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Abstract. Cartesian differential categories are categories equipped with
a differential combinator which axiomatizes the directional derivative.
Important models of Cartesian differential categories include classical
differential calculus of smooth functions and categorical models of the
differential λ-calculus. However, Cartesian differential categories cannot
account for other interesting notions of differentiation such as the calcu-
lus of finite differences or the Boolean differential calculus. On the other
hand, change action models have been shown to capture these examples
as well as more “exotic” examples of differentiation. However, change
action models are very general and do not share the nice properties of
a Cartesian differential category. In this paper, we introduce Cartesian
difference categories as a bridge between Cartesian differential categories
and change action models. We show that every Cartesian differential cat-
egory is a Cartesian difference category, and how certain well-behaved
change action models are Cartesian difference categories. In particular,
Cartesian difference categories model both the differential calculus of
smooth functions and the calculus of finite differences. Furthermore, ev-
ery Cartesian difference category comes equipped with a tangent bundle
monad whose Kleisli category is again a Cartesian difference category.

Keywords: Cartesian Difference Categories · Cartesian Differential Cat-
egories · Change Actions · Calculus Of Finite Differences · Stream Cal-
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1 Introduction

In the early 2000s, Ehrhard and Regnier introduced the differential λ-calculus
[10], an extension of the λ-calculus equipped with a differential combinator ca-
pable of taking the derivative of arbitrary higher-order functions. This develop-
ment, based on models of linear logic equipped with a natural notion of “deriva-
tive” [11], sparked a wave of research into categorical models of differentiation.

One of the most notable developments in the area is the introduction of
Cartesian differential categories [4] by Blute, Cockett and Seely, which provide an
abstract categorical axiomatization of the directional derivative from differential
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calculus. The relevance of Cartesian differential categories lies in their ability to
model both “classical” differential calculus (with the canonical example being the
category of Euclidean spaces and smooth functions between) and the differential
λ-calculus (as every categorical model for it gives rise to a Cartesian differential
category [14]). However, while Cartesian differential categories have proven to
be an immensely successful formalism, they have, by design, some limitations.
Firstly, they cannot account for certain “exotic” notions of derivative, such as
the difference operator from the calculus of finite differences [16] or the Boolean
differential calculus [19]. This is because the axioms of a Cartesian differential
category stipulate that derivatives should be linear in their second argument (in
the same way that the directional derivative is), whereas these aforementioned
discrete sorts of derivative need not be. Additionally, every Cartesian differential
category is equipped with a tangent bundle monad [7, 15] whose Kleisli category
can be intuitively understood as a category of generalized vector fields. This
Kleisli category has an obvious differentiation operator which comes close to
making it a Cartesian differential category, but again fails the requirement of
being linear in its second argument.

More recently, discrete derivatives have been suggested as a semantic frame-
work for understanding incremental computation. This led to the development
of change structures [6] and change actions [2]. Change action models have been
successfully used to provide a model for incrementalizing Datalog programs [1],
but have also been shown to model the calculus of finite differences as well as
the Kleisli category of the tangent bundle monad of a Cartesian differential cate-
gory. Change action models, however, are very general, lacking many of the nice
properties of Cartesian differential categories (for example, addition in a change
action model is not required to be commutative), even though they are verified
in most change action models. As a consequence of this generality, the tangent
bundle endofunctor in a change action model can fail to be a monad.

In this work, we introduce Cartesian difference categories (Section 4.2), whose
key ingredients are an infinitesimal extension operator and a difference combi-
nator, whose axioms are a generalization of the differential combinator axioms
of a Cartesian differential category. In Section 4.3, we show that every Cartesian
differential category is, in fact, a Cartesian difference category whose infinites-
imal extension operator is zero, and conversely how every Cartesian difference
category admits a full subcategory which is a Cartesian differential category. In
Section 4.4, we show that every Cartesian difference category is a change action
model, and conversely how a full subcategory of suitably well-behaved objects of
a change action model is a Cartesian difference category. In Section 6, we show
that every Cartesian difference category comes equipped with a monad whose
Kleisli category again a Cartesian difference category. Finally, in Section 5 we
provide some examples of Cartesian difference categories; notably, the calculus
of finite differences and the stream calculus.
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2 Cartesian Differential Categories

In this section, we briefly review Cartesian differential categories, so that the
reader may compare Cartesian differential categories with the new notion of
Cartesian difference categories which we introduce in the next section. For a full
detailed introduction on Cartesian differential categories, we refer the reader to
the original paper [4].

2.1 Cartesian Left Additive Categories

Here we recall the definition of Cartesian left additive categories [4] – where
“additive” is meant being skew enriched over commutative monoids, which in
particular means that we do not assume the existence of additive inverses, i.e.,
“negative elements”. By a Cartesian category we mean a category X with chosen
finite products where we denote the binary product of objects A and B by
A× B with projection maps π0 : A× B → A and π1 : A× B → B and pairing
operation 〈−,−〉, and the chosen terminal object as � with unique terminal
maps !A : A → �.

Definition 1. A left additive category [4] is a category X such that each
hom-set X(A,B) is a commutative monoid with addition operation + : X(A,B)×
X(A,B) → X(A,B) and zero element (called the zero map) 0 ∈ X(A,B), such
that pre-composition preserves the additive structure: (f + g) ◦ h = f ◦ h+ g ◦ h
and 0◦f = 0. A map k in a left additive category is additive if post-composition
by k preserves the additive structure: k ◦ (f + g) = k ◦ f + k ◦ g and k ◦ 0 = 0.
A Cartesian left additive category [4] is a Cartesian category X which is
also a left additive category such all projection maps π0 : A × B → A and
π1 : A×B → B are additive.

We note that the definition given here of a Cartesian left additive category
is slightly different from the one found in [4], but it is indeed equivalent. By [4,
Proposition 1.2.2], an equivalent axiomatization is of a Cartesian left additive
category is that of a Cartesian category where every object comes equipped
with a commutative monoid structure such that the projection maps are monoid
morphisms. This will be important later in Section 4.2.

2.2 Cartesian Differential Categories

Definition 2. A Cartesian differential category [4] is a Cartesian left ad-
ditive category equipped with a differential combinator D of the form

f : A → B

D[f ] : A×A → B

verifying the following coherence conditions:

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0
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[CD.2] D[f ] ◦ 〈x, y + z〉 = D[f ] ◦ 〈x, y〉+ D[f ] ◦ 〈x, z〉 and D[f ] ◦ 〈x, 0〉 = 0
[CD.3] D[1A] = π1 and D[π0] = π0 ◦ π1 and D[π1] = π1 ◦ π1

[CD.4] D[〈f, g〉] = 〈D[f ],D[g]〉 and D[!A] =!A×A

[CD.5] D[g ◦ f ] = D[g] ◦ 〈f ◦ π0,D[f ]〉
[CD.6] D [D[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = D[f ] ◦ 〈x, z〉
[CD.7] D [D[f ]] ◦ 〈〈x, y〉, 〈z, 0〉〉 = D [D[f ]] ◦ 〈〈x, z〉, 〈y, 0〉〉

Note that here, following the more recent work on Cartesian differential cat-
egories, we’ve flipped the convention found in [4], so that the linear argument is
in the second argument rather than in the first argument.

We highlight that by [7, Proposition 4.2], the last two axioms [CD.6] and
[CD.7] have an equivalent alternative expression.

Lemma 1. In the presence of the other axioms, [CD.6] and [CD.7] are equiv-
alent to:

[CD.6.a] D [D[f ]] ◦ 〈〈x, 0〉, 〈0, y〉〉 = D[f ] ◦ 〈x, y〉
[CD.7.a] D [D[f ]] ◦ 〈〈x, y〉, 〈z, w〉〉 = D [D[f ]] ◦ 〈〈x, z〉, 〈y, w〉〉

As a Cartesian difference category is a generalization of a Cartesian differ-
ential category, we leave the discussion of the intuition of these axioms for later
in Section 4.2 below. We also refer to [4, Section 4] for a term calculus which
may help better understand the axioms of a Cartesian differential category. The
canonical example of a Cartesian differential category is the category of real
smooth functions, which we will discuss in Section 5.1. Other interesting exam-
ples of can be found throughout the literature such as categorical models of the
differential λ-calculus [10, 14], the subcategory of differential objects of a tangent
category [7], and the coKleisli category of a differential category [3, 4].

3 Change Action Models

Change actions [1, 2] have recently been proposed as a setting for reasoning about
higher-order incremental computation, based on a discrete notion of differentia-
tion. Together with Cartesian differential categories, they provide the core ideas
behind Cartesian difference categories. In this section, we quickly review change
actions and change action models, in particular, to highlight where some of the
axioms of a Cartesian difference category come from. For more details on change
actions, we invite readers to see the original paper [2].

3.1 Change Actions

Definition 3. A change action A in a Cartesian category X is a quintuple
A ≡ (A,ΔA,⊕A,+A, 0A) consisting of two objects A and ΔA, and three maps:

⊕A : A×ΔA → A +A : ΔA×ΔA → ΔA 0A : � → ΔA

such that (ΔA,+A, 0A) is a monoid and ⊕A : A×ΔA → A is an action of ΔA
on A, that is, the following equalities hold:

⊕A ◦ 〈1A, 0A◦!A〉 = 1A ⊕A ◦(1A ×+A) = ⊕A ◦ (⊕A × 1ΔA)
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For a change action A and given a pair of maps f : C → A and g : C → ΔA,
we define f⊕Ag : C → A as f⊕Ag = ⊕A◦〈f, g〉. Similarly, for maps h : C → ΔA
and k : C → ΔA, define h +A k = +A ◦ 〈h, k〉. Therefore, that ⊕A is an action
of ΔA on A can be rewritten as:

1A ⊕A 0A = 1A 1A ⊕A (1ΔA +A 1ΔA) = (1A ⊕A 1ΔA)⊕A 1ΔA

The intuition behind the above definition is that the monoid ΔA is a type of
possible “changes” or “updates” that might be applied to A, with the monoid
structure on ΔA representing the capability to compose updates.

Change actions give rise to a notion of derivative, with a distinctly “discrete”
flavour. Given change actions on objects A and B, a map f : A → B can be
said to be differentiable when changes to the input (in the sense of elements
of ΔA) are mapped to changes to the output (that is, elements of ΔB). In
the setting of incremental computation, this is precisely what it means for f to
be incrementalizable, with the derivative of f corresponding to an incremental
version of f .

Definition 4. Let A ≡ (A,ΔA,⊕A,+A, 0A) and B ≡ (B,ΔB,⊕B ,+B , 0B) be
change actions. For a map f : A → B, a map ∂[f ] : A × ΔA → ΔB is a
derivative of f whenever the following equalities hold:

[CAD.1] f ◦ (x⊕A y) = f ◦ x⊕B (∂[f ] ◦ 〈x, y〉)
[CAD.2] ∂[f ] ◦ 〈x, y +A z〉 = (∂[f ] ◦ 〈x, y〉) +B (∂[f ] ◦ 〈x⊕A y, z〉) and

∂[f ] ◦ 〈x, 0B◦!B〉 = 0B◦!A×ΔA

The intuition for these axioms will be explained in more detail in Section
4.2 when we explain the axioms of a Cartesian difference category. Note that
although there is nothing in the above definition guaranteeing that any given
map has at most a single derivative, the chain rule does hold. As a corollary,
differentiation is compositional and therefore the change actions in X form a
category.

Lemma 2. Whenever ∂[f ] and ∂[g] are derivatives for composable maps f and
g respectively, then ∂[g] ◦ 〈f ◦ π0,∂[f ]〉 is a derivative for g ◦ f .

3.2 Change Action Models

Definition 5. Given a Cartesian category X, define its change actions category
CAct(X) as the category whose objects are change actions in X and whose arrows
f : A → B are the pairs (f,∂[f ]), where f : A → B is an arrow in X and
∂[f ] : A × ΔA → ΔB is a derivative for f . The identity is (1A, π1), while
composition of (f,∂[f ]) and (g,∂[g]) is (g ◦ f,∂[g] ◦ 〈f ◦ π0,∂[f ]〉).

There is an obvious product-preserving forgetful functor E : CAct(X) → X
sending every change action (A,ΔA,⊕,+, 0) to its base object A and every
map (f,∂[f ]) to the underlying map f . As a setting for studying differentiation,
the category CAct(X) is rather lacklustre, since there is no notion of higher
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derivatives, so we will instead work with change action models. Informally, a
change action model consists of a rule which for every object A of X associates
a change action over it, and for every map a choice of a derivative.

Definition 6. A change action model is a Cartesian category X is a product-
preserving functor α : X → CAct(X) that is a section of the forgetful functor E.

For brevity, when A is an object of a change action model, we will write ΔA,
⊕A, +A, and 0A to refer to the components of the corresponding change action
α(A). Examples of change action models can be found in [2]. In particular, we
highlight that a Cartesian differential category always provides a change model
action. We will generalize this result, and show in Section 4.4 that a Cartesian
difference category also always provides a change action model.

4 Cartesian Difference Categories

In this section, we introduce Cartesian difference categories, which are gener-
alizations of Cartesian differential categories. Examples of Cartesian difference
categories can be found in Section 5.

4.1 Infinitesimal Extensions in Left Additive Categories

We first introduce infinitesimal extensions, which is an operator that turns a map
into an “infinitesimal” version of itself – in the sense that every map coincides
with its Taylor approximation on infinitesimal elements.

Definition 7. A Cartesian left additive category X is said to have an infinites-
imal extension ε if every homset X(A,B) comes equipped with a monoid mor-
phism ε : X(A,B) → X(A,B), that is, ε(f + g) = ε(f) + ε(g) and ε(0) = 0, and
such that ε(g ◦f) = ε(g)◦f and ε(π0) = π0 ◦ ε(1A×B) and ε(π1) = π1 ◦ ε(1A×B).

Note that since ε(g ◦ f) = ε(g) ◦ f , it follows that ε(f) = ε(1B) ◦ f and
ε(1A) : A → A is an additive map (Definition 1). In light of this, it turns out
that infinitesimal extensions can equivalently be described as a class of additive
maps εA : A → A such that εA×B = εA×εB . The equivalence is given by setting
ε(f) = εB ◦ f and εA = ε(1A). Furthermore, infinitesimal extensions equipped
each object with a canonical change action structure:

Lemma 3. Let X be a Cartesian left additive category with infinitesimal exten-
sion ε. For every object A, define the maps ⊕A : A×A → A as ⊕A = π0+ε(π1),
+A : A×A → A as π0+π1, and 0A : � → A as 0A = 0. Then (A,A,⊕A,+A, 0A)
is a change action in X.

Proof. As mentioned earlier, that (A,+A, 0A) is a commutative monoid was
shown in [4]. On the other hand, that ⊕A is a change action follows from the
fact that ε preserves the addition. �
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Setting A ≡ (A,A,⊕A,+A, 0A), we note that f⊕A g = f+ε(g) and f+A g =
f + g, and so in particular +A = +. Therefore, from now on we will omit the
subscripts and simply write ⊕ and +.

For every Cartesian left additive category, there are always at least two pos-
sible infinitesimal extensions:

Lemma 4. For any Cartesian left additive category X,

1. Setting ε(f) = 0 defines an infinitesimal extension on X and therefore in
this case, ⊕A = π0 and f ⊕ g = f .

2. Setting ε(f) = f defines an infinitesimal extension on X and therefore in
this case, ⊕A = +A and f ⊕ g = f + g.

We note that while these examples of infinitesimal extensions may seem triv-
ial, they are both very important as they will give rise to key examples of Carte-
sian difference categories.

4.2 Cartesian Difference Categories

Definition 8. A Cartesian difference category is a Cartesian left additive
category with an infinitesimal extension ε which is equipped with a difference
combinator ∂ of the form:

f : A → B

∂[f ] : A×A → B

verifying the following coherence conditions:

[C∂.0] f ◦ (x+ ε(y)) = f ◦ x+ ε (∂[f ] ◦ 〈x, y〉)
[C∂.1] ∂[f + g] = ∂[f ] + ∂[g], ∂[0] = 0, and ∂[ε(f)] = ε(∂[f ])
[C∂.2] ∂[f ] ◦ 〈x, y+ z〉 = ∂[f ] ◦ 〈x, y〉+∂[f ] ◦ 〈x+ ε(y), z〉 and ∂[f ] ◦ 〈x, 0〉 = 0
[C∂.3] ∂[1A] = π1 and ∂[π0] = π1;π0 and ∂[π1] = π1;π0

[C∂.4] ∂[〈f, g〉] = 〈∂[f ],∂[g]〉 and ∂[!A] =!A×A

[C∂.5] ∂[g ◦ f ] = ∂[g] ◦ 〈f ◦ π0,∂[f ]〉
[C∂.6] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = ∂[f ] ◦ 〈x+ ε(y), z〉
[C∂.7] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈z, 0〉〉 = ∂ [∂[f ]] ◦ 〈〈x, z〉, 〈y, 0〉〉

Before giving some intuition on the axioms [C∂.0] to [C∂.7], we first observe
that one could have used change action notation to express [C∂.0], [C∂.2], and
[C∂.6] which would then be written as:

[C∂.0] f ◦ (x⊕ y) = (f ◦ x)⊕ (∂[f ] ◦ 〈x, y〉)
[C∂.2] ∂[f ] ◦ 〈x, y + z〉 = ∂[f ] ◦ 〈x, y〉+ ∂[f ] ◦ 〈x⊕ y, z〉 and ∂[f ] ◦ 〈x, 0〉 = 0
[C∂.6] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈0, z〉〉 = ∂[f ] ◦ 〈x⊕ y, z〉
And also, just like Cartesian differential categories, [C∂.6] and [C∂.7] have
alternative equivalent expressions.

Lemma 5. In the presence of the other axioms, [C∂.6] and [C∂.7] are equiv-
alent to:
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[C∂.6.a] ∂ [∂[f ]] ◦ 〈〈x, 0〉, 〈0, y〉〉 = ∂[f ] ◦ 〈x, y〉
[C∂.7.a] ∂ [∂[f ]] ◦ 〈〈x, y〉, 〈z, w〉〉 = ∂ [∂[f ]] ◦ 〈〈x, z〉, 〈y, w〉〉
Proof. The proof is essentially the same as [7, Proposition 4.2]. �

The keen eyed reader will notice that the axioms of a Cartesian difference cat-
egory are very similar to the axioms of a Cartesian differential category. Indeed,
[C∂.1], [C∂.3], [C∂.4], [C∂.5], and [C∂.7] are the same as their Cartesian dif-
ferential category counterpart. The axioms which are different are [C∂.2] and
[C∂.6] where the infinitesimal extension ε is now included, and also there is the
new extra axiom [C∂.0]. On the other hand, interestingly enough, [C∂.6.a] is
the same as [CD.6.a]. We also point out that writing out [C∂.0] and [C∂.2]
using change action notion, we see that these axioms are precisely [CAD.1] and
[CAD.2] respectively. To better understand [C∂.0] to [C∂.7] it may be useful
to write them out using element-like notation. In element-like notation, [C∂.0]
is written as:

f(x+ ε(y)) = f(x) + ε (∂[f ](x, y))

This condition can be read as a generalization of the Kock-Lawvere axiom that
characterizes the derivative in from synthetic differential geometry [13]. Broadly
speaking, the Kock-Lawvere axiom states that, for any map f : R → R and any
x ∈ R and d ∈ D, there exists a unique f ′(x) ∈ R verifying

f(x+ d) = f(x) + d · f ′(x)

where D is the subset of R consisting of infinitesimal elements. It is by analogy
with the Kock-Lawvere axiom that we refer to ε as an “infinitesimal extension”
as it can be thought of as embedding the space A into a subspace ε(A) of
infinitesimal elements.

[C∂.1] states that the differential of a sum of maps is the sum of differentials,
and similarly for zero maps and the infinitesimal extension of a map. [C∂.2] is
the first crucial difference between a Cartesian difference category and a Carte-
sian differential category. In a Cartesian differential category, the differential of
a map is assumed to be additive in its second argument. In a Cartesian differ-
ence category, just as derivatives for change actions, while the differential is still
required to preserve zeros in its second argument, it is only additive “up to a
small perturbation”, that is:

∂[f ](x, y + z) = ∂[f ](x, y) + ∂[f ](x+ ε(y), z)

[C∂.3] tells us what the differential of the identity and projection maps are,
while [C∂.4] says that the differential of a pairing of maps is the pairing of their
differentials. [C∂.5] is the chain rule which expresses what the differential of a
composition of maps is:

∂[g ◦ f ](x, y) = ∂[g](f(x),∂[f ](x, y))

[C∂.6] and [C∂.7] tell us how to work with second order differentials. [C∂.6]
is expressed as follows:

∂ [∂[f ]] (x, y, 0, z) = ∂[f ](x+ ε(y), z)
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and finally [C∂.7] is expressed as:

∂ [∂[f ]] (x, y, z, 0) = ∂ [∂[f ]] (x, z, y, 0)

It is interesting to note that while [C∂.6] is different from [CD.6], its alternative
version [C∂.6.a] is the same as [CD.6.a].

∂ [∂[f ]] ((x, 0), (0, y)) = ∂[f ](x, z)

4.3 Another look at Cartesian Differential Categories

Here we explain how a Cartesian differential category is a Cartesian difference
category where the infinitesimal extension is given by zero.

Proposition 1. Every Cartesian differential category X with differential com-
binator D is a Cartesian difference category where the infinitesimal extension is
defined as ε(f) = 0 and the difference combinator is defined to be the differential
combinator, ∂ = D.

Proof. As noted before, the first two parts of the [C∂.1], the second part of
[C∂.2], [C∂.3], [C∂.4], [C∂.5], and [C∂.7] are precisely the same as their
Cartesian differential axiom counterparts. On the other hand, since ε(f) = 0,
[C∂.0] and the third part of [C∂.1] trivial state that 0 = 0, while the first
part of [C∂.2] and [C∂.6] end up being precisely the first part of [CD.2] and
[CD.6]. Therefore, the differential combinator satisfies the Cartesian difference
axioms and we conclude that a Cartesian differential category is a Cartesian
difference category. �

Conversely, one can always build a Cartesian differential category from a
Cartesian difference category by considering the objects for which the infinites-
imal extension is the zero map.

Proposition 2. For a Cartesian difference category X with infinitesimal exten-
sion ε and difference combinator ∂, then X0, the full subcategory of objects A
such that ε(1A) = 0, is a Cartesian differential category where the differential
combinator is defined to be the difference combinator, D = ∂.

Proof. First note that if ε(1A) = 0 and ε(1B) = 0, then by definition it also
follows that ε(1A×B) = 0, and also that for the terminal object ε(1�) = 0
by uniqueness of maps into the terminal object. Thus X0 is closed under finite
products and is therefore a Cartesian left additive category. Furthermore, we
again note that since ε(f) = 0, this implies that for maps between such objects
the Cartesian difference axioms are precisely the Cartesian differential axioms.
Therefore, the difference combinator is a differential combinator for this subcat-
egory, and so X0 is a Cartesian differential category. �
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In any Cartesian difference category X, the terminal object � always satisfies
that ε(1�) = 0, and so therefore, X0 is never empty. On the other hand, applying
Proposition 2 to a Cartesian differential category results in the entire category.
It is also important to note that the above two propositions do not imply that
if a difference combinator is a differential combinator then the infinitesimal ex-
tension must be zero. In Section 5.3, we provide such an example of a Cartesian
differential category that comes equipped with a non-zero infinitesimal extension
such that the differential combinator is a difference combinator with respect to
this non-zero infinitesimal extension.

4.4 Cartesian Difference Categories as Change Action Models

In this section, we show how every Cartesian difference category is a particu-
larly well-behaved change action model, and conversely how every change action
model contains a Cartesian difference category.

Proposition 3. Let X be a Cartesian difference category with infinitesimal ex-
tension ε and difference combinator ∂. Define the functor α : X → CAct(X) as
α(A) = (A,A,⊕A,+A, 0A) (as defined in Lemma 3) and α(f) = (f,∂[f ]). Then
(X, α : X → CAct(X)) is a change action model.

Proof. By Lemma 3, (A,A,⊕A,+A, 0A) is a change action and so α is well-
defined on objects. While for a map f , ∂[f ] is a derivative of f in the change
action sense since [C∂.0] and [C∂.2] are precisely [CAD.1] and [CAD.2],
and so α is well-defined on maps. That α preserves identities and composition
follows from [C∂.3] and [C∂.5] respectively, and so α is a functor. That α
preserves finite products will follow from [C∂.3] and [C∂.4]. Lastly, it is clear
that α section of the forgetful functor, and therefore we conclude that (X, α) is
a change action model. �

It is clear that not every change action model is a Cartesian difference cat-
egory. For example, change action models do not require the addition to be
commutative. On the other hand, it can be shown that every change action
model contains a Cartesian difference category as a full subcategory.

Definition 9. Let (X, α : X → CAct(X)) be a change action model. An object A
is flat whenever the following hold:

[F.1] ΔA = A
[F.2] α(⊕A) = (⊕A,⊕A ◦ π1)
[F.3] 0⊕A (0⊕A f) = 0⊕A f for any f : U → A.
[F.4] ⊕A is right-injective, that is, if ⊕A ◦ 〈f, g〉 = ⊕A ◦ 〈f, h〉 then g = h.

We would like to show that for any change action model (X, α), its full sub-
category of flat objects, Flatα is a Cartesian difference category. Starting with
the finite product structure, since α preserves finite products, it is straightfor-
ward to see that � is Euclidean and if A and B are flat then so is A × B. The
sum of maps f : A → B and g : A → B in Flatα is defined using the change
action structure f +B g, while the zero map 0 : A → B is 0 = 0B◦!A. And so we
obtain that:
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Lemma 6. Flatα is a Cartesian left additive category.

Proof. Most of the Cartesian left additive structure is straightforward. However,
since the addition is not required to be commutative for arbitrary change actions,
we will show that the addition is commutative for Euclidean objects. Using that
⊕B is an action, that by [F.2] we have that ⊕B ◦ π1 is a derivative for ⊕B , and
[CAD.1], we obtain that:

0B ⊕B (f +B g) = (0B ⊕B f)⊕B g = (0B ⊕B g)⊕B f = 0B ⊕B (g +B f)

By [F.4], ⊕B is right-injective and we conclude that f + g = g + f . �

As an immediate consequence We note that for any change action model
(X, α), since the terminal object is always flat, Flatα is never empty.

We use the action of the change action structure to define the infinitesimal
extension. So for a map f : A → B in Flatα, define ε(f) : A → B as follows:

ε(f) = ⊕B ◦ 〈0B◦!A, f〉 = 0⊕B f

Lemma 7. ε is an infinitesimal extension for Flatα.

Proof. We show that ε preserve the addition. Following the same idea as in the
proof of Lemma 6, we obtain the following:

0B ⊕B ε(f +B g) = 0B ⊕B (0B ⊕B (f +B g))

= (0B ⊕B 0B)⊕B ((0B ⊕B f)⊕B g) = (0B ⊕B (0B ⊕B f))⊕B (0B ⊕B g)

= (0B ⊕B ε(f))⊕B ε(g) = 0B ⊕B (ε(f) +B ε(g))

Then by [F.3], it follows that ε(f+g) = ε(f)+ε(g). The remaining infinitesimal
extension axioms are proven in a similar fashion. �

Lastly, the difference combinator for Flatα is defined in the obvious way, that
is, ∂[f ] is defined as the second component of α(f).

Proposition 4. Let (X, α : X → CAct(X)) be a change action model. Then
Flatα is a Cartesian difference category.

Proof (Sketch). The full calculations will appear in an upcoming extended jour-
nal version of this paper, but we give an informal explanation. [C∂.0] and
[C∂.2] are a straightforward consequences of [CAD.1] and [CAD.2]. [C∂.3]
and [C∂.4] follow trivially from the fact that α preserves finite products and from
the structure of products in CAct(X), while [C∂.5] follows from composition in
CAct(X). [C∂.1], [C∂.6] and [C∂.7] are obtained by mechanical calculation in
the spirit of Lemma 6. Note that every axiom except for [C∂.6] can be proven
without using [F.3] �
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4.5 Linear Maps and ε-Linear Maps

An important subclass of maps in a Cartesian differential category is the subclass
of linear maps [4, Definition 2.2.1]. One can also define linear maps in a Cartesian
difference category by using the same definition.

Definition 10. In a Cartesian difference category, a map f is linear if the
following equality holds: ∂[f ] = f ◦ π1.

Using element-like notation, a map f is linear if ∂[f ](x, y) = f(y). Linear
maps in a Cartesian difference category satisfy many of the same properties
found in [4, Lemma 2.2.2].

Lemma 8. In a Cartesian difference category,

1. If f : A → B is linear then ε(f) = f ◦ ε(1A);
2. If f : A → B is linear, then f is additive (Definition 1);
3. Identity maps, projection maps, and zero maps are linear;
4. The composite, sum, and pairing of linear maps is linear;
5. If f : A → B and k : C → D are linear, then for any map g : B → C, the

following equality holds: ∂[k ◦ g ◦ f ] = k ◦ ∂[g] ◦ (f × f);
6. If an isomorphism is linear, then its inverse is linear;
7. For any object A, ⊕A and +A are linear.

Using element-like notation, the first point of the above lemma says that if
f is linear then f(ε(x)) = ε(f(x)). And while all linear maps are additive, the
converse is not necessarily true, see [4, Corollary 2.3.4]. However, an immediate
consequence of the above lemma is that the subcategory of linear maps of a
Cartesian difference category has finite biproducts.

Another interesting subclass of maps is the subclass of ε-linear maps, which
are maps whose infinitesimal extension is linear.

Definition 11. In a Cartesian difference category, a map f is ε-linear if ε(f)
is linear.

Lemma 9. In a Cartesian difference category,

1. If f : A → B is ε-linear then f ◦ (x+ ε(y)) = f ◦ x+ ε(f) ◦ y;
2. Every linear map is ε-linear;
3. The composite, sum, and pairing of ε-linear maps is ε-linear;
4. If an isomorphism is ε-linear, then its inverse is again ε-linear.

Using element-like notation, the first point of the above lemma says that if
f is ε-linear then f(x+ ε(y)) = f(x) + ε(f(y)). So ε-linear maps are additive on
“infinitesimal” elements (i.e. those of the form ε(y)).

For a Cartesian differential category, linear maps in the Cartesian difference
category sense are precisely the same as the Cartesian differential category sense
[4, Definition 2.2.1], while every map is ε-linear since ε = 0.
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5 Examples of Cartesian Difference Categories

5.1 Smooth Functions

Every Cartesian differential category is a Cartesian difference category where the
infinitesimal extension is zero. As a particular example, we consider the category
of real smooth functions, which as mentioned above, can be considered to be the
canonical (and motivating) example of a Cartesian differential category.

Let R be the set of real numbers and let SMOOTH be the category whose
objects are Euclidean spaces Rn (including the point R0 = {∗}), and whose
maps are smooth functions F : Rn → Rm. SMOOTH is a Cartesian left additive
category where the product structure is given by the standard Cartesian product
of Euclidean spaces and where the additive structure is defined by point-wise
addition, (F + G)(x) = F (x) + G(x) and 0(x) = (0, . . . , 0), where x ∈ Rn.
SMOOTH is a Cartesian differential category where the differential combinator
is defined by the directional derivative of smooth functions. Explicitly, for a
smooth function F : Rn → Rm, which is in fact a tuple of smooth functions
F = (f1, . . . , fn) where fi : Rn → R, D[F ] : Rn×Rn → Rm is defined as follows:

D[F ] (x,y) :=

(
n∑

i=1

∂f1
∂ui

(x)yi, . . . ,

n∑
i=1

∂fn
∂ui

(x)yi

)
where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn. Alternatively, D[F ] can also be
defined in terms of the Jacobian matrix of F . Therefore SMOOTH is a Carte-
sian difference category with infinitesimal extesion ε = 0 and with difference
combinator D. Since ε = 0, the induced action is simply x ⊕Rn y = x. Also a
smooth function is linear in the Cartesian difference category sense precisely if
it is R-linear in the classical sense, and every smooth function is ε-linear.

5.2 Calculus of Finite Differences

Here we explain how the difference operator from the calculus of finite differences
gives an example of a Cartesian difference category but not a Cartesian differ-
ential category. This example was the main motivating example for developing
Cartesian difference categories. The calculus of finite differences is captured by
the category of abelian groups and arbitrary set functions between them.

Let Ab be the category whose objects are abelian groups G (where we use
additive notation for group structure) and where a map f : G → H is simply
an arbitrary function between them (and therefore does not necessarily preserve
the group structure). Ab is a Cartesian left additive category where the product
structure is given by the standard Cartesian product of sets and where the
additive structure is again given by point-wise addition, (f+g)(x) = f(x)+g(x)
and 0(x) = 0. Ab is a Cartesian difference category where the infinitesimal
extension is simply given by the identity, that is, ε(f) = f , and and where the
difference combinator ∂ is defined as follows for a map f : G → H:

∂[f ](x, y) = f(x+ y)− f(x)
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On the other hand, ∂ is not a differential combinator for Ab since it does not
satisfy [CD.6] and part of [CD.2]. Thanks to the addition of the infinitesimal
extension, ∂ does satisfy [C∂.2] and [C∂.6], as well as [C∂.0]. However, as
noted in [5], it is interesting to note that this ∂ does satisfy [CD.1], the second
part of [CD.2], [CD.3], [CD.4], [CD.5], [CD.7], and [CD.6.a]. It is worth
noting that in [5], the goal was to drop the addition and develop a “non-additive”
version of Cartesian differential categories.

In Ab, since the infinitesimal operator is given by the identity, the induced
action is simply the addition, x⊕Gy = x+y. On the other hand, the linear maps
in Ab are precisely the group homomorphisms. Indeed, f is linear if ∂[f ](x, y) =
f(y). But by [C∂.0] and [C∂.2], we get that:

f(x+ y) = f(x) + ∂[f ](x, y) = f(x) + f(y) f(0) = ∂[f ](x, 0) = 0

So f is a group homomorphism. Conversely, if f is a group homomorphism:

∂[f ](x, y) = f(x+ y)− f(x) = f(x) + f(y)− f(x) = f(y)

So f is linear. Since ε(f) = f , the ε-linear maps are precisely the linear maps.

5.3 Module Morphisms

Here we provide a simple example of a Cartesian difference category whose dif-
ference combinator is also a differential combinator, but where the infinitesimal
extension is neither zero nor the identity.

Let R be a commutative semiring and let MODR be the category of R-
modules and R-linear maps between them. MODR has finite biproducts and is
therefore a Cartesian left additive category where every map is additive. Every
r ∈ R induces an infinitesimal extension εr defined by scalar multiplication,
εr(f)(m) = rf(m). Then MODR is a Cartesian difference category with the
infinitesimal extension εr for any r ∈ R and difference combinator ∂ defined as:

∂[f ](m,n) = f(n)

R-linearity of f assures that [C∂.0] holds, while the remaining Cartesian dif-
ference axioms hold trivially. In fact, ∂ is also a differential combinator and
therefore MODR is also a Cartesian differential category. The induced action is
given by m ⊕M n = m + rn. By definition of ∂, every map in MODR is linear,
and by definition of εr and R-linearity, every map is also ε-linear.

5.4 Stream calculus

Here we show how one can extend the calculus of finite differences example
to stream calculus. The differential calculus of causal functions and interesting
applications have recently been studying in [17, 18].

For a set A, let Aω denote the set of infinite sequences of elements of A,
where we write [ai] for the infinite sequence [ai] = (a1, a2, a3, . . .) and ai:j for

70 M. Alvarez-Picallo and J.-S. P. Lemay



the (finite) subsequence (ai, ai+1, . . . , aj). A function f : Aω → Bω is causal
whenever the n-th element f ([ai])n of the output sequence only depends on the
first n elements of [ai], that is, f is causal if and only if whenever a0:n = b0:n
then f ([ai])0:n = f ([bi])0:n. We now consider streams over abelian groups, so

let Ab
ω

be the category whose objects are all the Abelian groups and whose
morphisms are causal maps from Gω to Hω. Ab

ω
is a Cartesian left-additive

category, where the product is given by the standard product of abelian groups
and where the additive structure is lifted point-wise from the structure of Ab,
that is, (f + g) ([ai])n = f ([ai])n + g ([ai])n and 0 ([ai])n = 0. In order to define
the infinitesimal extension, we first need to define the truncation operator z. So
let G be an abelian group and [ai] ∈ Gω, then define the sequence z([ai]) as:

z([ai])0 = 0 z ([ai])n+1 = an+1

The category Ab
ω
is a Cartesian difference category where the infinitesimal ex-

tension is given by the truncation operator, ε(f) ([ai]) = z (f ([ai])),
and where the difference combinator ∂ is defined as follows:

∂[f ] ([ai] , [bi])0 = f ([ai] + [bi])0 − f ([ai])0
∂[f ] ([ai] , [bi])n+1 = f ([ai] + z([bi]))n+1 − f ([ai])n+1

Note the similarities between the difference combinator on Ab and that on Ab
ω
.

The induced action is computed out to be:

([ai]⊕ [bi])0 = a0 ([ai]⊕ [bi])n+1 = an+1 + bn+1

A causal map is linear (in the Cartesian difference category sense) if and only
if it is a group homomorphism. While a causal map f is ε-linear if and only if
it is a group homomorphism which does not the depend on the 0-th term of its
input, that is, f ([ai]) = f (z([ai])).

6 Tangent Bundles in Cartesian Difference Categories

In this section, we show that the difference combinator of a Cartesian difference
category induces a monad, called the tangent monad, whose Kleisli category
is again a Cartesian difference category. This construction is a generalization
of the tangent monad for Cartesian differential categories [7, 15]. However, the
Kleisli category of the tangent monad of a Cartesian differential category is not
a Cartesian differential category, but rather a Cartesian difference category.

6.1 The Tangent Bundle Monad

Let X be a Cartesian difference category with infinitesimal extension ε and dif-
ference combinator ∂. Define the functor T : X → X as follows:

T(A) = A×A T(f) = 〈f ◦ π0,∂[f ]〉
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and define the natural transformations η : 1X ⇒ T and μ : T2 ⇒ T as follows:

ηA := 〈1A, 0〉 μA := 〈π0 ◦ π0, π1 ◦ π0 + π0 ◦ π1 + ε(π1 ◦ π1)〉
Proposition 5. (T, μ, η) is a monad.

Proof. Functoriality of T will follow from [C∂.3] and the chain rule [C∂.5].
Naturality of η and μ and the monad identities will follow from the remain-
ing difference combinator axioms. The full lengthy brute force calculations will
appear in an upcoming extended journal version of this paper. �

When X is a Cartesian differential category with the difference structure aris-
ing from setting ε = 0, this tangent bundle monad coincides with the standard
tangent monad corresponding to its tangent category structure [7, 15].

6.2 The Kleisli Category of T

Recall that the Kleisli category of the monad (T, μ, η) is defined as the category
XT whose objects are the objects of X, and where a map A → B in XT is a map
f : A → T(B) in X, which would be a pair f = 〈f0, f1〉 where fj : A → B.
The identity map in XT is the monad unit ηA : A → T(A), while composition
of Kleisli maps f : A → T(B) and g : B → T(C) is defined as the composite
μC ◦T(g)◦f . To distinguish between composition in X and XT, we denote Kleisli
composition as g ◦T f = μC ◦T(g) ◦ f . If f = 〈f0, f1〉 and g = 〈g0, g1〉, then their
Kleisli composition can be explicitly computed out to be:

g ◦T f = 〈g0, g1〉 ◦T 〈f0, f1〉 = 〈g0 ◦ f0,∂[g0] ◦ 〈f0, f1〉+ g1 ◦ (f0 + ε(f1))〉
Kleisli maps can be understood as “generalized” vector fields. Indeed, T(A)
should be thought of as the tangent bundle over A, and therefore a vector field
would be a map 〈1, f〉 : A → T(A), which is of course also a Kleisli map. For
more details on the intuition behind this Kleisli category see [7]. We now wish
to explain how the Kleisli category is again a Cartesian difference category.

We begin by exhibiting the Cartesian left additive structure of the Kleisli
category. The product of objects in XT is defined as A × B with projections
πT
0 : A×B → T(A) and πT

1 : A×B → T(B) defined respectively as πT
0 = 〈π0, 0〉

and πT
1 = 〈π1, 0〉. The pairing of Kleisli maps f = 〈f0, f1〉 and g = 〈, g0, g1〉 is

defined as 〈f, g〉T = 〈〈f0, g0〉, 〈f1, g1〉〉. The terminal object is again � and where
the unique map to the terminal object is !TA = 0. The sum of Kleisli maps f Kleisli
maps f = 〈f0, f1〉 and g = 〈, g0, g1〉 is defined as f+Tg = f+g = 〈f0+g0, f1+g1〉,
and the zero Kleisli maps is simply 0T = 0 = 〈0, 0〉. Therefore we conclude that
the Kleisli category of the tangent monad is a Cartesian left additive category.

Lemma 10. XT is a Cartesian left additive category.

The infinitesimal extension εT for the Kleisli category is defined as follows
for a Kleisli map f = 〈f0, f1〉:

εT(f) = 〈0, f0 + ε(f1)〉
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Lemma 11. εT is an infinitesimal extension on XT.

It is interesting to point out that for an object A the induced action ⊕T
A can

be computed out to be:

⊕T
A = πT

0 +T εT(π1) = 〈π0, 0〉+ 〈0, π1〉 = 〈π0, π1〉 = 1T(A)

and we stress that this is the identity of T(A) in the base category X (but not
in the Kleisli category).

To define the difference combinator for the Kleisli category, first note that
difference combinators by definition do not change the codomain. That is, if
f : A → T(B) is a Kleisli arrow, then the type of its derivative qua Kleisli arrow
should be A×A → T(B)×T(B), which coincides with the type of its derivative
in X. Therefore, the difference combinator ∂T for the Kleisli category can be
defined to be the difference combinator of the base category, that is, for a Kleisli
map f = 〈f0, f1〉:

∂T[f ] = ∂[f ] = 〈∂[f0],∂[f1]〉
Proposition 6. For a Cartesian difference category X, the Kleisli category XT

is a Cartesian difference category with infinitesimal extension εT and difference
combinator ∂T.

Proof. The full lengthy brute force calculations will appear in an upcoming ex-
tended journal version of this paper. We do note that a crucial identity for this
proof is that for any map f in X, the following equality holds:

T(∂[f ]) = ∂ [T(f)] ◦ 〈π0 × π0, π1 × π1〉
This helps simplify many of the calculations for the difference combinator axioms
since T(∂[f ]) appears everywhere due to the definition of Kleisli composition. �

As a result, the Kleisli category of a Cartesian difference category is again a
Cartesian difference category, whose infinitesimal extension is neither the iden-
tity or the zero map. This allows one to build numerous examples of interesting
and exotic Cartesian difference categories, such as the Kleisli category of Carte-
sian differential categories (or iterating this process, taking the Kleisli category
of the Kleisli category). We highlight the importance of this construction in the
Cartesian differential case as it does not in general result in a Cartesian differ-
ential category. Indeed, even if ε = 0, it is always the case that εT �= 0. We
conclude this section by taking a look at the linear maps and the εT-linear maps
in the Kleisli category. A Kleisli map f = 〈f0, f1〉 is linear in the Kleisli category
if ∂T[f ] = f ◦T πT

1 , which amounts to requiring that:

〈∂[f0],∂[f1]〉 = 〈f0 ◦ π1, f1 ◦ π1〉
Therefore a Kleisli map is linear in the Kleisli category if and only if it is the
pairing of maps which are linear in the base category. On the other hand, f is
εT-linear if εT (f) = 〈0, f0 + ε(f1)〉 is linear in the Kleisli category, which in this
case amounts to requiring that f0 + ε(f1) is linear. Therefore, if f0 is linear and
f1 is ε-linear, then f is εT-linear.
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7 Conclusions and Future Work

We have presented Cartesian difference categories, which generalize Cartesian
differential categories to account for more discrete definitions of derivatives while
providing an additional structure that is absent in change action models. We have
also exhibited important examples and shown that Cartesian difference cate-
gories arise quite naturally from considering tangent bundles in any Cartesian
differential category. We claim that Cartesian difference categories can facilitate
the exploration of differentiation in discrete spaces, by generalizing techniques
and ideas from the study of their differential counterparts. For example, Carte-
sian differential categories can be extended to allow objects whose tangent space
is not necessarily isomorphic to the object itself [9]. The same generalization
could be applied to Cartesian difference categories – with some caveats: for ex-
ample, the equation defining a linear map (Definition 10) becomes ill-typed, but
the notion of ε-linear map remains meaningful.

Another relevant path to consider is developing the analogue of the “tensor”
story for Cartesian difference categories. Indeed, an important source of exam-
ples of Cartesian differential categories are the coKleisli categories of a tensor
differential category [3, 4]. A similar result likely holds for a hypothetical “ten-
sor difference category”, but it is not clear how these should be defined: [C∂.2]
implies that derivatives in the difference sense are non-linear and therefore their
interplay with the tensor structure will be much different.

A further generalization of Cartesian differential categories, categories with
tangent structure [7] are defined directly in terms of a tangent bundle functor
rather than requiring that every tangent bundle be trivial (that is, in a tangent
category it may not be the case that TA = A × A). Some preliminary research
on change actions has already shown that, when generalized in this way, change
actions are precisely internal categories, but the consequences of this for change
action models (and, a fortiori, Cartesian difference categories) are not under-
stood. More recently, some work has emerged about differential equations using
the language of tangent categories [8]. We believe similar techniques can be ap-
plied in a straightforward way to Cartesian difference categories, where they
might be of use to give an abstract formalization of discrete dynamical systems
and difference equations.

An important open question is whether Cartesian difference categories (or a
similar notion) admit an internal language. It is well-known that the differen-
tial λ-calculus can be interpreted in Cartesian closed differential categories [14].
Given their similarities, we believe there will be a very similar “difference λ-
calculus” which could potentially have applications to automatic differentiation
(change structures, a notion similar to change actions, have already been pro-
posed as models of forward-mode automatic differentiation [12], although work
on the area seems to have stagnated).

Lastly, we should mention that there are adjunctions between the categories
of Cartesian difference categories, change action models, and Cartesian differ-
ential categories given by Proposition 1, 2, 3, and 4. These adjunctions will be
explored in detail in the upcoming journal version of this paper.
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