
Timed Negotiations�

S. Akshay1(�), Blaise Genest2, Löıc Hélouët3, and Sharvik Mital1

1 IIT Bombay, Mumbai, India {akshayss,sharky}@cse.iitb.ac.in
2 Univ Rennes, CNRS, IRISA, Rennes, France blaise.genest@irisa.fr

3 Univ Rennes, Inria, Rennes, France loic.helouet@inria.fr

Abstract. Negotiations were introduced in [6] as a model for concurrent
systems with multiparty decisions. What is very appealing with negotia-
tions is that it is one of the very few non-trivial concurrent models where
several interesting problems, such as soundness, i.e. absence of deadlocks,
can be solved in PTIME [3]. In this paper, we introduce the model of
timed negotiations and consider the problem of computing the minimum
and the maximum execution times of a negotiation. The latter can be
solved using the algorithm of [10] computing costs in negotiations, but
surprisingly minimum execution time cannot.
This paper proposes new algorithms to compute both minimum and
maximum execution time, that work in much more general classes of ne-
gotiations than [10], that only considered sound and deterministic nego-
tiations. Further, we uncover the precise complexities of these questions,
ranging from PTIME to ΔP

2 -complete. In particular, we show that com-
puting the minimum execution time is more complex than computing the
maximum execution time in most classes of negotiations we consider.

1 Introduction

Distributed systems are notoriously difficult to analyze, mainly due to the ex-
plosion of the number of configurations that have to be considered to answer
even simple questions. A challenging task is then to propose models on which
analysis can be performed with tractable complexities, preferably within poly-
nomial time. Free choice Petri nets are a classical model of distributed systems
that allow for efficient verification, in particular when the nets are 1-safe [4, 5].

Recently, [6] introduced a new model called negotiations for workflows and
business processes. A negotiation describes how processes interact in a dis-
tributed system: a subset of processes in a node of the system take a synchronous
decisions among several outcomes. The effect of this outcome sends contribut-
ing processes to a new set of nodes. The execution of a negotiation ends when
processes reach a final configuration. Negotiations can be deterministic (once an
outcome is fixed, each process knows its unique successor node) or not.

Negotiations are an interesting model since several properties can be decided
with a reasonable complexity. The question of soundness, i.e., deadlock-freedom:

� Supported by DST/CEFIPRA/INRIA Associated team EQuaVE and DST/SERB
Matrices grant MTR/2018/000744.

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 37–56, 2020.
https://doi.org/10.1007/978-3-030-45231-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_3&domain=pdf

whether from every reachable configuration one can reach a final configuration,
is PSPACE-complete. However, for deterministic negotiations, it can be decided
in PTIME [7]. The decision procedure uses reduction rules. Reduction techniques
were originally proposed for Petri nets [2, 8, 11, 16]. The main idea is to define
transformations rules that produce a model of smaller size w.r.t. the original
model, while preserving the property under analysis. In the context of negotia-
tions, [7, 3] proposed a sound and complete set of soundness-preserving reduction
rules and algorithms to apply these rules efficiently. The question of soundness
for deterministic negotiations was revisited in [9] and showed NLOGSPACE-
complete using anti patterns instead of reduction rules. Further, they show that
the PTIME result holds even when relaxing determinism [9]. Negotiation games
have also been considered to decide whether one particular process can force ter-
mination of a negotiation. While this question is EXPTIME-complete in general,
for sound and deterministic negotiations, it becomes PTIME [12].

While it is natural to consider cost or time in negotiations (e.g. think of the
Brexit negotiation where time is of the essence, and which we model as running
example in this paper), the original model of negotiations proposed by [6] is
only qualitative. Recently, [10] has proposed a framework to associate costs to
the executions of negotiations, and adapt a static analysis technique based on
reduction rules to compute end-to-end cost functions that are not sensitive to
scheduling of concurrent nodes. For sound and deterministic negotiations, the
end-to-end cost can be computed in O(n.(C + n)), where n is the size of the
negotiation and C the time needed to compute the cost of an execution. Requir-
ing soundness or determinism seems perfectly reasonable, but asking sound and
deterministic negotiations is too restrictive: it prevents a process from waiting
for decisions of other processes to know how to proceed.

In this paper, we revisit time in negotiations. We attach time intervals to
outcomes of nodes. We want to compute maximal and minimal executions times,
for negotiations that are not necessarily sound and deterministic. Since we are
interested in minimal and maximal execution time, cycles in negotiations can be
either bypassed or lead to infinite maximal time. Hence, we restrict this study to
acyclic negotiations. Notice that time can be modeled as a cost, following [10],
and the maximal execution time of a sound and deterministic negotiation can
be computed in PTIME using the algorithm from [10]. Surprisingly however, we
give an example (Example 3) for which the minimal execution time cannot be
computed in PTIME by this algorithm.

The first contribution of the paper shows that reachability (whether at least
one run of a negotiation terminates) is NP-complete, already for (untimed) deter-
ministic acyclic negotiations. This implies that computing minimal or maximal
execution time for deterministic (but unsound) acyclic negotiations cannot be
done in PTIME (unless NP=PTIME). We characterize precisely the complex-
ities of different decision variants (threshold, equality, etc.), with complexities
ranging from (co-)NP-complete to ΔP

2 .

We thus turn to negotiations that are sound but not necessarily determinis-
tic. Our second contribution is a new algorithm, not based on reduction rules,

38 S. Akshay et al.

to compute the maximal execution time in PTIME for sound negotiations. It is
based on computing the maximal execution time of critical paths in the nego-
tiations. However, we show that minimal execution time cannot be computed
in PTIME for sound negotiations (unless NP=PTIME): deciding whether the
minimal execution time is lower than T is NP-complete, even for T given in
unary, using a reduction from a Bin packing problem. This shows that minimal
execution time is harder to compute than maximal execution time.

Our third contribution consists in defining a class in which the minimal exe-
cution time can be computed in (pseudo) PTIME. To do so, we define the class
of k-layered negotiations, for k fixed, that is negotiations where nodes can be or-
ganized into layers of at most k nodes at the same depth. These negotiations can
be executed without remembering more than k nodes at a time. In this case, we
show that computing the maximal execution time is PTIME, even if the negoti-
ation is neither deterministic nor sound. The algorithm, not based on reduction
rules, uses the k-layer restriction in order to navigate in the negotiation while
considering only a polynomial number of configurations. For minimal execution
time, we provide a pseudo PTIME algorithm, that is PTIME if constants are
given in unary. Finally, we show that the size of constants do matter: deciding
whether the minimal execution time of a k-layered negotiation is less than T
is NP-complete, when T is given in binary. We show this by reducing from a
Knapsack problem, yet again emphasizing that the minimal execution time of a
negotiation is harder to compute than its maximal execution time.

This paper is organized as follows. Section 2 introduces the key ingredients of
negotiations, determinism and soundness, known results in the untimed setting,
and provides our running example modeling the Brexit negotiation. Section 3
introduces time in negotiations, gives a semantics to this new model, and for-
malizes several decision problems on maximal and minimal durations of runs in
timed negotiations. We recall the main results of the paper in Section 4. Then,
Section 5 considers timed execution problems for deterministic negotiations, Sec-
tion 6 for sound negotiations, and section 7 for layered negotiations. Proof details
for the last three sections are given in an extended version of this paper [1].

2 Negotiations: Definitions and Brexit example

In this section, we recall the definition of negotiations, of some subclasses (acyclic
and deterministic), as well as important problems (soundness and reachability).

Definition 1 (Negotiation [6, 10]). A negotiation over a finite set of pro-
cesses P is a tuple N = (N,n0, nf ,X), where:

– N is a finite set of nodes. Each node is a pair n = (Pn, Rn) where Pn ⊆ P
is a non empty set of processes participating in node n, and Rn is a finite
set of outcomes of node n (also called results), with Rnf

= {rf}. We denote
by R the union of all outcomes of nodes in N .

– n0 is the first node of the negotiation and nf is the final node. Every process
in P participates in both n0 and nf .

Timed Negotiations 39

EU PM Pa

EU PM Pa

EU

no-backstop

EU

backstop

PM

court

PM

no-court

Pa Pa

court

EU PM

c-meet meet

EU PM Pa

recess defend

EU

deal w/backstopdeal agreed

PM Pa

debate

EU PM Pa

delay brexit delay

Fig. 1. A (sound but non-deterministic) negotiation modeling Brexit.

– For all n ∈ N , Xn : Pn ×Rn → 2N is a map defining the transition relation
from node n, with Xn(p, r) = ∅ iff n = nf , r = rf . We denote X : N × P ×
R → 2N the partial map defined on

⋃
n∈N ({n}×Pn×Rn), with X (n, p, a) =

Xn(p, a) for all p, a.

Intuitively, at a node n = (Pn, Rn) in a negotiation, all processes of Pn have
to agree on a common outcome r chosen from Rn. Once this outcome r is chosen,
every process p ∈ Pn is ready to move to any node prescribed by X (n, p, r). A
new node m can only start when all processes of Pm are ready to move to m.

Example 1. We illustrate negotiations by considering a simplified model of the
Brexit negotiation, see Figure 1. There are 3 processes, P = {EU,PM,Pa}. At
first EU decides whether or not to enforce a backstop in any deal (outcome back-
stop) or not (outcome no-backstop). In the meantime, PM decides to proroge
Pa, and Pa can choose or not to appeal to court (outcome court/no court). If it
goes to court, then PM and Pa will take some time in court (c-meet, defend),
before PM can meet EU to agree on a deal. Otherwise, Pa goes to recess, and
PM can meet EU directly. Once EU and PM agreed on a deal, PM tries to
convince Pa to vote the deal. The final outcome is whether the deal is voted, or
whether Brexit is delayed.

Definition 2 (Deterministic negotiations). A process p ∈ P is determinis-
tic iff, for every n ∈ N and every outcome r of n, X (n, p, r) is a singleton. A ne-
gotiation is deterministic iff all its processes are deterministic. It is weakly non-
deterministic [9] (called weakly deterministic in [3]) iff, for every node n, one of
the processes in Pn is deterministic. Last, it is very weakly non-deterministic [9]
(called weakly deterministic in [6]) iff, for every n, every p ∈ Pn and every out-
come r of n, there exists a deterministic process q such that q ∈ Pn′ for every
n′ ∈ X (n, p, r).

40 S. Akshay et al.

In deterministic negotiations, once an outcome is chosen, each process knows
the next node it will be involved in. In (very-)weakly non-deterministic nego-
tiations, the next node might depend upon the outcome chosen in other nodes
by other processes. However, once the outcomes have been chosen for all cur-
rent nodes, there is only one next node possible for each process. Observe that
the class of deterministic negotiations is isomorphic to the class of free choice
workflow nets [10]. In Example 1, the Brexit negotiation is non-deterministic,
because process PM is non-deterministic. Indeed, consider outcomes c-meet: it
allows two nodes, according to whether the backstop is enforced or not, which
is a decision taken by process EU .

Semantics: A configuration [3] of a negotiation is a mapping M : P → 2N .
Intuitively, it tells for each process p the setM(p) of nodes p is ready to engage in.
The semantics of a negotiation is defined in terms of moves from a configuration
to the next one. The initialM0 and finalMf configurations, are given byM0(p) =
{n0} and Mf (p) = ∅ respectively for every process p ∈ P . A configuration M
enables node n if n ∈ M(p) for every p ∈ Pn. When n is enabled, a decision
at node n can occur, and the participants at this node choose an outcome r ∈
Rn. The occurrence of (n, r) produces the configuration M ′ given by M ′(p) =
X (n, p, r) for every p ∈ Pn and M ′(p) = M(p) for remaining processes in P \Pn.

Moving fromM toM ′ after choosing (n, r) is called a step, denotedM
n,r−−→ M ′. A

run of N is a sequence (n1, r1), (n2, r2)...(nk, rk) such that there is a sequence of
configurations M0,M1, . . . ,Mk and every (ni, ri) is a step between Mi−1 and Mi.
A run starting from the initial configuration and ending in the final configuration
is called a final run. By definition, its last step is (nf , rf).

An important class of negotiations in the context of timed negotiations is
acyclic negotiations, where infinite sequence of steps is impossible:

Definition 3 (Acyclic negotiations). The graph of a negotiation N is the
labeled graph GN = (V,E) where V = N , and E = {((n, (p, r), n′) | n′ ∈
X (n, p, r)}, with pairs of the form (p, r) being the labels. A negotiation is acyclic
iff its graph is acyclic. We denote by Paths(GN) the set of paths in the graph of a
negotiation. These paths are of form π = (n0, (p0, r0), n1) . . . (nk−1, (pk, rk), nk).

The Brexit negotiation of Fig.1 is an example of acyclic negotiation. Despite
their apparent simplicity, negotiations may express involved behaviors as shown
with the Brexit example. Indeed two important questions in this setting are
whether there is some way to reach a final node in the negotiation from (i) the
initial node and (ii) any reachable node in the negotiation.

Definition 4 (Soundness and Reachability).

1. A negotiation is sound iff every run from the initial configuration can be
extended to a final run. The problem of soundness is to check if a given
negotiation is sound.

2. The problem of reachability asks if a given negotiation has a final run.

Timed Negotiations 41

Notice that the Brexit negotiation of Fig.1 is sound (but not deterministic).
It seems hard to preserve the important features of this negotiation while being
both sound and deterministic. The problem of soundness has received consider-
able attention. We summarize the results about soudness in the next theorem:

Theorem 1. Determining whether a negotiation is sound is PSPACE-Complete.
For (very-)weakly non-deterministic negotiations, it is co-NP-complete [9]. For
acyclic negotiations, it is in DP and co-NP-Hard [6]. Determining whether an
acyclic weakly non-deterministic negotiation is sound is in PTIME [3, 9]. Fi-
nally, deciding soundness for deterministic negotiations is NLOGSPACE-complete [9].

Checking reachability is NP-complete, even for deterministic acyclic negoti-
ations (surprisingly, we did not find this result stated before in the literature):

Proposition 1. Reachability is NP-complete for acyclic negotiations, even if
the negotiation is deterministic.

Proof (sketch). One can guess a run of size ≤ |N | in polynomial time, and verify
if it reaches nf , which gives the inclusion in NP. The hardness part comes from
a reduction from 3-CNF-SAT that can be found in the proof of Theorem 3. ��

k-Layered Acyclic Negotiations

We introduce a new class of negotiations which has good algorithmic properties,
namely k-layered acyclic negotiations, for k fixed. Roughly speaking, nodes of a
k-layered acyclic negotiations can be arranged in layers, and these layers contain
at most k nodes. Before giving a formal definition, we need to define the depth
of nodes in N .

First, a path in a negotiation is a sequence of nodes n0 . . . n� such that for
all i ∈ {1, . . . , �− 1}, there exists pi, ri with ni+1 ∈ X (ni, pi, ri). The length of a
path n0, . . . , n� is �. The depth depth(n) of a node n is the maximal length of a
path from n0 to n (recall that N is acyclic, so this number is always finite).

Definition 5. An acyclic negotiation is layered if for all node n, every path
reaching n has length depth(n). An acyclic negotiation is k-layered if it is layered,
and for all � ∈ N, there are at most k nodes at depth �.

The Brexit example of Fig. 1 is 6-layered. Notice that a layered negotiation
is necessarily k-layered for some k ≤ |N | − 2. Note also that we can always
transform an acyclic negotiation N into a layered acyclic negotiation N ′, by
adding dummy nodes: for every nodem ∈ X (n, p, r) with depth(m) > depth(n)+
1, we can add several nodes n1, . . . n� with � = depth(m)− (depth(n) + 1), and
processes Pni

= {p}. We compute a new relation X ′ such that X ′(n, p, r) =
{n1}, X (n�, p, r) = {m} and for every i ∈ 1..� − 1, X (ni, p, r) = ni+1. This
transformation is polynomial: the resulting negotiation is of size up to |N | ×
|X | × |P |. The proof of the following Theorem can be found in [1].

Theorem 2. Let k ∈ N+. Checking reachability or soundness for a k-layered
acyclic negotiation N can be done in PTIME.

42 S. Akshay et al.

3 Timed Negotiations

In many negotiations, time is an important feature to take into account. For
instance, in the Brexit example, with an initial node starting at the begining of
September 2019, there are 9 weeks to pass a deal till the 31st October deadline.

We extend negotiations by introducing timing constraints on outcomes of
nodes, inspired by timed Petri nets [14] and by the notion of negotiations with
costs [10]. We use time intervals to specify lower and upper bounds for the
duration of negotiations. More precisely, we attach time intervals to pairs (n, r)
where n is a node and r an outcome. In the rest of the paper, we denote by
I the set of intervals with endpoints that are non-negative integers or ∞. For
convenience we only use closed intervals in this paper (except for ∞), but the
results we show can also be extended to open intervals with some notational
overhead. Intuitively, outcome r can be taken at a node n with associated time
interval [a, b] only after a time units have elapsed from the time all processes
contributing to n are ready to engage in n, and at most b time units later.

Definition 6. A timed negotiation is a pair (N , γ) where N is a negotiation,
and γ : N×R → I associates an interval to each pair (n, r) of node and outcome
such that r ∈ Rn. For a given node n and outcome r, we denote by γ−(n, r) (resp.
γ+(n, r)) the lower bound (resp. the upper bound) of γ(n, r).

Example 2. In the Brexit example, we define the following timed constraints γ.
We only specify the outcome names, as the timing only depends upon them.
Backstop and no-backstop both take between 1 and 2 weeks: γ(backstop) =
γ(no-backstop) = [1, 2]. In case of no-court, recess takes 5 weeks γ(recess) =
[5, 5], and PM can meet EU immediatly γ(meet) = [0, 0]. In case of court ac-
tion, PM needs to spend 2 weeks in court γ(c-meet) = [2, 2], and depending on
the court delay and decision, Pa needs between 3 (court overules recess) to 5
(court confirms recess) weeks, γ(defend) = [3, 5]. Agreeing on a deal can take
anywhere from 2 weeks to 2 years (104 weeks): γ(deal agreed) = [2, 104]—some
would say infinite time is even possible! It needs more time with the backstop,
γ(deal w/backstop) = [5, 104]. All other outcomes are assumed to be immediate,
i.e., associated with [0, 0].

Semantics: A timed valuation is a map μ : P → R≥0 that associates a non-
negative real value to every process. A timed configuration is a pair (M,μ) where
M is a configuration and μ a timed valuation. There is a timed step from (M,μ)

to (M ′, μ′), denoted (M,μ)
(n,r)−−−→ (M ′, μ′), if (i) M

(n,r)−−−→ M ′, (ii) p /∈ Pn

implies μ′(p) = μ(p) (iii) ∃d ∈ γ(n, r) such that ∀p ∈ Pn, we have μ′(p) =
maxp′∈Pn

μ(p′) + d (d is the duration of node n).

Intuitively a timed step (M,μ)
(n,r)−−−→ (M ′, μ′) depicts a decision taken at

node n, and how long each process of Pn waited in that node before taking
decision (n, r). The last process engaged in n must wait for a duration contained
in γ(n, r). However, other processes may spend a time greater than γ+(n, r).

Timed Negotiations 43

A timed run is a sequence of steps ρ = (M0, μ0)
e1−→ (M1, μ1) . . . (Mk, μk)

where M0 is the initial configuration, μ0(p) = 0 for every p ∈ P , and each

(Mi, μi)
ei−→ (Mi+1, μi+1) is a timed step. It is final if Mk = Mf . Its execution

time δ(ρ) is defined as δ(ρ) = maxp∈P μk(p).
Notice that we only attached timing to processes, not to individual steps.

With our definition of runs, timing on steps may not be monotonous (i.e., non-
decreasing) along the run, while timing on processes is. Viewed by the lens of
concurrent systems, the timing is monotonous on the partial orders of the system
rather than the linearization. It is not hard to restrict paths, if necessary, to have
a monotonous timing on steps as well. In this paper, we are only interested in
execution time, which does not depend on the linearization considered.

Given a timed negotiation N , we can now define the minimum and maximum
execution time, which correspond to optimistic or pessimistic views:

Definition 7. Let N be a timed negotiation. Its minimum execution time, de-
noted mintime(N) is the minimal δ(ρ) over all final timed run ρ of N . We
define the maximal execution time maxtime(N) of N similarly.

Given T ∈ N, the main problems we consider in this paper are the following:

– The mintime problem, i.e., do we have mintime(N) ≤ T?.
In other words, does there exist a final timed run ρ with δ(ρ) ≤ T?

– The maxtime problem, i.e., do we have maxtime(N) ≤ T?.
In other words, does δ(ρ) ≤ T for every final timed run ρ?

These questions have a practical interest : in the Brexit example, the question
“is there a way to have a vote on a deal within 9 weeks ?” is indeed a minimum
execution time problem. We also address the equality variant of these decision
problems, i.e., mintime(N) = T : is there a final run of N that terminates
in exactly T time units and no other final run takes less than T time units?
Similarly for maxtime(N) = T .

Example 3. We use Fig. 1 to show that it is not easy to compute the minimal
execution time, and in particular one cannot use the algorithm from [10] to com-
pute it. Consider the node n with Pn = {PM,Pa} and Rn = {court, no court}.
If the outcome is court, then PM needs 2 weeks before (s)he can talk to EU
and Pa needs at least 3 weeks before he can debate. However, if the outcome is
no court, then PM need not wait before (s)he can talk to EU , but Pa wastes
5 weeks in recess. This means that one needs to remember different alternatives
which could be faster in the end, depending on the future. On the other hand,
the algorithm from [10] attaches one minimal time to process Pa, and one min-
imal time to process PM . No matter the choices (0 or 2 for PM and 3 or 5
for Pa), there will be futures in which the chosen number will over or underap-
proximate the real minimal execution time (this choice is not explicit in [10])4.

4 the authors of [10] acknowledged the issue with their algorithm for mintime.

44 S. Akshay et al.

For maximum execution time, it is not an issue to attach to each node a unique
maximal execution time. The reason for the asymmetry between minimal and
maximal execution times of a negotiation is that the execution time of a path
is maxp∈P μk(p), for μk the last timed valuation, which breaks the symmetry
between min and max.

4 High level view of the main results

In this section, we give a high-level description of our main results. Formal
statements can be found in the sections where they are proved. We gather in
Fig. 2 the precise complexities for the minimal and the maximal execution time
problems for 3 classes of negotiations that we describe in the following. Since we
are interested in minimum and maximum execution time, cycles in negotiations
can be either bypassed or lead to infinite maximal time. Hence, while we define
timed negotiations in general, we always restrict to acyclic negotiations (such as
Brexit) while stating and proving results.

In [10], a PTIME algorithm is given to compute different costs for negoti-
ations that are both sound and deterministic. One limitation of this result is
that it cannot compute the minimum execution time, as explained in Example
3. A second limitation is that the class of sound and deterministic negotiations
is quite restrictive: it cannot model situations where the next node a process
participates in depends on the outcome from another process, as in the Brexit
example. We thus consider classes where one of these restrictions is dropped.

We first consider (Section 5) negotiations that are deterministic, but with-
out the soundness restriction. We show that for this class, no timed problem
we consider can be solved in PTIME (unless NP=PTIME). Further, we show
that the equality problems (maxtime/mintime(N) = T), are complete for the
complexity class DP, i.e., at the second level of the Boolean Hierarchy [15].

We then consider (Section 6) the class of negotiations that are sound, but not
necessarily deterministic. We show that maximum execution time can be solved
in PTIME, and propose a new algorithm. However, the minimum execution time
cannot be computed in PTIME (unless NP=PTIME). Again for the mintime
equality problem we have a matching DP-completeness result.

Deterministic Sound k-layered

Max ≤ T
Max = T

co-NP-complete (Thm. 3)
DP-complete (Prop. 2)

PTIME (Prop. 3) PTIME (Thm. 6)

Min ≤ T NP-complete (Thm. 3) NP-complete� (Thm. 5)
pseudo-PTIME (Thm. 8)
NP-complete�� (Thm. 7)

Min = T DP-complete (Prop. 2) DP-complete� (Prop. 4) pseudo-PTIME (Thm. 8)

Fig. 2. Results for acyclic timed negotiations. DP refers to the complexity class, Dif-
ference Polynomial time [15], the second level of the Boolean Hierarchy.
� hardness holds even for very weakly non-deterministic negotiations, and T in unary.
�� hardness holds even for sound and very weakly non-deterministic negotiations.

Timed Negotiations 45

Finally, in order to obtain a polytime algorithm to compute the minimum
execution time, we consider the class of k-layered negotiations (see Section 7):
Given k ∈ N, we can show that maxtime(N) can be computed in PTIME for
k-layered negotiations. We also show that while the mintime(N) ≤ T? problem
is weakly NP-complete for k-layered negotiations, we can compute mintime(N)
in pseudo-PTIME, i.e. in PTIME if constants are given in unary.

5 Deterministic Negotiations

We start by considering the class of deterministic acyclic negotiations. We show
that both maximal and minimal execution times cannot be computed in PTIME
(unless NP=PTIME), as the threshold problems are (co-)NP-complete.

Theorem 3. The mintime(N) ≤ T decision problem is NP complete, and the
maxtime(N) ≤ T decision problem is co-NP-complete for acyclic deterministic
timed negotiations.

Proof. For mintime(N) ≤ T , containment in NP is easy: we just need to guess a
run ρ (of polynomial size as N is acyclic), consider the associated timed run ρ−

where all decisions are taken at their earliest possible dates, and check whether
δ(ρ−) ≤ T , which can be done in time O(|N |+log T).

For the hardness, we give the proof in two steps. First, we start with a proof
of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF
SAT, i.e., given a formula φ, we build a deterministic negotiation Nφ s.t. φ is
satisfiable iff Nφ has a final run. In a second step, we introduce timings on this
negotiation and show that mintime(Nφ) ≤ T iff φ is satisfiable.

Step 1: Reducing 3-CNF-SAT to Reachability problem.
Given a Boolean formula φ with variables vi, 1 ≤ i ≤ n and clauses cj , 1 ≤ j ≤

m, for each variable vi we define the sets of clauses Si,t = {cj | vi is present in cj}
and Si,f = {cj | ¬vi is present in cj}. Clauses in Si,t and Si,f are naturally
ordered: ci < cj iff i < j. We denote these elements Si,t(1) < Si,t(2) <
Similarly for set Si,f.

Now, we construct a negotiation Nφ (as depicted in Figure 3) with a process
Vi for each variable vi and a process Cj for each clause cj :

– Initial node n0 has a single outcome r taking each process Cj to node Lonecj ,
and each process Vi to node Lonevi .

– Lonecj has three outcomes: if literal vi ∈ cj , then ti is an outcome, taking
Cj to Paircj ,vi , and if literal ¬vi ∈ cj , then fi is an outcome, taking Cj to
Paircj ,¬vi

.
– The outcomes of Loneviare true and false. Outcome true brings Vi to

node T lonevi,1 and outcome false brings Vi to node Flonevi,1.
– We have a node T lonevi,j for each j ≤ |Si,t| and Flonevi,j for each j ≤ |Si,f|,

with Vi as only process. Let cr = Si,t(j). Node T lonevi,j has two outcomes
vton bringing Vi to T lonevi,j+1 (or nf if j = |Si,t|), and vtoci,r bringing Vi

to Paircr,vi . The two outcomes from Flonevi,j are similar.

46 S. Akshay et al.

V1 Vi Vn C1 Cj Ck Cm

Vi Cj Ck

r
r

r rr r r

Vi Vi

true false

vton vton

Vi

vton ctof

Vi

vton

vton

Vi

vton ctof

vton

Vi Cj

fi

vtoc
i,j

ctof

ti2
fi3

Vi Ck

fi

vto
ci,k

ti4
ti5

V1 Vi Vn C1 Cj Ck Cm

ctof

cto
f

ctof

n0

Lonevi Lonecj Loneck

T lonevi,1 Flonevi,1

Flonevi,r

Flonevi,r+1

Paircj ,¬vi

nf

[2, 2] [2, 2]

Fig. 3. A part of Nφ where clause cj is (i2 ∨ ¬i ∨ ¬i3) and clause ck is (i4 ∨ ¬i ∨ i5).
Timing is [0, 0] whereever not mentioned

– Node Paircr,vi
has Vi and Cr as its processes and one outcome ctof which

takes process Cr to final node nf and process Vi to T lonevi,j+1 (with cr =
Si,t(j)), or to nf if j = |Si,t|. Node Paircr,¬vi is defined in the same way
from Flonevi,j .

With this we claim that Nφ has a final run iff φ is satisfiable which completes
the first step of the proof. We give a formal proof of this claim in Appendix A
of [1]. Observe that the negotiation Nφ constructed is deterministic and acyclic
(but it is not sound).

Step 2 : Before we introduce timing on Nφ, we introduce a new outcome r′

at n0 which takes all processes to nf . Now, the timing function γ associated
with Nφ is: γ(n0, r) = [2, 2] and γ(n0, r

′) = [3, 3] and γ(n, r) = [0, 0], for all
node n �= n0 and all r ∈ Rn. Then, mintime(Nφ) ≤ 2 iff φ has a satisfiable
assignment: if mintime(Nφ) ≤ 2, there is a run with decision r taken at n0

which is final. But existence of any such final run implies satisfiability of φ. For

Timed Negotiations 47

reverse implication, if φ is satisfiable, then the corresponding run for satisfying
assignment takes 2 time units, which means that mintime(Nφ) ≤ 2.

Similarly, we can prove that the MaxTime problem is co-NP complete by
changing γ(n0, r

′
) = [1, 1] and asking if maxtime(Nφ) > 1 for the new Nφ. The

answer will be yes iff φ is satisfiable. ��
We now consider the related problem of checking if mintime(N) = T (or if

maxtime(N) = T). These problems are harder than their threshold variant un-
der usual complexity assumptions: they are DP-complete (Difference Polynomial
time class, i.e., second level of the Boolean Hierarchy, defined as intersection of
a problem in NP and one in co-NP [15]).

Proposition 2. The mintime(N) = T and maxtime(N) = T decision prob-
lems are DP-complete for acyclic deterministic negotiations.

Proof. We only give the proof for mintime (the proof for maxtime is given in
Appendix A of [1]). Indeed, it is easy to see that this problem is in DP, as it can
be written as mintime(N) ≤ T which is in NP and ¬(mintime(N) ≤ T − 1)),
which is in co-NP. To show hardness, we use the negotiation constructed in the
above proof as a gadget, and show a reduction from the SAT-UNSAT problem
(a standard DP-complete problem).

The SAT-UNSAT Problem asks given two Boolean expressions φ and φ
′
, both

in CNF forms with three literals per clause, is it true that φ is satisfiable and φ
′

is unsatisfiable? SAT-UNSAT is known to be DP-complete [15]. We reduce this
problem to mintime(N) = T .

Given φ, φ
′
, we first make the corresponding negotiations Nφ and Nφ′ as

in the previous proof. Let n0 and nf be the initial and final nodes of Nφ and

n
′
0 and n

′
f be the initial and final nodes of Nφ′ . (Similarly, for other nodes we

write ′ above the nodes to signify they belong to Nφ′ .)
In the negotiation Nφ′ , we introduce a new node nall, in which all the pro-

cesses participate (see Figure 4). The node nall has a single outcome r′all which

sends all the processes to nf . Also, for node n
′
0, apart from the outcome r which

sends all processes to different nodes, there is another outcome rall which sends
all the processes to nall. Now we merge the nodes nf and n

′
0 and call the merged

node nsep. Also nodes n0 and n′
f now have all the processes of Nφ and Nφ′

participating in them. This merged process gives us a new negotiation Nφ,φ′ in
which the structure above nsep is same as Nφ while below it is same as Nφ′ .
Node nsep now has all the processes of Nφ and Nφ′ participating in it. The
outcomes of nsep will be same as that of n′

0 (rall, r). For both the outcomes of
nsep the processes corresponding to Nφ directly go to nf of the Nφ,φ′ . Similarly
n0 of Nφ,φ′ which is same n0 of Nφ, sends processes corresponding to Nφ′ di-
rectly to nsep for all its outcomes. We now define timing function γ for Nφ,φ′

which is as follows: γ(Lone
′
vi , r) = [1, 1] for all vi ∈ φ

′
and r ∈ {true, false},

γ(nall, r
′
all) = [2, 2] and γ(n, r) = [0, 0] for all other outcomes of nodes. With this

construction, one can conclude that mintime(Nφ,φ′) = 2 iff φ is satisfiable and

φ
′
is unsatisfiable (see [1] for details). This completes the reduction and hence

proves DP-hardness. ��

48 S. Akshay et al.

V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r rr r

Structure
of Nφ

V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r rr r

vton vton ctof ctof

r r r r

Structure
of Nφ

′
V

′
1 V

′
n C

′
1 C

′
m

′

rall

rall rall rall

V1 Vn C1 Cm V
′
1 V

′
n
′ C

′
1 C

′
m

′

r, rall r, rall r, rall r, rall

r
′
all

r
′
all r

′
all

r
′
all

vton vton ctof ctof

n0

nsep

nf

nall

[0, 0]

[0, 0] [2, 2] [1, 1]

Fig. 4. Structure of Nφ,φ
′

Finally, we consider a related problem of computing the min and max time.
To consider the decision variant, we rephrase this problem as checking whether
an arbitrary bit of the minimum execution time is 1. Perhaps surprisingly, we
obtain that this problem goes even beyond DP, the second level of the Boolean
Hierarchy and is in fact hard for ΔP

2 (second level of the polynomial hierarchy),
which contains the entire Boolean Hierarchy. Formally,

Theorem 4. Given an acyclic deterministic timed negotiation and a positive
integer k,computing the kth bit of the maximum/minimum execution time is
ΔP

2 -complete.

Finally, we remark that if we were interested in the optimization variant and
not the decision variant of the problem, the above proof can be adapted to show
that these variants are OptP-complete (as defined in [13]). But as optimization
is not the focus of this paper, we avoid formal details of this proof.

6 Sound Negotiations

Sound negotiations are negotiations in which every run can be extended to
a final run, as in Fig. 1. In this section, we show that maxtime(N) can be
computed in PTIME for sound negotiations, hence giving PTIME complexi-
ties for the maxtime(N) ≤ T? and maxtime(N) = T? questions. However, we

Timed Negotiations 49

show that mintime(N) ≤ T is NP-complete for sound negotiations, and that
mintime(N) = T is DP-complete, even if T is given in unary.

Consider the graph GN of a negotiation N . Let π = (n0, (p0, r0), n1) · · ·
(nk, (pk, rk), nk+1) be a path of GN . We define the maximal execution time of
a path π as the value δ+(π) =

∑
i∈0..k γ

+(ni, ri). We say that a path π =

(n0, (p0, r0), n1) · · · (n�, (p�, r�), n�+1) is a path of some run ρ = (M1, μ1)
(n1,r

′
1)−→

· · · (Mk, μk) if r0, . . . , r� is a subword of r′1, . . . , r
′
k.

Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N)
= maxπ∈Paths(GN) δ

+(π) + γ+(nf , rf).

Proof. Let us first prove thatmaxtime(N) ≥ maxπ∈Paths(GN) δ
+(π)+γ+(nf , rf).

Consider any path π of GN , ending in some node n. First, as N is sound, we can
compute a run ρπ such that π is a path of ρπ, and ρπ ends in a configuration
in which n is enabled. We associate with ρπ the timed run ρ+π which asso-
ciates to every node the latest possible execution date. We have easily δ(ρ+π) ≥
δ+(π), and then we obtain maxπ∈Paths(GN) δ(ρ

+
π) ≥ maxπ∈Paths(GN) δ

+(π). As
maxtime(N) is the maximal duration over all runs, it is hence necessarily greater
than maxπ∈Paths(GN) δ(ρ

+
π) + γ+(nf , rf).

We now prove that maxtime(N) ≤ maxπ∈Paths(GN) δ
+(π)+γ+(nf , rf). Take

any timed run ρ = (M1, μ1)
(n1,r1)−→ · · · (Mk, μk) of N with a unique maximal node

nk. We show that there exists a path π of ρ such that δ(ρ) ≤ δ+(π) by induction
on the length k of ρ. The initialization is trivial for k = 1. Let k ∈ N. Because nk

is the unique maximal node of ρ, we have δ+(ρ) = maxp∈Pnk
μk−1(p)+γ+(nk, rk).

We choose one pk−1 maximizing μk−1(p). Let � < k be the maximal index of a
decision involving process pk−1 (i.e. pk−1 ∈ Pn�

). Now, consider the timed run
ρ′ subword of ρ, but with n� as unique maximal node (that is, it is ρ where
nodes ni, i > � has been removed, but also where some nodes ni, i < � have been
removed if they are not causally before n� (in particular, Pni

∩ Pn�
= ∅).)

By definition, we have that δ+(ρ) = δ+(ρ′) + γ+(n�, r�) + γ+(nk, rk). We
apply the induction hypothesis on ρ′, and obtain a path π′ of ρ′ ending in
n� such that δ+(ρ′) + γ+(n�, r�) ≤ δ+(π′). It suffices to consider path π =
π′.(n�, (pk−1, r�), nk) to prove the inductive step δ+(ρ) ≤ δ+(π) + γ+(nk, rk).

Thus maxtime(N) = max δ+(ρ) ≤ maxπ∈Paths(GN) δ
+(π) + γ+(nf , rf). ��

Lemma 1 gives a way to evaluate the maximal execution time. This amounts
to finding a path of maximal weight in an acyclic graph, which is a standard
PTIME problem that can be solved using standard max-cost calculation.

Proposition 3. Computing the maximal execution time for an acyclic sound
negotiation N = (N,n0, nf ,X) can be done in time O(|N |+ |X |).

A direct consequence is that maxtime(N) ≤ T and maxtime(N) = T prob-
lems can be solved in polynomial time when N is sound. Notice that if N is
deterministic but not sound, then Lemma 1 does not hold: we only have an
inequality.

50 S. Akshay et al.

We now turn to mintime(N). We show that it is strictly harder to compute
for sound negotiations than maxtime(N).

Theorem 5. mintime(N) ≤ T is NP-complete in the strong sense for sound
acyclic negotiations, even if N is very weakly non-deterministic.

Proof (sketch). First, we can decide mintime(N) ≤ T in NP. Indeed, one can
guess a final (untimed) run ρ of size ≤ |N |, consider ρ− the timed run corre-
sponding to ρ where all outcomes are taken at the earliest possible dates, and
compute in linear time δ(ρ−), and check that δ(ρ−) ≤ T .

The hardness part is obtained by reduction from the Bin Packing problem.
The reduction is similar to Knapsack, that we will present in Thm. 7. The
difference is that we use � bins in parallel, rather than 2 processes, one for the
weight and one for the value. The hardness is thus strong, but the negotiation
is not k-layered for a bounded k (it is 2�+ 1 bounded, with � depending on the
input). A detailed proof is given in Appendix B of [1]. ��

We show that mintime(N) = T is harder to decide than mintime(N) ≤ T ,
with a proof similar to Prop. 2.

Proposition 4. The mintime(N) = T? decision problem is DP-complete for
sound acyclic negotiations, even if it is very weakly non-deterministic.

An open question is whether the minimal execution time can be computed in
PTIME if the negotiation is both sound and deterministic. The reduction from
Bin Packing does not work with deterministic (and sound) negotiations.

7 k-Layered Negotiations

In this section, we consider k-layeredness, a syntactic property that can be effi-
ciently verified (see Section 2).

7.1 Algorithmic properties

Let k be a fixed integer. We first show that the maximum execution time can be
computed in PTIME for k-layered negotiations. Let Ni be the set of nodes at
layer i. We define for every layer i the set Si of subsets of nodes X ⊆ Ni which
can be jointly enabled and such that for every process p, there is exactly one
node n(X, p) in X with p ∈ n(X, p). An element X in Si is a subset of nodes
that can be selected by solving all non-determnism with an appropriate choice of
outcomes. Formally, we define Si inductively. We start with S0 = {n0}. We then
define Si+1 from the contents of layer Si: we have Y ∈ Si+1 iff

⋃
n∈Y Pn = P

and there exist X ∈ Si and an outcome rm ∈ Rm for every m ∈ X, such that
n ∈ X (n(X, p), p, rm) for each n ∈ Y and p ∈ Pn.

Theorem 6. Let k ∈ N+. Computing the maximum execution time for a k-
layered acyclic negotiation N can be done in PTIME. More precisely, the worst-
case time complexity is O(|P | · |N |k+1).

Timed Negotiations 51

Proof (Sketch). The first step is to compute Si layer by layer, by following its
inductive definition. The set Si is of size at most 2k, as |Ni| < k by definition of
k-layeredness. Knowing Si, it is easy to build Si+1 by induction. This takes time
in O(|P ||N |k+1) : We need to consider all k-uples of outcomes for each layer.
There can be |N |k such tuples. We need to do that for all processes (|P |), and
for all layers (at most |N |).

We then keep for each subset X ∈ Si and each node n ∈ X, the maximal
time fi(n,X) ∈ N associated with n and X. From Si+1 and fi, we inductively
compute fi+1 in the following way: for all X ∈ Si with successor Y ∈ Si+1

for outcomes (rp)p∈P , we denote fi+1(Y, n,X) = maxp∈P (n) fi(X,n(X, p)) +
γ+(n(X, p), rp). If there are several choices of (rp)p∈P leading to the same Y ,
we take rp with the maximal fi(X,n(X, p)) + γ+(n(X, p), rp). We then define
fi+1(Y, n) = maxX∈Si

fi+1(Y, n,X). Again, the initialization is trivial, with
f0({n0}, n0) = 0. The maximal execution time of N is f({nf}, nf). ��

We can bound the complexity precisely by O(d(N) · C(N) · ||R||k∗
), with:

– d(N) ≤ |N | the depth of nf , that is the number of layers of N , and ||R|| is
the maximum number of outcomes of a node,

– C(N) = maxi |Si| ≤ 2k, which we will call the number of contexts of N , and
which is often much smaller than 2k.

– k∗ = maxX∈
⋃

i Si
|X| ≤ k. We say that N is k∗-thread bounded, meaning

that there cannot be more that k∗ nodes in the same context X of any layer.
Usually, k∗ is strictly smaller than k = maxi |Ni|, as Ni =

⋃
X∈Si

X.

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while
we have the depth d(N) = 6, the negotiation is k∗ = 3-thread bounded (k∗ is
bounded by the number of processes), ||R|| = 2, and the number of contexts is
at most C(N) = 4 (EU chooses to enforce backstop or not, and Pa chooses to
go to court or not).

7.2 Minimal Execution Time

As with sound negotiations, computing minimal time is much harder than com-
puting the maximal time for k-layered negotiations:

Theorem 7. Let k ≥ 6. The Min ≤ T problem is NP-Complete for k-layered
acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.

Proof. One can guess in polynomial time a final run of size ≤ |N |. If the exe-
cution time of this final run is smaller than T then we have found a final run
witnessing mintime(N) ≤ T . Hence the problem is in NP.

Let us now show that the problem is NP-hard. We proceed by reduction from
the Knapsack decision problem. Let us consider a set of items U = {u1, . . . un}
of respective values v1, . . . vn and weight w1, . . . , wn and a knapsack of maximal
capacity W . The knapsack problem asks, given a value V whether there exists a
subset of items U ′ ⊆ U such that

∑
ui∈U ′ vi ≥ V and such that

∑
ui∈U ′ wi ≤ W .

52 S. Akshay et al.

n0 = C1

p1 p2 pn p2n pn+1pn+2

C2

p2 pn pn+2p2n

no no nonoyes yes yesyes

p1

no

p1

yes

pn+1

yes

pn+1

no

C3

p3 pn p2n pn+3p1 p2

b1 no

p1 p2

a1 yes

pn+1pn+2

c1 0no

pn+1pn+2

yes

Cn

pn p2n

p1 pnp1 pn

no

pn+1p2n

yes

pn+1p2n

no

p1 pn pn+1p2n

cn 0bnan

Fig. 5. The negotiation encoding Knapsack

We build a negotiation with 2n processes P = {p1, . . . p2n}, as shown in
Fig. 5. Intuitively, pi, i ≤ n will serve to encode the value of selected items as
timing, while pi, i > n will serve to encode the weight of selected items as timing.

Concerning timing constraints for outcomes we do the following: Outcomes
0, yes and no are associated with [0, 0]. Outcome ci is associated with [wi, wi],
the weight of ui. Last, outcome bi is associated with a more complex function,

such that
∑

i bi ≤ W iff
∑

i vi ≥ V . For that, we set [(vmax−vi)W
n·vmax−V , vmaxW

n·vmax−vi
] for

outcome bi, where vmax is the largest value of an item, and V is the total value

we want to reach at least. Also, we set [(vmax)W
n·vmax−V , vmaxW

n·vmax−vi
] for outcome ai. We

set T = W , the maximal weight of the knapsack.
Now, consider a final run ρ in N . The only choices in ρ are outcomes yes or

no from C1, . . . , Cn. Let I be the set of indices such that yes is the outcome from
all Ci in this path. We obtain δ(ρ) = max(

∑
i/∈I ai +

∑
i∈I bi,

∑
i∈I ci). We have

δ(ρ) ≤ T = W iff
∑

i∈I wi ≤ W , that is the sum of the weights is lower than

W , and
∑

i/∈I
(vmax)W
n·vmax−V +

∑
i∈I

(vmax−vi)W
n·vmax−V ≤ W . That is, n · vmax −

∑
i∈I vi ≤

n · vmax − V , i.e.
∑

i∈I vi ≥ V . Hence, there exists a path ρ with δ(ρ) ≤ T = W
iff there exists a set of items of weight less than W and of value more than V . ��

It is well known that Knapsack is weakly NP-hard, that is, it is NP-hard only
when weights/values are given in binary. This means that Thm. 7 shows that
minimum execution time ≤ T is NP-hard only when T is given in binary. We

Timed Negotiations 53

can actually show that for k-layered negotiations, the mintime(N) ≤ T problem
can be decided in PTIME if T is given in unary (i.e. if T is not too large):

Theorem 8. Let k ∈ N. Given a k-layered negotiation N and T written in
unary, one can decide in PTIME whether the minimum execution time of N is
≤ T . The worst-case time complexity is O(|N | · |P | · (T · |N |)k).
Proof. We will remember for each layer i a set Ti of functions τ from nodes Ni

of layer i to a value in {1, . . . , T,⊥}. Basically, we have τ ∈ Ti if there exists a
path ρ reaching X = {n ∈ Ni | τ(n) �= ⊥}, and this path reaches node n ∈ X
after τ(n) time units. As for Si, for all p, we should have a unique node n(τ, p)
such that p ∈ n(τ, p) and τ(n(τ, p)) �= ⊥. Again, it is easy to initialize T0 = {τ0},
with τ0(n0) = 0, and τ0(n) = ⊥ for all n �= n0.

Inductively, we build Ti+1 in the following way: τi+1 ∈ Ti+1 iff there exists a
τi ∈ Ti and rp ∈ Rn(τi,p) for all p ∈ P such that for all n with τi+1(n) �= ⊥, we

have τi+1(n) = maxp τ
−
i (n(τi, p)) + γ(n(τi, p), rp).

We have that the minimum execution time for N is minτ∈Tn
τ(nτ), for n the

depth of nf . There are at most T k functions τ in any Ti, and there are at most
|N | layers to consider, giving the complexity. ��

As with Thm. 6, we can more accurately state the complexity as O(d(N) ·
C(N) · ||R||k∗ ·T k∗−1). The k∗−1 is because we only need to remember minimal
functions τ ∈ Ti: if τ ′(n) ≥ τ(n) for all n, then we do not need to keep τ ′ in Ti.
In particular, for the knapsack encoding in the proof of Thm. 7, we have k∗ = 3,
||R|| = 2 and C(N) = 4. Notice that if k is part of the input, then the problem
is strongly NP-hard, even if T is given in unary, as e.g. encoding bin packing
with � bins result to a 2�+ 1-layered negotiations.

8 Conclusion
In this paper, we considered timed negotiations. We believe that time is of the
essence in negotiations, as examplified by the Brexit negotiation. It is thus im-
portant to be able to compute in a tractable way the minimal and maximal
execution time of negotiations. We showed that we can compute in PTIME
the maximal execution time for acyclic negotiations that are either sound or
k-layered, for k fixed. We showed that we cannot compute in PTIME the max-
imal execution time for negotiations that are not sound nor k-layered, even if
they are deterministic and acyclic (unless NP=PTIME). We also showed that
surprisingly, computing the minimal execution time is much harder, with strong
NP-hardness results in most of the classes of negotiations, contradicting a claim
in [10]. We came up with a new reasonable class of negotiations, namely k-layered
negotiations, which enjoys a pseudo PTIME algorithm to compute the minimal
execution time. That is, the algorithm is PTIME when the timing constants
are given in unary. We showed that this restriction is necessary, as the prob-
lem becomes NP-hard for constants given in binary, even when the negotiation
is sound and very weakly non-deterministic. The problem to know whether the
minimal execution time can be computed in PTIME for deterministic and sound
negotiation remains open.

54 S. Akshay et al.

References

1. S. Akshay, B. Genest, L. Hélouët, and S. Mital. Timed Negotiations (extended
version). In Research report, https://hal.inria.fr/hal-02337887, 2020.

2. J. Desel. Reduction and Design of Well-behaved Concurrent Systems. In CONCUR
’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Nether-
lands, August 27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer
Science, pages 166–181. Springer, 1990.

3. J. Desel, J. Esparza, and P. Hoffmann. Negotiation as Concurrency Primitive.
Acta Inf., 56(2):93–159, 2019.

4. J. Esparza. Decidability and Complexity of Petri Net Problems - An Introduc-
tion. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Dagstuhl,
September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374–
428. Springer, 1998.

5. J. Esparza and J. Desel. Free Choice Petri Nets. Cambridge University Press,
1995.

6. J. Esparza and J. Desel. On Negotiation as Concurrency Primitive. In CON-
CUR 2013 - Concurrency Theory - 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture
Notes in Computer Science, pages 440–454. Springer, 2013.

7. J. Esparza and J. Desel. On Negotiation as Concurrency Primitive II: Deterministic
Cyclic Negotiations. In FOSSACS’14, volume 8412 of Lecture Notes in Computer
Science, pages 258–273. Springer, 2014.

8. J. Esparza and P. Hoffmann. Reduction Rules for Colored Workflow Nets. In
Fundamental Approaches to Software Engineering - 19th International Confer-
ence, FASE 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9633 of Lecture Notes in Computer Science, pages 342–358.
Springer, 2016.

9. J. Esparza, D. Kuperberg, A. Muscholl, and I. Walukiewicz. Soundness in Negoti-
ations. Logical Methods in Computer Science, 14(1), 2018.

10. J. Esparza, A. Muscholl, and I. Walukiewicz. Static Analysis of Deterministic Ne-
gotiations. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017.

11. S. Haddad. A Reduction Theory for Coloured Nets. In Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science, pages 209–235. Springer,
1990.

12. P. Hoffmann. Negotiation Games. In Javier Esparza and Enrico Tronci, editors,
Proceedings Sixth International Symposium on Games, Automata, Logics and For-
mal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015., volume
193 of EPTCS, pages 31–42, 2015.

13. M. W. Krentel. The Complexity of Optimization Problems. Journal of computer
and system sciences, 36(3):490–509, 1988.

14. P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis,
University of California, Irvine, CA, USA, 1974.

15. C. H. Papadimitriou and M. Yannakakis. The Complexity of Facets (and Some
Facets of Complexity). In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC ’82, pages 255–260, New York, NY, USA, 1982.
ACM.

Timed Negotiations 55

16. R.H. Sloan and U.A. Buy. Reduction Rules for Time Petri Nets. Acta Inf.,
33(7):687–706, 1996.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

56 S. Akshay et al.

	Timed Negotiations*
	1 Introduction
	2 Negotiations: Definitions
and Brexit example
	3 Timed Negotiations
	4 High level view of the main results
	5 Deterministic Negotiations
	6 Sound Negotiations
	7 k-Layered Negotiations
	7.1 Algorithmic properties
	7.2 Minimal Execution Time

	8 Conclusion
	References

