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Abstract. Inductive datatypes in programming languages allow users
to define useful data structures such as natural numbers, lists, trees, and
others. In this paper we show how inductive datatypes may be added to
the quantum programming language QPL. We construct a sound cate-
gorical model for the language and by doing so we provide the first de-
tailed semantic treatment of user-defined inductive datatypes in quantum
programming. We also show our denotational interpretation is invariant
with respect to big-step reduction, thereby establishing another novel
result for quantum programming. Compared to classical programming,
this property is considerably more difficult to prove and we demonstrate
its usefulness by showing how it immediately implies computational ade-
quacy at all types. To further cement our results, our semantics is entirely
based on a physically natural model of von Neumann algebras, which are
mathematical structures used by physicists to study quantum mechanics.
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1 Introduction

Quantum computing is a computational paradigm which takes advantage of
quantum mechanical phenomena to perform computation. A quantum computer
can solve problems which are out of reach for classical computers (e.g. factori-
sation of large numbers [24], solving large linear systems [8]). The recent de-
velopments of quantum technologies points out the necessity of filling the gap
between theoretical quantum algorithms and the actual (prototypes of) quan-
tum computers. As a consequence, quantum software and in particular quantum
programming languages play a key role in the future development of quantum
computing. The present paper makes several theoretical contributions towards
the design and denotational semantics of quantum programming languages.

Our development is based around the quantum programming language QPL
[23] which we extend with inductive datatypes. Our paper is the first to construct
a denotational semantics for user-defined inductive datatypes in quantum pro-
gramming. In the spirit of the original QPL, our type system is affine (discarding
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of arbitrary variables is allowed, but copying is restricted). We also extend QPL
with a copy operation for classical data, because this is an admissible operation
in quantum mechanics which improves programming convenience. The addition
of inductive datatypes requires a departure from the original denotational se-
mantics of QPL, which are based on finite-dimensional quantum structures, and
we consider instead (possibly infinite-dimensional) quantum structures based on
W*-algebras (also known as von Neumann algebras), which have been used by
physicists in the study of quantum foundations [25]. As such, our semantic treat-
ment is physically natural and our model is more accessible to physicists and
experts in quantum computing compared to most other denotational models.

QPL is a first-order programming language which has procedures, but it does
not have lambda abstractions. Thus, there is no use for a !-modality and we
show how to model the copy operation by describing the canonical comonoid
structure of all classical types (including the inductive ones).

An important notion in quantum mechanics is the idea of causality which
has been formulated in a variety of different ways. In this paper, we consider a
simple operational interpretation of causality: if the output of a physical process
is discarded, then it does not matter which process occurred [10]. In a symmetric
monoidal category C with tensor unit I, this can be understood as requiring that
for any morphism (process) f : A1 → A2, it must be the case that �A2

◦f = �A1
,

where �Ai : Ai → I is the discarding map (process) at the given objects. This
notion ties in very nicely with our affine language, because we have to show that
the interpretation of values is causal, i.e., values are always discardable.

A major contribution of this paper is that we prove the denotational seman-
tics is invariant with respect to both small-step reduction and big-step reduction.
The latter is more difficult in quantum programming and our paper is the first
to demonstrate such a result. As a corollary, we obtain computational adequacy.

2 Syntax of QPL

The syntax of QPL (including our extensions) is summarised in Figure 1. A well-
formed type context, denoted ` Θ, is simply a list of distinct type variables. A
type A is well-formed in type context Θ, denoted Θ ` A, if the judgement can be
derived according to the following rules (see [1,6] for a more detailed exposition):

` Θ
Θ ` Θi

` Θ
Θ ` I

` Θ
Θ ` qbit

Θ ` A Θ ` B ? ∈ {+,⊗}
Θ ` A ? B

Θ,X ` A
Θ ` µX.A

A type A is closed if · ` A. Note that nested type induction is allowed. Hence-
forth, we implicitly assume that all types we are dealing with are well-formed.

Example 1. The type of natural numbers is defined as Nat ≡ µX.I +X. Lists
of a closed type · ` A are defined as List(A) ≡ µY.I +A⊗ Y.

Notice that our type system is not equipped with a !-modality. Indeed, in the
absence of function types, there is no reason to introduce it. Instead, we specify
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Types A,B ::= X | I | qbit | A+B | A⊗B | µX.A
Classical Types P,R ::= X | I | P +R | P ⊗R | µX.P
Terms M,N ::= new unit u | discard x | y = copy x | new qbit q |

b = measure q | q1, . . . , qn ∗= S | M ;N | skip |
while b do M | x = leftA,BM | x = rightA,BM |
case y of {left x1 →M | right x2 → N} |
x = (x1, x2) | (x1, x2) = x | y = fold x | y = unfold x |
proc f :: x : A→ y : B {M} | y = f(x)

Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An
Procedure contexts Π ::= f1 : A1 → B1, . . . , fn : An → Bn

Π ` 〈Γ 〉 new unit u 〈Γ, u : I〉 Π ` 〈Γ, x : A〉 discard x 〈Γ 〉

P is a classical type
Π ` 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉 Π ` 〈Γ 〉 skip 〈Γ 〉

Π ` 〈Γ 〉 M 〈Γ ′〉 Π ` 〈Γ ′〉 N 〈Σ〉
Π ` 〈Γ 〉 M ;N 〈Σ〉

Π ` 〈Γ, b : bit〉 M 〈Γ, b : bit〉
Π ` 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉

Π ` 〈Γ 〉 new qbit q 〈Γ, q : qbit〉 Π ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉
S is a unitary of arity n

Π ` 〈Γ, q1 : qbit, . . . , qn : qbit〉 q1, . . . , qn ∗= S 〈Γ, q1 : qbit, . . . , qn : qbit〉

Π ` 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉

Π ` 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉
Π ` 〈Γ, x1 : A〉 M1 〈Σ〉 Π ` 〈Γ, x2 : B〉 M2 〈Σ〉

Π ` 〈Γ, y : A+B〉 case y of {leftA,B x1 →M1 | rightA,B x2 →M2 } 〈Σ〉

Π ` 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉

Π ` 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉

Π ` 〈Γ, x : A[µX.A/X]〉 y = foldµX.A x 〈Γ, y : µX.A〉

Π ` 〈Γ, x : µX.A〉 y = unfold x 〈Γ, y : A[µX.A/X]〉
Π, f : A→ B ` 〈x : A〉 M 〈y : B〉

Π ` 〈Γ 〉 proc f :: x : A→ y : B {M} 〈Γ 〉

Π, f : A→ B ` 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉

Fig. 1: Syntax and formation rules for QPL terms.
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the subset of types where copying is an admissible operation. The classical types
are a subset of our types defined in Figure 1. They are characterised by the
property that variables of classical types may be copied, whereas variables of
non-classical types may not be copied (see the rule for copying in Figure 1).

We use small Latin letters (e.g. x, y, u, q, b) to range over term variables. More
specifically, q ranges over variables of type qbit, u over variables of unit type I, b
over variables of type bit := I+I and x, y range over variables of arbitrary type.
We use Γ and Σ to range over variable contexts. A variable context is a function
from term variables to closed types, which we write as Γ = x1 : A1, . . . , xn : An.

We use f, g to range over procedure names. Every procedure name f has an
input type A and an output type B, denoted f : A → B, where A and B are
closed types. We use Π to range over procedure contexts. A procedure context
is a function from procedure names to pairs of procedure input-output types,
denoted Π = f1 : A1 → B1, . . . , fn : An → Bn.

Remark 2. Unlike lambda abstractions, procedures cannot be passed to other
procedures as input arguments, nor can they be returned as output.

A term judgement has the form Π ` 〈Γ 〉 M 〈Σ〉 (see Figure 1) and indicates
that term M is well-formed in procedure context Π with input variable context
Γ and output variable context Σ. All types occurring within it are closed.

The intended interpretation of the quantum rules are as follows. The term
new qbit q prepares a new qubit q in state |0〉〈0|. The term q1, . . . , qn ∗= S
applies a unitary operator S to a sequence of qubits in the standard way. The
term b =measure q performs a quantum measurement on qubit q and stores the
measurement outcome in bit b. The measured qubit is destroyed in the process.

The no-cloning theorem of quantum mechanics [28] shows that arbitrary
qubits cannot be copied. Because of this, copying is restricted only to classical
types, as indicated in Figure 1, and this allows us to avoid runtime errors. Like
the original QPL [23], our type system is also affine and so any variable can be
discarded (see the formation rule for the term discard x in Figure 1).

3 Operational Semantics of QPL

In this section we describe the operational semantics of QPL. The central notion
is that of a program configuration which provides a complete description of the
current state of program execution. It consists of four components that must
satisfy some coherence properties: (1) the term which remains to be executed;
(2) a value assignment, which is a function that assigns formal expressions to
variables as a result of execution; (3) a procedure store which keeps track of what
procedures have been defined so far and (4) the quantum state computed so far.

Value Assignments. A value is an expression defined by the following grammar:

v, w ::= ∗ | n | leftA,Bv | rightA,Bv | (v, w) | foldµX.Av
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where n ranges over the natural numbers. Think of ∗ as representing the unique
value of unit type I and of n as representing a pointer to the n-th qubit of a
quantum state ρ. Specific values of interest are ff := leftI,I∗ and tt := rightI,I∗
which correspond to false and true respectively.

A qubit pointer context is a set Q of natural numbers. A value v of type A is
well-formed in qubit pointer context Q, denoted Q ` v : A, if the judgement is
derivable from the following rules:

· ` ∗ : I {n} ` n : qbit
Q ` v : A

Q ` leftA,Bv : A+B

Q ` v : B

Q ` rightA,Bv : A+B

Q1 ` v : A Q2 ` w : B Q1 ∩Q2 = ∅
Q1, Q2 ` (v, w) : A⊗B

Q ` v : A[µX.A/X]

Q ` foldµX.Av : µX.A

If v is well-formed, then its type and qubit pointer context are uniquely deter-
mined. If Q ` v : P with P classical, then we say v is a classical value.

Lemma 3. If Q ` v : P is a well-formed classical value, then Q = ·.

A value assignment is a function from term variables to values, which we
write as V = {x1 = v1, . . . , xn = vn}, where xi are variables and vi are values. A
value assignment is well-formed in qubit pointer context Q and variable context
Γ , denoted Q;Γ ` V, if V has exactly the same variables as Γ , so that Γ = {x1 :
A1, . . . , xn : An}, and Q = Q1, . . . , Qn, s.t. Qi ` vi : Ai. Such a splitting of Q is
necessarily unique, if it exists, and some of the Qi may be empty.

Procedure Stores. A procedure store is a set of procedure definitions, written as:

Ω = {f1 :: x1 : A1 → y1 : B1 {M1}, . . . , fn :: xn : An → yn : Bn {Mn}} .

A procedure store is well-formed in procedure context Π, written Π ` Ω, if the
judgement is derivable via the following rules:

· ` ·
Π ` Ω Π, f : A→ B ` 〈x : A〉 M 〈y : B〉
Π, f : A→ B ` Ω, f :: x : A→ y : B {M}

Program Configurations. A program configuration is a quadruple (M | V | Ω | ρ),
where M is a term, V is a value assignment, Ω is a procedure store and ρ ∈
C2n×2n is a finite-dimensional density matrix with 0 ≤ tr(ρ) ≤ 1. The density
matrix ρ represents a (mixed) quantum state and its trace may be smaller than
one because we also use it to encode probability information (see Remark 4).
We write dim(ρ) = n to indicate that the dimension of ρ is n.

A well-formed program configuration is a configuration (M | V | Ω | ρ),
where there exist (necessarily unique) Π,Γ,Σ,Q, such that: (1) Π ` 〈Γ 〉 M 〈Σ〉
is a well-formed term; (2) Q;Γ ` V is a well-formed value assignment; (3)
Π ` Ω is a well-formed procedure store; and (4) Q = {1, 2, . . . , dim(ρ)}. We
write Π;Γ ;Σ;Q ` (M | V | Ω | ρ) to indicate this situation. The formation
rules enforce that the qubits of ρ and the qubit pointers from V are in a 1-1
correspondence.
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(new unit u | V | Ω | ρ) (skip | V, u = ∗ | Ω | ρ)

(discard x | V, x = v | Ω | ρ) (skip | rv(V ) | Ω | trv(ρ))

(y = copy x | V, x = v | Ω | ρ) (skip | V, x = v, y = v | Ω | ρ)

(new qbit q | V | Ω | ρ) (skip | V, q = dim(ρ) + 1 | Ω | ρ⊗ |0〉〈0|)

( #„q ∗= S | V, #„q = #„m | Ω | ρ) (skip| V, #„q = #„m | Ω | S #„m(ρ))

(b = measure q | V, q = m | Ω | ρ) (skip | rm(V ), b = ff | Ω | m〈0|ρ|0〉m)

(b = measure q | V, q = m | Ω | ρ) (skip | rm(V ), b = tt | Ω | m〈1|ρ|1〉m)

(skip;P | V | Ω | ρ) (P | V | Ω | ρ)
(P | V | Ω | ρ) (P ′ | V ′ | Ω′ | ρ′)

(P ;Q | V | Ω | ρ) (P ′;Q | V ′ | Ω′ | ρ′)

(while b do M | V, b = ff | Ω | ρ) (skip | V, b = ff | Ω | ρ)

(while b do M | V, b = tt | Ω | ρ) (M ;while b do M | V, b = tt | Ω | ρ)

(y = left x | V, x = v | Ω | ρ) (skip | V, y = left v | Ω | ρ)

(y = right x | V, x = v | Ω | ρ) (skip | V, y = right v | Ω | ρ)

(case y of {left x1 →M1 | right x2 →M2 } | V, y = left v | Ω | ρ) (M1 | V, x1 = v | Ω | ρ)

(case y of {left x1 →M1 | right x2 →M2 } | V, y = right v | Ω | ρ) (M2 | V, x2 = v | Ω | ρ)

(x = (x1, x2) | V, x1 = v1, x2 = v2 | Ω | ρ) (skip | V, x = (v1, v2) | Ω | ρ)

((x1, x2) = x | V, x = (v1, v2) | Ω | ρ) (skip | V, x1 = v1, x2 = v2 | Ω | ρ)

(y = fold x | V, x = v | Ω | ρ) (skip | V, y = fold v | Ω | ρ)

(y = unfold x | V, x = fold v | Ω | ρ) (skip | V, y = v | Ω | ρ)

(proc f :: x : A→ y : B {M} | V | Ω | ρ) (skip | V | Ω, f :: x : A→ y : B {M} | ρ)

(y1 = f(x1) | V, x1 = v | Ω, f :: x2 : A→ y2 : B {M} | ρ) 
(Mα | V, x1 = v | Ω, f :: x2 : A→ y2 : B {M} | ρ)

Fig. 2: Small Step Operational semantics of QPL.
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The small step semantics is defined for configurations (M | V | Ω | ρ) by
induction on M in Figure 2 and we now explain the notations used therein.

In the rule for discarding, we use two functions that depend on a value v.
They are trv, which modifies the quantum state ρ by tracing out all of its qubits
which are used in v, and rv which simply reindexes the value assignment, so that
the pointers within rv(V ) correctly point to the corresponding qubits of trv(ρ),
which is potentially of smaller dimension than ρ. Formally, for a well-formed
value v, let Q and A be the unique qubit pointer context and type, such that
Q ` v : A. Then trv(ρ) is the quantum state obtained from ρ by tracing out all
qubits specified by Q. Given a value assignment V = {x1 = v1, . . . xn = vn},
then rv(V ) = {x1 = r′v(v1), . . . , xn = r′v(vn)}, where:

r′v(w) =



∗, if w = ∗
k − |{i ∈ Q | i < k}|, if w = k ∈ N
left r′v(w′), if w = left w′

right r′v(w′), if w = right w′

(r′v(w1), r
′
v(w2)) if w = (w1, w2)

fold r′v(w
′), if w = fold w′

In the rule for unitaries, the superoperator S #„m applies the unitary S to the
vector of qubits specified by #„m. In the rules for measurement, the m-th qubit of
ρ is measured in the computational basis, the measured qubit is destroyed in the
process and the measurement outcome is stored in the bit b. More specifically,
|i〉m = I2m−1 ⊗ |i〉 ⊗ I2n−m and m〈i| is its adjoint, for i ∈ {0, 1}, and where In is
the identity matrix in Cn×n.

Remark 4. Because of the way we decided to handle measurements, reduction
(−  −) is a nondeterministic operation, where we encode the probabilities
of reduction within the trace of our density matrices in a similar way to [9].
Equivalently, we may see the reduction relation as probabilistic provided that we
normalise all density matrices and decorate the reductions with the appropriate
probability information as specified by the Born rule of quantum mechanics.
The nondeterministic view leads to a more concise and clear presentation and
because of this we have chosen it over the probabilistic view.

The introduction rule for procedures simply defines a procedure which is
added to the procedure store. In the rule for calling procedures, the term Mα

is α-equivalent to M and is obtained from it by renaming the input x2 to x1,
renaming the output y2 to y1 and renaming all other variables within M to some
fresh names, so as to avoid conflicts with the input, output and the rest of the
variables within V .

Theorem 5 (Subject reduction). If Π;Γ ;Σ;Q ` (M | V | Ω | ρ) and
(M | V | Ω | ρ) (M ′ | V ′ | Ω′ | ρ′), then Π ′;Γ ′;Σ;Q′ ` (M ′ | V ′ | Ω′ | ρ′),
for some (necessarily unique) contexts Π ′, Γ ′, Q′ and where Σ is invariant.

Assumption 6. From now on we assume all configurations are well-formed.
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while b do {
new qbit q;
q *= H;
discard b;
b = measure q

}

(a) A term M

(M | b = tt | · | 1)

(M | b = tt | · | 0.5)

(M | b = tt | · | 0.25)

 
∗  

∗

(skip | b = ff | · | 0.5)
 
∗

(skip | b = ff | · | 0.25)

 
∗

(skip | b = ff | · | 0.125)

 
∗···

 
∗

(b) A reduction graph involving M

Fig. 3: Example of a term and of a reduction graph.

A configuration (M | V | Ω | ρ) is said to be terminal if M = skip. Program
execution finishes at terminal configurations, which are characterised by the
property that they do not reduce any further. We will use calligraphic letters
(C,D, . . .) to range over configurations and we will use T to range over terminal
configurations. For a configuration C = (M | V | Ω | ρ), we write for brevity
tr(C) := tr(ρ) and we shall say C is normalised whenever tr(C) = 1. We say that
a configuration C is impossible if tr(C) = 0 and we say it is possible otherwise.

Theorem 7 (Progress). If C is a configuration, then either C is terminal or
there exists a configuration D, such that C  D. Moreover, if C is not terminal,
then tr(C) =

∑
C D tr(D) and there are at most two such configurations D.

In the situation of the above theorem, the probability of reduction is given
by Pr(C  D) := tr(D)/tr(C), for any possible C (see Remark 4) and Theorem 7
shows the total probability of all single-step reductions is 1. If C is impossible,
then C occurs with probability 0 and subsequent reductions are also impossible.

Probability of Termination. Given configurations C and D let Seqn(C,D) :=
{C0  · · ·  Cn| C0 = C and Cn = D}, and let Seq≤n(C,D) =

⋃n
i=0 Seqn(C,D).

Finally, let TerSeq≤n(C) :=
⋃
T terminal Seq≤n(C, T ). In other words, TerSeq≤n(C)

is the set of all reduction sequences from C which terminate in at most n
steps (including 0 if C is terminal). For every terminating reduction sequence
r = (C  · · · T ), let End(r) := T , i.e. End(r) is simply the (terminal) end-
point of the sequence.

For any configuration C, the sequence
(∑

r∈TerSeq≤n(C)
tr(End(r))

)
n∈N

is in-

creasing with upper bound tr(C) (follows from Theorem 7). For any possible C,
we define:

Halt(C) :=
∞∨
n=0

∑
r∈TerSeq≤n(C)

tr(End(r))/tr(C)

which is exactly the probability of termination of C. This is justified, because
Halt(T ) = 1, for any terminal (and possible) configuration T and Halt(C) =∑

C D
D possible

Pr(C  D)Halt(D). We write  ∗ for the transitive closure of  .



570 R. Péchoux et al.

proc GHZnext :: l : ListQ -> l : ListQ {
new qbit q;
case l of

nil -> q*=H;
l = q :: nil

| q’ :: l’ -> q’,q *= CNOT;
l = q :: q’ :: l’

}

proc GHZ :: n : Nat -> l : ListQ {
case n of

zero -> l = nil
| s(n’) -> l = GHZnext(GHZ(n’))

}

(a) Procedures for generating
GHZn.

(l = GHZnext(l) | l = 2 :: 1 :: nil | Ω | γ2)

 

(new qbit q; · · · | l = 2 :: 1 :: nil | Ω | γ2)

 

(case l of · · · | l = 2 :: 1 :: nil, q = 3 | Ω | γ2 ⊗ |0〉〈0|) 
∗

(q’,q *=CNOT; · · · | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ2 ⊗ |0〉〈0|)
 

(l = q :: q’ :: l’ | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ3) 
∗

(skip | l = 3 :: 2 :: 1 :: nil | Ω | γ3)

(l = GHZ(n) | n = s(s(s(zero))) | Ω | 1)

 
∗

(b) A reduction sequence producing GHZ3.

Fig. 4: Example with lists of qubits and a recursive procedure.

Example 8. Consider the term M in Figure 3. The body of the while loop (3a)
has the effect of performing a fair coin toss (realised through quantum measure-
ment in the standard way) and storing the outcome in variable b. Therefore,
starting from configuration C = (M | b = tt | · | 1), as in Subfigure 3b, the pro-
gram has the effect of tossing a fair coin until ff shows up. The set of terminal
configurations reachable from C is {(skip | b = ff | · | 2−i) | i ∈ N≥1} and the
last component of each configuration is a 1×1 density matrix which is exactly the
probability of reducing to the configuration. Therefore Halt(C) =

∑∞
i=1 2

−i = 1.

Example 9. The GHZn state is defined as γn := (|0〉⊗n+|1〉⊗n)(〈0|⊗n+〈1|⊗n)/2.
In Figure 4, we define a procedure GHZ, which given a natural number n, gen-
erates the state γn, which is represented as a list of qubits of length n. The
procedure (4a) uses an auxiliary procedure GHZnext, which given a list of qubits
representing the state γn, returns the state γn+1 again represented as a list of
qubits. The two procedures make use of some (hopefully obvious) syntactic sugar.
In 4b, we also present the last few steps of a reduction sequence which produces
γ3 starting from configuration (l = GHZ(n) | n = s(s(s(zero))) | Ω | 1), where
Ω contains the above mentioned procedures. In the reduction sequence we only
show the term in evaluating position and we omit some intermediate steps. The
type ListQ is a shorthand for List(qbit) from Example 1.

4 W*-algebras

In this section we describe our denotational model. It is based on W*-algebras,
which are algebras of observables (i.e. physical entities), with interesting domain-
theoretic properties. We recall some background on W*-algebras and their cat-
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egorical structure. We refer the reader to [25] for an encyclopaedic account on
W*-algebras.

Domain-theoretic Preliminaries. Recall that a directed subset of a poset P is
a non-empty subset X ⊆ P in which every pair of elements of X has an upper
bound in X. A poset P is a directed-complete partial order (dcpo) if each directed
subset has a supremum. A poset P is pointed if it has a least element, usually
denoted by ⊥. A monotone map f : P → Q between posets is Scott-continuous if
it preserves suprema of directed subsets. If P and Q are pointed and f preserves
the least element, then we say f is strict. We write DCPO (DCPO⊥!) for the
category of (pointed) dcpo’s and (strict) Scott-continuous maps between them.

Definition of W*-algebras. A complex algebra is a complex vector space V
equipped with a bilinear multiplication (− · −) : V × V → V , which we write
as juxtaposition. A Banach algebra A is a complex algebra A equipped with a
submultiplicative norm ‖ − ‖ : A → R≥0, i.e. ∀x, y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖. A
∗-algebra A is a complex algebra A with an involution (−)∗ : A → A such that
(x∗)∗ = x, (x + y)∗ = (x∗ + y∗), (xy)∗ = y∗x∗ and (λx)∗ = λx∗, for x, y ∈ A
and λ ∈ C. A C*-algebra is a Banach ∗-algebra A which satisfies the C*-identity,
i.e. ‖x∗x‖ = ‖x‖2 for all x ∈ A. A C*-algebra A is unital if it has an element
1 ∈ A, such that for every x ∈ A : x1 = 1x = x. All C*-algebras in this paper
are unital and for brevity we regard unitality as part of their definition.

Example 10. The algebra Mn(C) of n × n complex matrices is a C*-algebra.
In particular, the set of complex numbers C has a C*-algebra structure since
M1(C) ∼= C. More generally, the n × n matrices valued in a C*-algebra A also
form a C*-algebra Mn(A). The C*-algebra of qubits is qbit :=M2(C).

An element x ∈ A of a C*-algebra A is called positive if ∃y ∈ A : x = y∗y.
The poset of positive elements of A is denoted A+ and its order is given by
x ≤ y iff (y − x) ∈ A+. The unit interval of A is the subposet [0, 1]A ⊆ A+ of
all positive elements x such that 0 ≤ x ≤ 1.

Let f : A → B be a linear map between C*-algebras A and B. We say
that f is positive if it preserves positive elements. We say that f is completely
positive if it is n-positive for every n ∈ N, i.e. the map Mn(f) : Mn(A) →
Mn(B) defined for every matrix [xi,j ]1≤i,j≤n ∈Mn(A) byMn(f)([xi,j ]1≤i,j≤n) =
[f(xi,j)]1≤i,j≤n is positive. The map f is called multiplicative, involutive, unital
if it preserves multiplication, involution, and the unit, respectively. The map f
is called subunital whenever the inequalities 0 ≤ f(1) ≤ 1 hold. A state on a
C*-algebra A is a completely positive unital map s : A→ C.

Although W*-algebras are commonly defined in topological terms (as C*-
algebras closed under several operator topologies) or equivalently in algebraic
terms (as C*-algebras which are their own bicommutant), one can also equiva-
lently define them in domain-theoretic terms [19], as we do next.

A completely positive map between C*-algebras is normal if its restriction
to the unit interval is Scott-continuous [19, Proposition A.3]. A W*-algebra is a
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C*-algebra A such that the unit interval [0, 1]A is a dcpo, and A has a separating
set of normal states: for every x ∈ A+, if x 6= 0, then there is a normal state
s : A→ C such that s(x) 6= 0 [25, Theorem III.3.16].

A linear map f : A→ B between W*-algebras A and B is called an NCPSU-
map if f is normal, completely positive and subunital. The map f is called an
NMIU-map if f is normal, multiplicative, involutive and unital. We note that
every NMIU-map is necessarily an NCPSU-map and that W*-algebras are closed
under formation of matrix algebras as in Example 10.

Categorical Structure. LetW∗
NCPSU be the category of W*-algebras and NCPSU-

maps and letW∗
NMIU be its full-on-objects subcategory of NMIU-maps. Through-

out the rest of the paper let C := (W∗
NCPSU)

op and let V := (W∗
NMIU)

op. QPL
types are interpreted as functors JΘ ` AK : V|Θ| → V and closed QPL types as
objects JAK ∈ Ob(V) = Ob(C). One should think of V as the category of val-
ues, because the interpretation of our values from §3 are indeed V-morphisms.
General QPL terms are interpreted as morphisms of C, so one should think of
C as the category of computations. We now describe the categorical structure of
V and C and later we justify our choice for working in the opposite categories.

Both C and V have a symmetric monoidal structure when equipped with
the spatial tensor product, denoted here by (−⊗−), and tensor unit I := C [11,
Section 10]. Moreover, V is symmetric monoidal closed and also complete and
cocomplete [11]. C and V have finite coproducts, given by direct sums of W*-
algebras [2, Proposition 4.7.3]. The coproduct of objects A and B is denoted
by A + B and the coproduct injections are denoted leftA,B : A → A + B and
rightA,B : B → A + B. Given morphisms f : A → C and g : B → C, we write
[f, g] : A + B → C for the unique cocone morphism induced by the coproduct.
Moreover, coproducts distribute over tensor products [2, §4.6]. More specifically,
there exists a natural isomorphism dA,B,C : A⊗ (B + C)→ (A⊗B) + (A⊗ C)
which satisfies the usual coherence conditions. The initial object in C is moreover
a zero object and is denoted 0. The W*-algebra of bits is bit := I + I = C⊕C.

The categories V,C and Set are related by symmetric monoidal adjunctions:

Set V
F

` C
J

`

G R
[26, pp. 11]

and the subcategory inclusion J preserves coproducts and tensors up to equality.
Interpreting QPL within C and V is not an ad hoc trick. In physical terms,

this corresponds to adopting the Heisenberg picture of quantum mechanics and
this is usually done when working with infinite-dimensional W*-algebras (like
we do). Semantically, this is necessary, because (1) our type system has condi-
tional branching and we need to interpret QPL terms within a category with
finite coproducts; (2) we have to be able to compute parameterised initial al-
gebras to interpret inductive datatypes. The category W∗

NCPSU has finite prod-
ucts, but it does not have coproducts, so by interpreting QPL terms within
C = (W∗

NCPSU)
op we solve problem (1). For (2), the monoidal closure of V =

(W∗
NMIU)

op is crucial, because it implies the tensor product preserves ω-colimits.
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tr :Mn(C)→ C newρ : C→M2n(C) meas :M2(C)→ C⊕ C unitaryS :M2n(C)→M2n(C)

tr :: A 7→
∑
iAi,i newρ :: a 7→ aρ meas ::

(
a b
c d

)
7→
(
a d
)

unitaryS :: A 7→ SAS†

tr† : C→Mn(C) new†ρ :M2n(C)→ C meas† : C⊕ C→M2(C) unitary†S :M2n(C)→M2n(C)

tr† :: a 7→ aIn new†ρ :: A 7→ tr(Aρ) meas† ::
(
a d
)
7→
(
a 0
0 d

)
unitary†S :: A 7→ S†AS

Fig. 5: A selection of maps in the Schrödinger picture (f : A → B) and their
Hermitian adjoints (f† : B → A) used in the Heisenberg picture.

Convex Sums. In both C and W∗
NCPSU, morphisms are closed under convex

sums, which are defined pointwise, as usual. More specifically, given NCPSU-
maps f1, . . . , fn : A → B and real numbers pi ∈ [0, 1] with

∑
i pi ≤ 1, then the

map
∑
i pifi : A→ B is also an NCPSU-map.

Order-enrichment. For W*-algebras A and B, we define a partial order on
C(A,B) by : f ≤ g iff g − f is a completely positive map. Equipped with
this order, our category C is DCPO⊥!-enriched [3, Theorem 4.3]. The least el-
ement in C(A,B) is also a zero morphism and is given by the map 0 : A → B,
defined by 0(x) = 0. Also, the coproduct structure and the symmetric monoidal
structure are both DCPO⊥!-enriched [2, Corollary 4.9.15] [3, Theorem 4.5].

Quantum Operations. For convenience, our operational semantics adopts the
Schrödinger picture of quantum mechanics, which is the picture most experts in
quantum computing are familiar with. However, as we have just explained, our
denotational semantics has to adopt the Heisenberg picture. The two pictures are
equivalent in finite dimensions and we will now show how to translate from one
to the other. By doing so, we provide an explicit description (in both pictures)
of the required quantum maps that we need to interpret QPL.

Consider the maps in Figure 5. The map tr is used to trace out (or discard)
parts of quantum states. Density matrices ρ are in 1-1 correspondence with the
maps newρ, which we use in our semantics to describe (mixed) quantum states.
The meas map simply measures a qubit in the computational basis and returns
a bit as measurement outcome. The unitaryS map is used for application of a
unitary S. These maps work as described in the Schrödinger picture of quantum
mechanics, i.e., the category W∗

NCPSU. For every map f : A → B among those
mentioned, f† : B → A indicates its Hermitian adjoint 3. In the Heisenberg
picture, composition of maps is done in the opposite way, so we simply write
f‡ := (f†)op ∈ C(A,B) for the Hermitian adjoint of f when seen as a morphism
in (W∗

NCPSU)
op = C. Thus, the mapping (−)‡ translates the above operations

from the Schrödinger picture (the category W∗
NCPSU) to the Heisenberg picture

(the category C) of quantum mechanics.

3 This adjoint exists, because A and B are finite-dimensional W*-algebras which there-
fore have the structure of a Hilbert space when equipped with the Hilbert-Schmidt
inner product [27, pp. 145].
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Parameterised Initial Algebras. In order to interpret inductive datatypes, we
need to be able to compute parameterised initial algebras for the functors in-
duced by our type expressions. V is ideal for this, because it is cocomplete and
monoidal closed and so all type expressions induce functors on V which preserve
ω-colimits.

Definition 11 (cf. [6, §6.1]). Given a category A and a functor T : An → A,
with n ≥ 1, a parameterised initial algebra for T is a pair (T ], φT ), such that:

– T ] : An−1 → A is a functor;
– φT : T ◦ 〈Id, T ]〉 ⇒ T ] : An−1 → A is a natural isomorphism;
– For every A ∈ Ob(An−1), the pair (T ]A, φTA) is an initial T (A,−)-algebra.

Proposition 12. Every ω-cocontinuous functor T : Vn → V has a parame-
terised initial algebra (T ], φT ) with T ] : Vn−1 → V being ω-cocontinuous.

Proof. V is cocomplete, so this follows from [13, §4.3]. ut

5 Denotational Semantics of QPL

In this section we describe the denotational semantics of QPL.

5.1 Interpretation of Types

The interpretation of a type Θ ` A is a functor JΘ ` AK : V|Θ| → V, defined
by induction on the derivation of Θ ` A in Figure 6. As usual, one has to prove
this assignment is well-defined by showing the required initial algebras exist.

Proposition 13. The assignment in Figure 6 is well-defined.

Proof. By induction, every JΘ ` AK is an ω-cocontinuous functor and thus it has
a parameterised initial algebra by Proposition 12. ut

Lemma 14 (Type Substitution). Given types Θ,X ` A and Θ ` B, then:

JΘ ` A[B/X]K = JΘ,X ` AK ◦ 〈Id, JΘ ` BK〉.

Proof. Straightforward induction. ut

For simplicity, the interpretation of terms is only defined on closed types and so
we introduce more concise notation for them. For any closed type · ` A we write
for convenience JAK := J· ` AK(∗) ∈ Ob(V), where ∗ is the unique object of the
terminal category 1. Notice also that JAK ∈ Ob(C) = Ob(V).

Definition 15. Given a closed type · ` µX.A, we define an isomorphism (in
V):

foldµX.A : JA[µX.A/X]K = JX ` AKJµX.AK ∼= JµX.AK : unfoldµX.A

where the equality is Lemma 14 and the iso is the initial algebra structure.

Example 16. The interpretation of the types from Example 1 are JNatK =⊕ω
i=0 C and JList(A)K =

⊕ω
i=0 JAK⊗i. Specifically, JList(qbit)K =

⊕ω
i=0 C2i×2i .
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JΘ ` AK : V|Θ| → V

JΘ ` ΘiK = Πi

JΘ ` IK = KI

JΘ ` qbitK = Kqbit

JΘ ` A+BK = + ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` A⊗BK = ⊗ ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` µX.AK = JΘ,X ` AK]

Fig. 6: Interpretations of types. KA is the constant-A-functor.

J· ` ∗ : IK := idI
J{n} ` n : qbitK := idqbit

JQ ` leftA,Bv : A+BK := left ◦ JvK
JQ ` rightA,Bv : A+BK := right ◦ JvK

JQ1, Q2 ` (v, w) : A⊗BK := JvK⊗ JwK
JQ ` foldµX.Av : µX.AK := fold ◦ JvK

Fig. 7: Interpretation of values.

JΠ ` 〈Γ 〉 new unit u 〈Γ, u : I〉K := π 7→ r−1

JΠ ` 〈Γ, x : A〉 discard x 〈Γ 〉K := π 7→ (r ◦ (id⊗ �))
JΠ ` 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉K := π 7→ (id⊗4)

JΠ ` 〈Γ 〉 new qbit q 〈Γ, q : qbit〉K := π 7→
(
(id⊗ new‡|0〉〈0|) ◦ r

−1
)

JΠ ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉K := π 7→
(
id⊗meas‡

)
JΠ ` 〈Γ, #„q :

#       „
qbit〉 #„q ∗= S 〈Γ, #„q :

#       „
qbit〉K := π 7→

(
id⊗ unitary‡S

)
JΠ ` 〈Γ 〉 M ;N 〈Σ〉K := π 7→ (JNK(π) ◦ JMK(π))
JΠ ` 〈Γ 〉 skip 〈Γ 〉K := π 7→ id
JΠ ` 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉K := π 7→ lfp(WJMK(π))
JΠ ` 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉K := π 7→ (id⊗ leftA,B)
JΠ ` 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉K := π 7→

(
id⊗ rightA,B

)
JΠ ` 〈Γ, y : A+B〉 case y of {left x1 →M1 | right x2 →M2} 〈Σ〉K :=

π 7→ ([JM1K(π), JM2K(π)] ◦ d)
JΠ ` 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉K := π 7→ id
JΠ ` 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉K := π 7→ id
JΠ ` 〈Γ, x : A[µX.A/X]〉 y = fold x 〈Γ, y : µX.A〉K := π 7→ (id⊗ fold)
JΠ ` 〈Γ, x : µX.A〉 y = unfold x 〈Γ, y : A[µX.A/X]〉K := π 7→ (id⊗ unfold)
JΠ ` 〈Γ 〉 proc f :: x : A→ y : B {M} 〈Γ 〉K := π 7→ id
JΠ, f : A→ B ` 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉K := (π, f) 7→ (id⊗ f) ,
where r is the right monoidal unit. For simplicity, we omit the monoidal associator.

Fig. 8: Interpretation of QPL terms.
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5.2 Copying and Discarding

Our type system is affine, so we have to construct discarding maps at all types.
The tensor unit I is a terminal object in V (but not in C) which leads us to the
next definition.

Definition 17 (Discarding map). For any W*-algebra A, let �A : A → I be
the unique morphism of V with the indicated domain and codomain.

We will see that all values admit an interpretation as V-morphisms and are
therefore discardable. In physical terms, this means values are causal (in the sense
mentioned in the introduction). Of course, this is not true for the interpretation
of general terms (which correspond to C-morphisms).

Our language is equipped with a copy operation on classical data, so we have
to explain how to copy classical values. We do this by constructing a copy map
defined at all classical types using results from [13,14].

Proposition 18. Using the categorical data of Set V
F

`

G
, one can

define a copy map 4JP K : JP K → JP K ⊗ JP K for every classical type · ` P , such
that the triple

(
JP K,4JP K, �JP K

)
forms a cocommutative comonoid in V.

We shall later see that the interpretations of our classical values are comonoid
homomorphisms (w.r.t. Proposition 18) and therefore they may be copied.

5.3 Interpretation of Terms

Given a variable context Γ = x1 : A1, . . . , xn : An, we interpet it as the object
JΓ K := JA1K ⊗ · · · ⊗ JAnK ∈ Ob(C). The interpretation of a procedure context
Π = f1 : A1 → B1, . . . , fn : An → Bn is defined to be the pointed dcpo
JΠK := C(A1, B1)× · · · ×C(An, Bn). A term Π ` 〈Γ 〉 M 〈Σ〉 is interpreted as
a Scott-continuous function JΠ ` 〈Γ 〉 M 〈Σ〉K : JΠK → C(JΓ K, JΣK) defined by
induction on the derivation of Π ` 〈Γ 〉 M 〈Σ〉 in Figure 8. For brevity, we often
write JMK := JΠ ` 〈Γ 〉 M 〈Σ〉K, when the contexts are clear or unimportant.

We now explain some of the notation used in Figure 8. The rules for ma-
nipulating qubits use the morphisms new‡|0〉〈0|,meas‡ and unitary‡S which are
defined in §4. For the interpretation of while loops, given an arbitrary mor-
phism f : A⊗ bit→ A⊗ bit of C, we define a Scott-continuous endofunction

Wf : C (A⊗ bit, A⊗ bit)→ C(A⊗ bit, A⊗ bit)

Wf (g) =
[
id⊗ leftI,I , g ◦ f ◦ (id⊗ rightI,I)

]
◦ dA,I,I ,

where the isomorphism dA,I,I : A ⊗ (I + I) → (A ⊗ I) + (A ⊗ I) is explained
in §4. For any pointed dcpo D and Scott-continuous function h : D → D, its
least fixpoint is lfp(h) :=

∨∞
i=0 h

i(⊥), where ⊥ is the least element of D.

Remark 19. The term semantics for defining and calling procedures does not
involve any fixpoint computations. The required fixpoint computations are done
when interpreting procedure stores, as we shall see next.
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5.4 Interpretation of Configurations

Before we may interpret program configurations, we first have to describe how
to interpret values and procedure stores.

Interpretation of Values. A qubit pointer context Q is interpreted as the ob-
ject JQK = qbit⊗|Q|. A value Q ` v : A is interpreted as a morphism in V
JQ ` v : AK : JQK −→ JAK, which we abbreviate as JvK if Q and A are clear from
context. It is defined by induction on the derivation of Q ` v : A in Figure 7.

For the next theorem, recall that if Q ` v : A is a classical value, then Q = ·.

Theorem 20. Let Q ` v : A be a value. Then:

1. JvK is discardable (i.e. causal). More specifically, �JAK ◦ JvK = �JQK = tr‡.
2. If A is classical, then JvK is copyable, i.e., 4JAK ◦ JvK = (JvK⊗ JvK) ◦ 4I .

We see that, as promised, interpretations of values may always be discarded
and interpretations of classical values may also be copied. Next, we explain how
to interpret value contexts. For a value context Q;Γ ` V , its interpretation is
the morphism:

JQ;Γ ` V K =
(

JQK
∼=−→ JQ1K⊗ · · · ⊗ JQnK

Jv1K⊗···⊗JvnK−−−−−−−−−→ JΓ K
)
,

where Qi ` vi : Ai is the splitting of Q (see §3) and JΓ K = JA1K ⊗ · · · ⊗ JAnK.
Some of the Qi can be empty and this is the reason why the definition depends
on a coherent natural isomorphism. We write JV K as a shorthand for JQ;Γ ` V K.
Obviously, JV K is also causal thanks to Theorem 20.

Interpretation of Procedure Stores. The interpretation of a well-formed proce-
dure store Π ` Ω is an element of JΠK, i.e. a |Π|-tuple of morphisms from C. It
is defined by induction on Π ` Ω :

J· ` ·K = ()

JΠ, f : A→ B ` Ω, f :: x : A→ y : B {M}K = (JΩK, lfp(JMK(JΩK,−))).

Interpretation of Configurations. Density matrices ρ ∈M2n(C) are in 1-1 corre-
spondence with W∗

NCPSU-morphisms newρ : C → M2n(C) which are in turn in
1-1 correspondence with C-morphisms new‡ρ : I → qbit⊗n. Using this observa-
tion, we can now define the interpretation of a configuration C = (M | V | Ω | ρ)
with Π;Γ ;Σ;Q ` (M | V | Ω | ρ) to be the morphism

JΠ;Γ ;Σ;Q ` (M | V | Ω | ρ)K :=(
I

new‡ρ−−−→ qbit⊗ dim(ρ) JQ;Γ`V K−−−−−−→ JΓ K
JΠ`〈Γ 〉 M 〈Σ〉K(JΠ`ΩK)−−−−−−−−−−−−−−−−→ JΣK

)
.

For brevity, we simply write J(M | V | Ω | ρ)K or even just JCK to refer to the
above morphism.



578 R. Péchoux et al.

5.5 Soundness, Adequacy and Big-step Invariance

Since our operational semantics allows for branching, soundness is showing that
the interpretation of configurations is equal to the sum of small-step reducts.

Theorem 21 (Soundness). For any non-terminal configuration C :

JCK =
∑
C D

JDK.

Proof. By induction on the shape of the term component of C. ut

Remark 22. The above sum and all sums that follow are well-defined convex
sums of NCPSU-maps where the probability weights pi have been encoded in
the density matrices.

A natural question to ask is whether JCK is also equal to the (potentially
infinite) sum of all terminal configurations that C reduces to. In other words,
is the interpretation of configurations also invariant with respect to big-step
reduction. This is indeed the case and proving this requires considerable effort.

Theorem 23 (Big-step Invariance). For any configuration C, we have:

JCK =
∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K

The above theorem is the main result of our paper. This is a powerful result,
because with big-step invariance in place, computational adequacy4 at all types is
now a simple consequence of the causal properties of our interpretation. Observe
that for any configuration C, we have a subunital map � ◦ JCK : C → C and
evaluating it at 1 yields a real number (� ◦ JCK) (1) ∈ [0, 1].

Theorem 24 (Adequacy). For any normalised C : (� ◦ JCK) (1) = Halt(C).

If C is not normalised, then adequacy can be recovered simply by normalis-
ing: (� ◦ JCK) (1) = tr(C)Halt(C), for any possible configuration C. The adequacy
formulation of [17] and [5] is now a special case of our more general formulation.

Corollary 25. Let M be a closed program of unit type, i.e. · ` 〈·〉 M 〈·〉. Then:

J(M | · | · | 1)K (1) = Halt(M | · | · | 1).

Proof. By Theorem 24 and because �I = id. ut
4 Recall that a computational adequacy result has to establish an equivalent purely
denotational characterisation of the operational notion of non-termination.
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6 Conclusion and Related Work

There are many quantum programming languages described in the literature.
For a survey see [7] and [16, pp. 129]. Some circuit programming languages (e.g.
Proto-Quipper [21,22,15]), generate quantum circuits, but do not necessarily
support executing quantum measurements. Here we focus on quantum languages
which support measurement and which have either inductive datatypes or some
computational adequacy result.

Our work is the first to present a detailed semantic treatment of user-defined
inductive datatypes for quantum programming. In [17] and [5], the authors show
how to interpret a quantum lambda calculus extended with a datatype for lists,
but their syntax does not support any other inductive datatypes. These lan-
guages are equipped with lambda abstractions, whereas our language has only
support for procedures. Lambda abstractions are modelled using constructions
from quantitative semantics of linear logic in [17] and techniques from game se-
mantics in [5]. We believe our model is simpler and certainly more physically
natural, because we work only with mathematical structures used by physicists
in their study of quantum mechanics. Both [17] and [5] prove an adequacy re-
sult for programs of unit type. In [20], the authors discuss potential categorical
models for inductive datatypes in quantum programming, but there is no de-
tailed semantic treatment provided and there is no adequacy result, because the
language lacks recursion.

Other quantum programming languages without inductive datatypes, but
which prove computational adequacy results include [9,12]. A model based on
W*-algebras for a quantum lambda calculus without recursion or inductive
datatypes was described in a recent manuscript [4]. In that model, it appears
that currying is not a Scott-continuous operation, and if so, the addition of re-
cursion renders the model neither sound, nor adequate. For this reason, we use
procedures and not lambda abstractions in our language.

To conclude, we presented two novel results in quantum programming: (1) we
provided a denotational semantics for a quantum programming language with
inductive datatypes; (2) we proved that our denotational semantics is invariant
with respect to big-step reduction. We also showed that the latter result is quite
powerful by demonstrating how it immediately implies computational adequacy.

Our denotational model is based onW*-algebras, which are used by physicists
to study quantum foundations. We hope this would make it useful for developing
static analysis methods (based on abstract interpretation) that can be used for
entanglement detection [18] and we plan on investigating this in future work.
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