 1stq.

We are finally ready to define the formula wordsy, characterising the class of forests that
encodes words in X*. It is proved correct by Lemma 2, and it is defined as follows

The target node has no descendants, or has a descendant that encodes a symbol.

words Z((U) T = (U) symb) A~#chy, > 2 A
[Ul(symb = 1sts V(= 15t ,41) A ¢ 1sts)).

~
The current node encodes a symbol in [1,#] and exactly one of its children encodes a symbol.

Lemma 2. A pointed forest (F,t,n) is an encoding of a word in * iff (F,t,n) E words.
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game played on ((F,t;,n)), (F,,t5,n,), (M, s, k)
if there is p € {G, T} s.t. not ((Fy,t;,ny) E p iff (F,,t,,n,) F p) then the spoiler wins, otherwise
the spoiler chooses i € {1,2} and plays on (F;,t;,n;). The duplicator replies on (T’j,tj, nj) where j €
{1,2}\{i}. The spoiler must choose one of the following moves (else the duplicator wins).
(U) move: if m > 1 then the spoiler can choose to play a (U) move. It selects a node n/ € N.

— Then, the duplicator must reply with some node n; € N (otherwise the spoiler wins).
— The game continues on ((F},t;, n’1 ), Faty, n’z), (m—1,s,k)).
4 move: if s > 1 and dom(F;) # @ then the spoiler can choose to play a 4 move. It selects
a finite forest 7/ such that 7/ C F; and |dom(F})| = |dom(F})| — 1.
— The duplicator must reply with some 7-’; CF st |dom(7—’jf )| = |dom(F))| - 1.
— The game continues on ((Fl’,tl, n), (T’é,tz, n,), (m,s—1,k)).
4* move: if k > 1 then the spoiler can choose to play a 4* move. It selects a forest 7-’1.’ CF.
— The duplicator must reply with some F]f s.t. F]f CF.
— The game continues on ((F},t;,n}), (Fs,tp, ny), (m,s,k—1)).

Fig. 3. Ehrenfeucht-Fraissé games for ALT

3.2 Inexpressibility results via the Ehrenfeucht-Fraissé games for ALT

Now that we are more familiar with the logic, before completing the TOWER-hardness
proof of SAT(ALT) we show some properties that ALT cannot express. Notably, these
properties explain why the TOWER-hardness proof of the next section cannot be easily
simplified. Moreover, inexpressibility results effectively reduce the set of forests that
must be considered in order to solve SAT(ALT). This in turn makes reductions from
SAT(ALT) to other logics more immediate, as we show throughout Section 4.

A standard way of proving inexpressibility results for logics interpreted on finite
models is by adaptation of the Ehrenfeucht-Fraissé games [29], as done for other relation-
changing logics such as context logic for trees [10] and ambient logic [16].

We define the rank of a formula ¢ as the triple (m, s, k) € N3 where the modal rank
m is the greatest nesting depth of the modal operator (U) in ¢, whereas the sabotage
rank s (resp. repeated sabotage rank k) is the greatest nesting depth of the 4 (resp. 4™
operator in . We denote with ALT(rk) the set of formulae with rank rk € N3.

The Ehrenfeucht-Fraissé games (EF-games) for ALT are formally defined in Fig-
ure 3. A game is played by two players: the spoiler and the duplicator. A game state
((Fy,t1,ny), (Fy, tp, ny), rk) is a triple made of a rank rk and two pointed forests (7, t;, n;)
and (F5, t,,n,). The goal of the spoiler is to show that the two structures are different.
The goal of the duplicator is to counter the spoiler and show that the two structures are
similar. Let us make clear what we mean by two models being different: both players
can only play following the rules of the logical formalism (in our case, ALT). Then, two
models are different if and only if there is a formula ¢ € ALT(rk) that it is satisfied by
only one of the two models. This correspondence between the game and the logic is
expressed by an adequacy result, formalised below in Lemma 3.

A player has a winning strategy if it can play in a way that guarantees it the victory,
regardless what the other player does. We write (Fy,t;,n;) =, (F»,t,,n,) whenever the
duplicator has a winning strategy for the game ((Fy,t;,ny), (F5, tp, ny), rk). By Martin’s
Theorem [32] our games are determined: if the duplicator does not have a winning
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strategy then spoiler has one, and vice-versa. Hence, (F},t;,ny) #, (75, 1, ny) refers to
the fact that the spoiler has a winning strategy.

Lemma 3. (7:.1 N tl N nl) ’?grk(FZ’ t2, n2) lff 3(p (S ALT(rk), (FI N tl N n1)|:(p and (Fz, tz, nz)v(ﬂ.

The left-to-right direction is proved by induction on the rank and by cases on the first
move that the spoiler makes in his winning strategy. The other direction is proved by
structural induction on ¢@. We start to use the EF-games to derive three easy results.

Lemma 4. Let ¢ be a formula.
1. @ is satisfiable iff it is satisfiable by a pointed forest (F,t,n) where t € dom(F).
2. Given aforest F and nodest € N andn,n’ & dom(F), (F,t,n) E @ iff F,t,n") E .
3. If duplicator has a winning strategy for a game ((Fy,t;,ny), (Fa,ty,n,),rk) then it
has a winning strategy where it always replies to (U) moves by selecting nodes in
dom(F;) Uran(F,), for some i € {1,2}.

Proof (sketch). We sketch the proof of (1) to show how EF-games are used. Let us
consider a pointed forest (F,t, n) such that (F,t,n) k£ ¢. We take a node t' ¢ dom(F) U
ran(F) and define the forest 7/(n') £ if 7(n’) = t then t’ else F(n’). Notice that t’ &
dom(F’). We then prove Yrk € N3 (F,t,n) =, (F’,t,n) by induction on rk, leading to
(1) directly by Lemma 3. The proof of (3) essentially follows from (2). O

Interestingly enough, the third statement of Lemma 4 fundamentally implies that enforc-
ing N to be finite, instead of infinite as we do throughout this work, does not change
the expressive power nor the complexity of ALT.

Let (F,t,n) be a pointed forest. We now show that ALT has a very limited expres-
sive power with respect to the garbage nodes. In particular, it can only check for the
membership of n in 7 (G) (with the formula G) and for the size of F(G) (with the formula
size(G) >p). We formalise this inexpressibility result as follows.

Lemma 5. Let rk = (m,s, k). Let 7, F| and T, be three forests and let n,t € N, such
that for every i € {1,2}, F C F; and F;(G), = dom(F;) \ dom(F). If we have

n € FG) iff n € F5(G), and min(|F;(G)|,m + s+ k) = min(|F»(G)|,m + s + k)
then (Fl’ t, n) Rk (Fz,t, n).

Let us informally explain Lemma 5, whose proof is by induction on rk and by cases on
the moves of the spoiler. Let (F;,t, n) be a pointed forest and suppose (ad absurdum)
that it satisfies a formula @ of rank rk that express a property of the garbage nodes that
is different form the ones cited above. For example, let us assume that ¢ characterise
the set of pointed forests having a garbage node with at least two children. Consider
the subforest 7 C 7, whose domain corresponds to the set of 7-descendants of t. In
particular, 7;(G), = dom(F;) \ dom(F). We extend F to a forest F, by (re)defining
it on the nodes in 7 (G), so that 7,(G), = F,(G); and none of these nodes has more
than one F,-child (this construction can always be done). This last equality implies that
n € F1(G); © n € F,(G), and min(|F;(G);|, m + s + k) = min(|F»(G)|, m + s + k). By
Lemma 5 (F|,t,n) =y (F,,t,n), which implies (F,,t,n) F ¢ by Lemma 3. However,
(F,,t,n) is defined so that every node in F,(G), has at most one child. Thus, ¢ cannot
characterise the set of models having a garbage node with at least two children.

As shown in the next section, the inexpressibility result in Lemma 5 plays a central
role in the development of the reduction that leads to the TOWER-hardness of SAT(ALT).
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3.3 PITL on marked words and the TOWER-hardness of SAT(ALT)

We are now ready to show the non-elementarity of SAT(ALT). The proof is by reduction
from the satisfiability problem of Propositional Interval Temporal Logic (PITL) under
locality principle [34,25], which in turn is shown TOWER-hard by reduction from the non-
emptiness problem of star-free regular languages (see [38] for the TOWER characterisation
of this problem). PITL is a well-known logic that was introduced by Moszkowski in [34]
for the verification of hardware components. It is interpreted on non-empty finite words
over a finite alphabet of unary symbols . Its formulae are from the grammar:

pi=0Ahe | @ |allloele
where a € Z. Under the locality principle interpretation, a word o = a;---a; € £*
satisfies a whenever a; = a. Moreover, v satisfies 1 if it is a word of length one (i.e.
i € X). The main feature of this logic is its chop operator “|”. Intuitively, ¢|y is
satisfied by words that can be “chopped” into a prefix and a suffix sharing one symbol,
so that the prefix satisfies @ and the suffix satisfies y. Formally,

a;--a Egly & thereisi €[1,k] such that a;---a; k @ and a;---a; F y.

Translating | in ALT is not easy. Indeed, given the encoding of words proposed in
Section 3.1, chopping v in two pieces means splitting in some way the main path ny,---, n;
of a forest (7, t, n) encoding o to then check that the word encoded by ny,- - -, n; satisfies
@ and the one encoded by n;,---, n; satisfies . However, by doing this the elements
ny, -+, n; become garbage nodes. Thus, as a consequence of Lemma 5, ALT cannot check
in any way what is the word encoded by these nodes. Easy translations from PITL to
ALT seem therefore impossible and, as done in [31], we are required to go through an
alternative interpretation of PITL based on marking symbols instead of chopping words.

A marking of an alphabet X is a bijection 6 DI 3 relating a symbol a € X to
its marked variant a € %. We denote with Y the extended alphabet ~ W X. A word is
marked if it has some symbols from ¥. We introduce the satisfaction relation F, on a

marked word 1w € 3*. It is defined as usual for Boolean connectives. Moreover,
def def

WwF, a & wisheadedbyaora; wFkF, 1 & wis headed by a marked symbol.

The definition of ]y is more involved. Let w’ € =*,a € = and w” € ¥* be such that
w = w'aw’’, so that a is the first marked symbol occurring in o (this decomposition is
uniquely defined). Then, mw'aw’’ E, |y holds if and only if there is there is b € < s.t.

(a) w' is the empty word, b =a and aw’” k, ¢ Ay, or

(b) there is , € 3* s.t. W’ = biw,, bw,aw” k @ and biv,aw” k y, or

(c) w’ is not the empty word, b =a, w'aw” k ¢ and aw’” k y, or

(d) 3w, € 3+,3mw, € I*s.t. W' =, biv,, W, biw,aw” F ¢ and biw,aw” Ey.
On this semantics, the satisfaction of a formula only depends on the prefix a;---a,_;3;
of w that ends with the first marked symbol. To check whether w k, ¢ |y we search for
a position j € [1,i] inside this prefix so that ¢ is satisfied by the word obtained from
by marking the j-th symbol, whereas y is satisfied by the suffix of w starting in j. In
the definition above, this idea is split into four cases (a)—(d), depending on truthiness
of j =1 and j = i. This is done as it better reflects the encoding of PITL in ALT. The
semantics on marked words is related to the standard semantics of PITL as follows.



An Auxiliary Logic on Trees 471

Proposition 1 (from [31]). Let w € 3%, a € X and W' € Y*. Let ¢ be a formula in
PITL. wa satisfies @ under the standard interpretation of PITL if and only if waw’ F, ¢.

The alternative interpretation of PITL allows us to reduce SAT(PITL) to SAT(ALT)
in aneat way. Let ¥ = [1,n], X = XUZX and let f : ¥ — [1,2n] be the bijection f(a) % 2a
fora € and f(a)¥2a—1fora € p f(a;---ay) denotes the word f(a;)- - -f(a;). f maps
2 into the alphabet [1, 2n], whose words can_be encoded into trees (as in Section 3.1).
In these trees each symbol a € X (resp. a € ) corresponds to a node in the main path
having 2a + 1 (resp. 2a) children not in this path. Therefore, given a node n encoding a
symbol in >, removing exactly one children of n that is not in the main path is equivalent
to marking the symbol n encodes. Based on this description, we can check if the current
evaluation node encodes a marked symbol from > with the following formula:

marky £\/, 5 ((#child = 2a A 18t o) V (#child = 2a+ 1 A~ 1styy,,))

As already stated, o F, @ examines the prefix of w that ends with the first marked
symbol. In pointed forests (F,t, n) encoding v, this prefix corresponds to the subtree
whose root encodes a marked symbol and is a F-descendant of every other node encoding
marked symbols. Therefore, to characterise this tree we need to track the number of nodes
encoding marked symbols. We first define a formula marksy > f stating that the forest
has at least # € N nodes encoding marked symbols. It is defined as T for f = 0, and
otherwise (f > 1) as (U) ( marks A 4(- inDom Amarksy > f—1)). Again, this formula
uses the same principle introduced in Section 2 for #ch, >2: we search for a node
encoding a marked symbol, remove it from the structure and then search for f—1 other
such nodes. Similarly, we introduce #markAncs > f € symb A (- inDom Amarksy >
f), the formula stating that the current evaluation node encodes a symbol and has at
least f ancestors that encode marked symbols.

At last, for a formula ¢ in PITL having symbols from > = [1, n], we introduce its
translation V(@) in ALT, where f > 1 tracks the number of nodes encoding marked
symbols. It is homomorphic for Boolean connectives: Vz(—¢) & V() and Vy(pAy) &l
Vs(@)AV(w). Fora € X and 1, it faithfully represent the F, relation: Vﬂ(a)"éf(U) 1stpa-12a)
and V(1) & (U)(1st 5, Amarky). Lastly, the formula Vj(@|y) is defined as

(U)( symb A((18t}) 5, Amarky A Vg(e) A Vy(y))V
(1sty) 9, A marks A @(marks A Vg, (@) A V)V
(=18t o, Ammarks A#markAncs > f A @(marks AVg, (@) A §(1sty 2, AV(W))))).
Notice how Vﬂ((ply/) follows closely the F, relation: it is split into four disjuncts, one
for each case in the definition of @]y . For example, the second disjunct of Vﬁ((ply/)
encodes the case (b) in the definition of w’'aw’” k, |y, as schematised below:
PITL|3beX.. 3JmyeX*st.w =bw, andbw,aw” Fp  and biwyaw’Fy
ALT |(U)(symb... 1st( 2, A~ marks Amarky AV (@) AVp(w)

The translation is proved correct (by induction on the structure of ¢) in the next lemma.

Lemma 6. Let S = [1,n] and Y =S UX. Let w € 3+ with B > 1 marked symbols. Let
(F,t,n) be an encoding of f(w). For every ¢ in PITL, w F, @ iff (F,t,n) F V().
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Then, the reduction from SAT(PITL) on standard semantics follows as we are able to
characterise the set of pointed forests encoding words in 2*X (first three conjuncts in
the formula of Lemma 7). To conclude, we simply apply Lemma 6 and Proposition 1.

Lemma 7. Every @ in PITL written with symbols from X = [1, n] is satisfiable under the
standard interpretation of PITL if and only if the following formula in ALT is satisfiable

Word[l,zn] A <U>T A [U](markz STA- ‘(G)) A Vl ((p)

The forest encodes a non-empty word. The only node encoding a marked symbol is the child of the target node.
Because of the case distinction in the formula Vﬂ((ph//), the formula obtained via Vj is
exponential (hence elementary) in the number of symbols used to write ¢. Therefore,
from the TOWER-hardness of SAT(PITL) we conclude that SAT(ALT) is TOWER-hard.

4 Revisiting TOWER-hard logics with ALT

We now display the usefulness of ALT as a tool for proving the TOWER-hardness of
logics interpreted on tree-like structures. In particular, we provide semantically faithful
reductions from SAT(ALT) to the satisfiability problem of four logics that were inde-
pendently found to be TOWER-complete: first-order separation logic [9], quantified CTL
on trees [28], modal logic of heaps [17] and modal separation logic [18]. Our reduction
only use strict fragments of these formalisms, allowing us to draw some new results
on these logics. Most notably, this section shows that all these logics are TOWER-hard
because they fundamentally provide the reachability and submodel reasoning given by
ALT.

4.1 From ALT to First-Order Separation Logic

Separation logic (SL) [37] is an assertion logic used in state-of-the-art tools [6,11] for
Hoare-style verification of heap-manipulating programs. As already stated, a preliminary
definition of ALT was defined in [31] to reason on the complexity of separation logic.
Hence, here we briefly revisit the relation between ALT and SL.

Let VAR and LOC be two countably infinite sets of program variables and locations,
respectively. Separation logic is interpreted on memory states: pairs (s, h) consisting
of a function (the store) s:VAR—LOC and a partial function with finite domain (the
heap) h:LOC—;,LOC. Since N and LOC are both countably infinite sets, w.l.0.g. we
assume LOC = N. We extend the notation of domain, image and function composition
to stores and heaps. Two heaps /i and h, are said to be disjoint, written 4 Lh,, whenever
dom(h) ndom(h,) = @, and when this holds the union s + h, of h; and h, is defined
as the standard sum of functions (i, + h,)(£) £ if £ €dom(h,) then A, () else h,(¢).
Let u € VAR be a fixed variable that is reserved for quantification (quantification over
other variables is not possible). We consider the separation logic 1SL(*,alloc, &%),
whose formulae are built from the following grammar (as in [31]):

p:=TloAg|-p|emp|[x=y|x<y|allocx) |x=Ty|@*¢|Tug

where x,y € VAR. As shown below, the reachability predicate <* can be seen as the
transitive closure of the standard points-fo predicate < of separation logic. For a memory
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state (s, h), the satisfaction relation F is defined as follows:

(s, h) E emp & dom(h) = 0. (s,hyEx oy & h(sx) = s¥).
shEx=y & sx)=s(y). (s,h) Ealloc(x) & s(x) € dom(h).

(s,hHExsty & there is 35 > 1 such that M (s(x)) = s(y).
f

shHhEpsry & Ah;,hy st. hyLhy, hy + hy = h, (s,h)) E @ and (s, h,) F y.
(s,hHEFugp & thereis a location £’ € LOC such that (sfu—¢"1,h) E ¢,

where s[u«#'] is the store updated from s by only changing the evaluation of u from s(u)
to £', i.e. for every x € VAR, s[u«7'](x) £ if x = u (syntactically) then #’ else s(x).
The main ingredient of separation logic is the separating conjunction ¢ * y, that
is satisfied whether A can be partitioned into A, and A, so that (s, h;) F ¢ whereas
(s, h,) E w. The * operator captures the 4 and 4* operators as follows. Consider the
formula size = 1€ —emp A =(-emp * —emp), which is satisfied whenever |dom(h)| = 1.
We define 4, ¢ £ (size = 1) * ¢ and ¢ @ £ T * . The semantics of these formulae
is related to the analogous operators of ALT as follows:

(s,h)F @ @ <= 3Th|, hyst hiLhy, hy+ hy = h, |[dom(h))| =1 and (s, hy) F .
(s,h) F €0 < 3Fh, hyst. hyLhy, hy + hy = hand (s, hy) F o.

In order to perform the reduction from SAT(ALT) to SAT(1SL(%,alloc, ©%)), we
fix a variable x € VAR that is syntactically different from u and that plays the role of
the target node. Then, the translation 7,(¢) of a formula ¢ in ALT is straightforward:

7,(T) &y oty (4o Z4 1,(0). 7(T) ¥T.
7,(G) ZallocAr,(T). 7,4 0) £ ¢ (). 7.(~@) € = 7.(@).
7,((U) @) £ Fu 7,(e). (@ Ay) E 1.(@) AT, (W)

Given a pointed forest (F,t,n) and a store s such that s(x) = t and s(u) = n, by structural
induction on ¢ we can easily show that (F,t,n) F ¢ < (s,F) E 7,.(@). This, together
with the fact that Vu =(u<*u) characterises the class of acyclic heaps (which correspond
to the forests of ALT), directly implies the following result.

Lemma 8. Let xeVAR\{u}. ¢ in ALT and 7.(p) A Vu =(u S u) are equisatisfiable.

This lemma reproves that both 1SL(x, alloc, <*) and first order separation logic with
two quantified variables (denoted as 2SL(x)) admit a TOWER-hard satisfiability problem.
2SL(x), as introduced in [17], can be defined from 1SL(%,alloc, ") by removing
alloc and &* from the syntax and allowing a second variable, different from u, to be
quantified. However, in [17] the authors show that both alloc and &% are expressible
in 2SL(x), and with some very minor modification to their formulae we can show that
both predicates are definable using 4 and ¢ instead of * and emp. Moreover, these
logics are in TOWER by Rabin’s Theorem [36], leading to the TOWER-completeness of
SAT(ALT).

Theorem 1. SAT(2SL(x)) and SAT(1SL(*,alloc, <)) are TOWER-complete even when
emp and * are replaced with 4_and 4 . SAT(ALT) is TOWER-complete.

4.2 From ALT to Quantified Computation Tree Logic

We now consider Computation Tree Logic (CTL), a well-known logic for branching time
model checking [14,13]. Among its extensions, in [5,22,28] the addition of propositional
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quantification is considered. The satisfiability problem of the resulting logic is undecid-
able on Kripke structures, and TOWER-complete on trees [28]. In [5], the authors show
that the problem is TOWER-hard even when considering just one operator among exists-
next EX or exists-finally EF (the definitions are below). Here, we reprove the result for
EF by first tackling the TOWER-hardness of the logic with the exists-until E(p U y), and
then show that this operator can be defined using EF . Differently from [5] and thanks
to the properties of ALT, our reduction does not imbricate until operators, showing that
this extension of CTL remains TOWER-hard even when E(@ U ) is restricted so that ¢
and y are Boolean combinations of propositional symbols.

Let us first recall the standard definition of Kripke structure [27]. Let AP {p, g,- -}
be a countable set of propositional symbols. A Kripke structure is a triple (W, R, V)
where W is a countable set of worlds, R C W X W is a left-total accessibility relation
(left-total means that for each world w € W there is w' € W s.t. (w,w’) € R) and
V : AP = 2W is a labelling function. We define R(w)Z{w’ € W | (w,w’) € R} as the
set of worlds accessible fromw € W. Let R € WX W be an arbitrary relation on worlds
(not necessarily left-total). A path = starting in w is a sequence of worlds (wg, Wy, -
such that wy = w and (w;, w;, ;) € R for every two successive elements w;, w;, | of the
sequence. The path 7 is said to be maximal whenever it is not a strict prefix of any other
path. We denote with I (w) the set of maximal paths starting in w. If R is left-total
then I (W) is the set of all infinite paths starting in w. Lastly, R*(w) denotes the set
of worlds reachable from w, i.e. those worlds belonging to a path in ITx (W).

We consider Quantified Computational Tree Logic interpreted under tree semantics
(QCTLY) and refer the reader to [28] for a complete description of the logic. The formulae
of QCTL! are built from the following grammar:

p=T|ore |~ |p| EXe| E@Ug@) | AlpUe) | Fpe
where p € AP. All temporal modalities of QCTL! are from CTL: EX is the exists-next
modality, E(p U y) is the exists-until modality and A(p U ) is the all-until modality.

QCTL! is interpreted on Kripke trees. Formally, a Kripke structure (W, R, V) is a
(finitely-branching) Kripke tree if (I) R™! is functional and acyclic, (I) for every world
w € W, R(w) is finite and (III) it has a root, i.e. R*(r) = W for some r € W. Given
w € W, the worlds in R*(w)\ {w} are said to be descendants of w. As Kripke structures
are left-total, Kripke trees can be seen as finitely-branching infinite trees. This leads to
SAT(QCTL!) being in TOWER by reduction to MSO on trees [28]. Let £ = (W, R, V)
be a Kripke tree and w € W. The satisfaction relation F of QCTL is defined as:

(K, W) Ep g weVvp).
(K,w) EEX ¢ & Iw e R(w) s.t. (K, W) E ¢.
(K,w)EE(pUy) & there are (Wg,W1,+) € IIx(w) and j € N such that
L, wj) F y and for every i < j, (K,w;) F @.
(K, W) EA(p Uy) & forall (W, W1, -) € IIx(w), 3j € N such that
(K, w;) Fy and for every i < j, (K, w;) F ¢.
(e, w)Edp @ & there is W C W such that W, R, V[p<W']) E o,
where, similarly to the store update s[u«#’] of the previous section, V[p<W'] stands
for the function obtained from V by updating the evaluation of p from V(p) to W'.
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The formula Jp ¢ requires to update the satisfaction of p in a way such that ¢ is
satisfied. This should already give a good clue on how to reduce ALT to QCTL': we
represent the nodes of a forest as the set of worlds satisfying a propositional symbol D.
Then, for instance, the repeated sabotage operator Q* is encoded by using an existential
3E that changes the evaluation of a propositional symbol E so that it only holds in
worlds where D holds. In this way, the set of worlds satisfying E represents a subforest
of the original one. The universal quantification V and the connectives = and V are
defined as usual. So are the classical temporal operators from [14], exists-finally EF ¢ &
E(T U @), all-generally AG ¢ £ =EF =g, all-finally AF ¢ £ A(T U @), exists-generally
EG @ € -AF -, and exists-strong-release E(p M y) € E(p U @ A ).

We now work towards a formal encoding of a pointed forest (F,t, n) into a pointed
model (KC,w), where K = (W, R, V) is a Kripke tree and w is one of its worlds. We use w
to play the role of the target node t. To encode the forest F and the current evaluation node
n we use the worlds appearing in R*(w) and three propositional symbols: D, end and
n. The intended use of D is to state which elements of R*(w) encode nodes in dom(F).
We need to be careful here, as R*(w) is an infinite set whereas dom(F) is finite. We
use the propositional symbol end to solve this inconsistency: we constraint K to satisfy
the formula AF (end) stating that every maximal path (W, wy,--) € Il (W) has a finite
prefix (Wo, -+, w;_1) (j € N) of worlds not satisfying end, whereas w; € V(end). Then,
a world in W encodes an element in dom(F’) whenever it satisfies D and it belongs to one
of these prefixes. We use the propositional symbol n to encode the current evaluation
node. During the translation we require n to be satisfied by exactly one descendant of w,
so that the modality (U) roughly becomes a quantification over n. From [28], checking
whether a formula ¢ holds in exactly one descendant of w can be done with the formula
uniq(e) € EF(p) A Vp (EF (@ A p) = AG(p = p)) where p € AP does not appear
in @. For technical reasons, we treat in a similar way the world w, which encodes the
target node, and require it to be the only world (among the ones in R*(w)) satisfying the
auxiliary propositional symbol ¢. Lastly, we use an additional propositional symbol E
in order to encode subforests and deal with the encoding of 4 and 4* (as stated above).

We now formalise the encoding. For the remaining of this section, we fix a tuple
X ¥ (end,n, t) of three different propositional symbols. Let D be an additional symbol
notin X, and let (F,t, n) be a pointed forest s.t. t € dom(F) (by Lemma 4(1) it is sufficient
to consider this class of structures in order to decide satisfiability of a formula in ALT).
A pointed model (K = (W, R,V),w), is an (X, D)-encoding of (F,t,n), or simply
encoding when (X, D) is clear from the context, if there is an injection f: N'—R*(w) s.t.
1. f(t)€w is the only world in ran(f)n V(¢ ), and f(n) is the only world in ran(H) N V(n);
2. for every n’ € dom(F) it holds that (f(F(n")), f(n")) € R;
3. for every infinite path (wg, w;--) € I1p(w) there is i > 0 s.t. w; € V(end) and
- Vj€[0,i—1],w; € V(end) and (Ww; € V(D) & In’ € dom(F) f(n') = w;);
— for every j > i and every node n’ € dom(F), f(n") # W
It is easy to show that such an encoding always exists. Informally, the first property states
that w encodes t and is the only world in R*(w) satisfying ¢. Similarly, the world f(n)
encoding n is the only world in R*(w) that satisfies n. The second property states that
the forest must be correctly encoded in the Kripke structure. In particular, notice that the
parent relation of the finite forest is inverted so that it becomes the child relation in the
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o

Fig.4. A pointed forest (left) and one of its encoding as a finitely-branching Kripke tree (right).

Kripke structure (as shown in Figure 4). As f is an injection, the encoding does not merge
together trees that are disconnected in the forest. Lastly, the third property of f states that
the elements in dom(F) must be encoded by nodes in R*(w) that precede every world
satisfying end. Moreover, among all the descendants of w preceding end, the worlds
encoding dom(F) are the only ones satisfying D. This implies that w does not satisfy
D (as t ¢ dom(F)). Figure 4 shows a pointed forest and one of its possible encodings.
We now formalise the translation. Fix two different symbols D, E not in X. In order
to alternate between D and E, we define D £ E and E ¥ D. The translation 7,(p) of a
formula ¢ in ALT, implicitly parametrised by X and where u € {D, E }, is homomorphic
for T and Boolean connectives (as in 7,, see Section 4.1), and otherwise it is defined as

7,1 EE((uV t)A-end) M (uAn)). 7,(U) @) € An (uniq(n) A 7,(p)).
7,(G) & E(wend M (uAR)) A 7,(T). Tu(’*(p) &3 (AG (U= w) A T7(@)).
7, (4 @) £ Fu (AG (u = v) Aunig(uA ) AE(mend M (uA —u)) A 74(@)).

Let (F,t,n) be a pointed forest s.t. t € dom(F) and let (W, R, V), w) be one of its
(X, w)-encodings w.r.t. the injection f. For instance, z,(T) requires that there is a path
(w,w1,~~-,wj) starting in f(t) = w and whose worlds do not satisfy end and must
satisfy u or ¢. Moreover, the last world w; must satisfy » and n. From property (1)
of the definition of f, the only element satisfying ¢ is w, which does not satisfy « (as
t & dom(F)). Then, this path of worlds encodes a path in the pointed forest, from the
current evaluation node n (which is encoded by the only world satisfying n) to the target
node t. The translation is shown correct (by structural induction on ¢) for pointed forests
that admit an encoding.

Lemma 9. Let (F,t,n) be a pointed forest s.t. t ¢ dom(F), and let (K, w) be a (X, u)-
encoding of (F,t,n). Given a formula @ in ALT, (F,t,n) F @ ifand only if (IC, w) E 7,(@).

Then, to conclude the reduction we just need to characterise the set of models encoding a
def

pointed forest. The formula enc =-DAt Auniq(t) Auniq(n)A AF(end) does the job.
Lemma 10. @ in ALT and enc A7 ,(@) in QCTL are equisatisfiable.

We now take a closer look to the translation. Given a temporal modality 7 and
k € NU {w}, QCTLI(T*) denotes the fragment of QCTL restricted to formulae where
the only temporal modality allowed is 7, which can be nested at most k times (w stands
for an arbitrary number of imbrications). For instance, QCTLT(EF") denotes the set
of formulae restricted to the operator EF, which can be nested at most k times. This
fragment of QCTLT is shown to be k-NEXPTIME-hard in [5], which directly leads to
the TOWER-hardness of QCTL/(EF ®) and QCTL/(EU®). By analysing our translation it
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is easy to show that QCTLT(EUO), i.e. QCTLI restricted to the only modality E(p U y)
where @ and y are Boolean combination of propositional symbols, and QCTLI(EF!) are
already TOWER-hard. First of all, the formula E(p U y) in QCTLI(EUWY) is equivalent
to the following formula in QCTLY(EF"): 3p(AG (- A ~y = p) AAG (p = AG p) A
EF (v A ﬂp)), where p does not appear in ¢ or y. Then, we just need to prove the result
for QCTLI(EUY).

Clearly, the translation 7, is defined so that the resulting formula is in QCTLT(EUO).
However, we need to deal with the occurrence of AF (end) used inside the formula enc.
Let us first consider the formula AG (¢ = AGy) which is satisfied by models where
once @ is found to hold in a certain world w, then y is satisfied in every world of R*(w).
Despite not being in QCTLY(EUY), the formula AG (¢ = AGy) is equivalent to the
following formula: VpVq (uniq(p) Auniq(q) AEF (pA @) AEF (g A—y) = E(-p M q)),
where p and g do not appear in @ or y. We then define a formula ygg (@) that only uses
EF modalities and is equivalent to EG g, so that then = ygg (—@) is equivalent to AF @:

2e6 (@) £ 3p(=p AAG (=@ = p) AAG (p = AG p) A
Vq(uniq(q) A EF (g A =p) = EF (¢ AEF (=g A p))))

where p does not appear in ¢@. This formula is expressible in QCTLI(EWY), as every
subformula that is not in this fragment is an instance of AG(¢ = AGy). Then, we
conclude that AF (end) is expressible in QCTL(EU?), leading to the following result.

Theorem 2. The satisfiability problems of QCTLT(EU®) and QCTLI(EF') are TOWER-c.

4.3 From ALT to Modal Logic of Heaps and Modal Separation Logic

In [17] and later in [18] two families of logics are presented, respectively called modal
logic of heaps (MLH) and modal separation logic (MSL). At their core, both logics can
be seen as modal logics extended with separating connectives, hence mixing separation
logic (Section 4.1) with temporal aspects as in quantified CTL (Section 4.2). As we
already shown how ALT is captured by these two latter logics, it is natural to ask ourselves
if the same holds for MLH and MSL. In this section, we show that this is indeed the case
and, as for the previous two sections, ALT allows us to refine the analysis on these logics.
Both MLH and MSL are interpreted on finite Kripke functions. A finite Kripke function
is a Kripke structure (W, R, V) (see Section 4.2 for its definition) where W is infinite
and R, instead of being left-total, is finite and weakly functional, i.e. |[R| € N and for
every w,w',w’" € W, if (w,w') € R and (w,w") € R then w = w”. As N and W are
both countably infinite sets, without loss of generality we assume W = N'. Two Kripke
structures K| = (W, R, V) and Ky = (W, R,, V) are disjoint if R; N R, = @. When
this holds, K + K, denotes the model (W, R U R,, V). To shorten the presentation,
in the following diagram we introduce a language having the operators from MSL and
MLH, and summarise known and new results on these logics (where p € AP):

MSL: TOWER-complete from [18]. MLH: TOWER-complete from [17].
A -
. - N 1
p=plFAe |l Tlorg |l | Qe exy | (Ue | O le
~~
TOWER-hard by reduction from SAT(ALT), shown here.
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As defined below, (} is the standard alethic modality from modal logic, (}‘1 18 its converse
modality, and (#) is the elsewhere modality that generalises the somewhere modality
(U) as (U) @ = @V (#) . For a pointed model (K, w), where K = (W, R, V) is a finite
Kripke function and w € W, the satisfaction relation F is defined as follows:

(K, W) E p & wevp).

(KW E Qe & there is w' € R(w) such that (X, w) E ¢.

W) EO g & thereis w € W such that w € R(W') and (K, W) E .

KW E(#£) o & thereis w € W such that w’ # w and (K, w') E .

KW Epxy & (K1, W) E @ and (K,, w) E y for some K, Ky s.t. K+ K, =K.

By looking at the diagram above, compared to the work in [18], ALT allows us to
show that propositional symbols and the elsewhere modality can be removed from MSL
without changing the complexity status of its satisfiability problem. Similarly, ALT
allows us to refine the analysis on the complexity of SAT(MLH) by showing that the
¢{~! modality is not needed in order to achieve non-elementary complexities.

Let (F,t,n) be a pointed forest and let (', w) be a pointed model where K =
(W, R, V). For the reduction, we use w to encode the current node n. Encoding t
is not so immediate, as MLH does not have propositional symbols. A possible so-
lution is to encode it as a self-loop, so that the formula T is translated to a query
stating that w reaches the self-loop. As done in Section 4.1 we define the formula
size=1Z (U)OT A-((U)Y OT = (U) OT), that is satisfied whenever |R|=1. We also
define the modalities 4 and 4*in MLH: ¢ _¢ £ (size=1) x @ and ¢ 0 £ T x* ¢.
Lastly, we introduce the formula selfloop £ 4*(OOT A ~4, 4, T) that is satisfied by
(K, w) if (w,w) € R. Suppose for a moment that we are able to use this formula to
characterise the class of of every finite Kripke function (W, R, V) where there is exactly
one cycle, and this cycle is a self-loop on a world w,. Then, we use w, to encode the
target node t of a finite forest (F,t, n) while being careful that the 4 and Q* operators
of ALT are translated in such a way that the self-loop on w, is preserved. Because of
the specific treatment of w,, it is convenient to assume that the current evaluation node
n is encoded by a world difterent from w,, which reflects on the translation of (U). The
admissibility of this assumption follows by Lemma 4.

We encode pointed forests as finite Kripke functions. Let (F,t, n) be a pointed forest
s.t. t € dom(F) and n # t. A finite Kripke function (N, R, V),n) (recall, W = N') is
an encoding of (F,t,n) iff for every n’,n”” € N we have (n’,n") € R & (F(n') =n"
orn’ = n” =t). Notice how R is essentially defined from F by adding the self-loop
(t,t). The translation 7(¢) in MLH of a formula ¢ in ALT is homomorphic for T and
Boolean connectives (as is the case for 7, in Section 4.1), and otherwise it is defined as

7(T) def ‘;’z(QT AUIOT = (>(>T)). (@ o) = @ (t(e) A (U) selfloop).
@) EOT A=) (4% 9) £ §(c(9) A (U) se1floop).
7({U) @) & (U)(=selfloop A ()).

We highlight two points of this translation. First, 7(T) essentially asks to find a submodel
where every path reaches the self-loop and the current evaluation node is in one of these
paths. Second, notice how the translation of 4 and 4* checks that the model is updated
so that the self-loop is not lost, as required by our encoding. It should be noted that
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this requirement cannot be met if we were translating the definition of ALT from [31],
featuring the * operator. Indeed, by partitioning the model into two pieces, this operator
removes the self-loop from one of the two parts, breaking our encoding. The following
lemma (proved by structural induction on @) shows the correctness of our translation.

Lemma 11. Let (F,t,n) be a pointed model s.t. n # t and t € dom(F). Let (K, n) be
an encoding of (F,t,n). Given a formula @ in ALT, (F,t,n) E @ iff (IC,n) E 7(p).

To conclude the reduction we show that we can characterise the class of models encoding
pointed forests, i.e. the finite Kripke functions with exactly one cycle, which is a self-loop.
We first define the formula hascycl Z 4* ((U) OT A[UIQT = OO T)) that checks if
a finite Kripke function has at least one cycle. Then, the desired property can be simply
defined by stating that there is a self-loop which, whenever removed, leads to an acyclic
submodel: 1selfloop £ (U) (selfloop A-@OLA hascycl)).

Lemma 12. Every formula ¢ in ALT is equisatisfiable with t(¢) A 1selfloop.

For the proof of Lemma 12, both Lemma 4(1) and (2) are used in order to restrict ourselves
to pointed forest (F,t,n) s.t. n # t and t & dom(F). Then, we apply Lemma 11.

Theorem 3. The fragment of MLH and MSL with Boolean operators, {y and (U) modal-
ities, and * (alternatively, QML and Q:; ) has a TOWER-complete satisfiability problem.

5 Conclusions

We studied an Auxiliary Logic on Trees (ALT), a quite simple formalism that admits a
TOWER-complete satisfiability problem. ALT is shown to be easily captured by various
non-elementary logics: first-order separation logic, quantified CTL, modal logic of heaps
and modal separation logic. Through ALT, we were not only able to connect these logics,
but also to refine their analysis and find strict fragments that are still TOWER-hard. Most
importantly, with ALT we hope to have shown a set of simple and concrete properties,
centred around reachability and submodel reasoning, that when put together lead to
logics having a non-elementary satisfiability problem.

This work leaves a few questions open. First, the fragments of ALT where 4 or 4™ are
removed from the logic have not being studied yet. The logic without ‘* is of particular
interests, as it is connected with the sabotage logics from [4]. Second, the analysis
done on first-order separation logic and on modal logic of heaps (Sections 4.1 and 4.3)
reveals that the complexity of these logics does not change when the * operator and
the emp predicate are replaced with the less general operators 4 and Q* We find this
point interesting, as from an overview of the literature, it seems that this result also
holds for the separation logics considered in [9,17,19,30,31]. Moreover, for the logics
whose expressiveness is known, i.e. the ones in [19,30], it seems that also the expressive
power remains unchanged. However, we struggle to see how to uniformly express the
operator * with 4 and Q*, as the resulting logics reason on the model in a different
way (as as shown in Section 2). Lastly, this work illustrates the potential of ALT as a
tool for proving the TOWER-hardness of logics interpreted on tree-like structures. As
the operators of our logic are simple, we hope ALT to be useful to study logics with
unknown complexities.
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