
Skill-Based Verification of
Cyber-Physical Systems

Alexander Knüppel1 , Inga Jatzkowski1 , Marcus Nolte1 , Thomas Thüm1,2,
Tobias Runge1, and Ina Schaefer1

1 TU Braunschweig, Braunschweig, Germany
{a.knueppel, tobias.runge, i.schaefer}@tu-bs.de

{jatzkowski, nolte}@ifr.ing.tu-bs.de
2 University of Ulm, Ulm, Germany

thomas.thuem@uni-ulm.de

Abstract. Cyber-physical systems are ubiquitous nowadays. However,
as automation increases, modeling and verifying them becomes increas-
ingly difficult due to the inherently complex physical environment. Skill
graphs are a means to model complex cyber-physical systems (e.g., vehi-
cle automation systems) by distributing complex behaviors among skills
with interfaces between them. We identified that skill graphs have a high
potential to be amenable to scalable verification approaches in the early
software development process. In this work, we suggest combining skill
graphs with hybrid programs. Hybrid programs constitute a program no-
tation for hybrid systems enabling the verification of cyber-physical sys-
tems. We provide the first formalization of skill graphs including a no-
tion of compositionality and propose Skeditor, an integrated frame-
work for modeling and verifying them. Skeditor is coupled with the
theorem prover KeYmaera X, which is specialized in the verification
of hybrid programs. In an experiment exhibiting the follow mode of a ve-
hicle, we evaluate our skill-based methodology with respect to savings in
verification effort and potential to find modeling defects at design time.
Compared to non-compositional verification, the initial verification effort
needed is reduced by more than 53%.

Keywords: Deductive verification, design by contract, formal methods,
theorem proving, KeYmaera X, hybrid systems, automated reasoning,
cyber-physical systems

1 Introduction

Cyber-physical systems combine digital computations and physical processes by
tightly integrating discrete and continuous dynamics [6]. The last decade has wit-
nessed an increase in the degree of automation in safety-critical cyber-physical
systems (e.g., such as self-driving cars and transportation in general). Further-
more, the complexity of formally modeling and verifying such systems (e.g., by
means of hybrid systems models [11, 19, 30]) to reason about safety increased
simultaneously. Although there is a clear desire for an early identification and

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 203–223, 2020.
https://doi.org/10.1007/978-3-030-45234-6 10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_10&domain=pdf
http://orcid.org/0000-0002-8804-7051
http://orcid.org/0000-0003-4127-3913
http://orcid.org/0000-0002-5136-917X
https://doi.org/10.1007/978-3-030-45234-6_10

204 A. Knüppel et al.

s1:
Keep distance

to leading

vehicle

s2:
Select target

object

s3:
Perceive

movable

objects

s4:
Radar

s5:
Camera

s6:
Control

longitudinal

dynamics

s11:
Estimate

motion

s12:
Intertial

sensors

s7:
Decelerate

s8:
Brake system

s10:
Powertrain

s9:
Accelerate

Obs.

Plan.

Perc.

Sensor Sensor

Action

Action

Actua.

Action

Actua.

Perc.

Sensor

φs1
= |xl − xh| > 10 m

φs6
= vh ≤ 2.7 m s−1

φs9
= ah ≤ 4 m s−2

Fig. 1: Excerpt of a skill graph representing an operation to keep distance to a
leading vehicle. We illustrate informal safety guarantees for the three skills s1,
s6, and s9.

elimination of severe mistakes [9], there is still a remarkable lack of formal meth-
ods integrated in the software development cycle [16, 17]. The challenge is to
derive modeling and verification approaches that are applicable in the early de-
velopment stages (e.g., requirements analysis and design time). To address this
challenge, we present a model-based verification framework unifying the decom-
position and modeling of cyber-physical systems by means of skill graphs [33]
and a formal verifcation of these models by means of hybrid systems [2, 3, 5, 25].

A skill is a simple capability (e.g., acceleration in the context of a vehicle)
explicitly provided by a cyber-physical system. Skills exhibit specific behaviors
(i.e., control algorithms) by a mapping to some implementation unit (e.g., source
code or interacting software components). Skills are assigned to a specific cate-
gory (e.g., actuator, sensor, or observable behavior) with a defined hierarchy to
prevent modeling mistakes. This categorization follows the design principle of
separation of concerns [27], which ensures that skills only have single well-defined
responsibilities. Separation of concerns is known to have a positive effect on mod-
eling complexity, comprehensibility, functional reusability, fault localization, and
artifact traceability [15, 36]. Skills can be annotated with safety guarantees ob-
tained from a preceding requirements analysis, which enables the application of
verification techniques.

Skill graphs, informally introduced by Reschka et al. [32,33], are a promising
means to model complex actions of cyber-physical systems from an architectural
point of view. A skill graph [26,32,33,37] is a directed acyclic graph comprising
a set of skills (i.e., nodes) and dependencies between them (i.e., edges). To
describe the properties we want to verify in a skill graph, we illustrate a skill
graph representing a driving task in Figure 1. The task exhibits that a vehicle
autonomously tries to keep a distance of at least 10 m to a leading vehicle. On the
top level, skill Keep distance to leading vehicle (s1) depends on two other
skills, namely (1) the planning skill Select target object (s2) and (2) the action

Skill-Based Verification of Cyber-Physical Systems 205

skill Control the longitudinal dynamics (s6). Whereas sensor-dependent
skills are typically realized by software algorithms only (e.g., deep learning for
detecting an obstacle), actuator-dependent skills (highlighted with a dashed
border) also need to incorporate control theory, as the physical environment has
to be taken into account. Skills are annotated with safety requirements (e.g.,
maximum acceleration or minimum distance to other vehicles). Together with the
skill’s realization and its dependencies to other skills, this requirement expresses
the property we want to verify at design time. Successfully verifying all skills in
the context of a skill graph ensures that the represented task complies to the
complete set of safety requirements.

Conceptually, skill graphs as applied in this work are used for designing
and organizing the architecture of a cyber-physical system. First, they facili-
tate the modeling of complex maneuvers built from simpler skills, which inter-
act through explicit interfaces. Second, they advocate the systematic reuse of
ready-to-integrate skills for multiple skill graphs, which reduces maintenance
costs and increases software quality in general. Third, skill graphs are intuitive
and therefore accommodate good potential for communicating with stakehold-
ers and non-experts. Typically, skill graphs are supplied with performance mea-
surements with the goal to enforce safety requirements at run-time. We are the
first to exploit skill graphs to formally reason about the satisfiability of safety
requirements at design time. Both areas of application complement each other,
as they cover the full range from static analysis in the design phase to run-time
verification and monitoring during operation.

As the foundation for our model-based verification approach, we propose to
realize skills that interact with the physical environment by means of hybrid
systems based on the differential dynamic logic dL [28, 29, 31]. Hybrid systems
represent complex physical systems, typically modeled as automata, where states
are defined by continuous variables based on differential equations and transitions
between states are discrete. Differential dynamic logic enables the deductive
verification of hybrid systems, and as such is suitable for reasoning automatically
about the correctness of hybrid systems. The key step of our approach is to
decompose complex tasks of a cyber-physical system into skills connected by
means of a skill graph and to provide a translation of skills to hybrid systems.
The combination of skill graphs and hybrid systems allows the identification of
severe mistakes during early design phases and also – in case of success – to
generate correctness proofs, which increases trust that the system under design
behaves as intended. Moreover, we propose a notion of compositionality for skill
graphs, which is crucial to manage scalability during the verification phase. While
skill graphs may only model simple functional aspects, they can be assembled to
exhibit more complex behaviors, and verification results of skills can be reused.

We have implemented a prototype for modeling and verifying skill graphs
called Skeditor. Skeditor supports the graphical modeling of skill graphs,
allows to specify safety guarantees, and enables formal verification through a
mapping to hybrid programs [30] (i.e., a program notation for hybrid systems as
required by the theorem prover KeYmaera X [14]). In a case study exhibiting

206 A. Knüppel et al.

s1 (Cruise)
ẋ = v

|x− xl| = D
|x− xl| = D

s2 (Accel)
ẋ = v
v̇ = a

|x− xl| ≥ D

s3 (Brake)
ẋ = v

v̇ = a, v ≥ 0
|x− xl| ≤ D

|x− xl| > D

|x− xl| = D

|x− xl| < D

|x− xl| > D

|x− xl| = D

|x− xl| < D

Fig. 2: Simplified hybrid system of a vehicle with automatic headway control.

the follow mode of an automated vehicle, we evaluate Skeditor with respect
to its potential to find modeling defects. In particular, Skeditor allowed us
to find conceptual defects of control algorithms early on in the design phase of
our case study. To summarize, the contribution of this work is threefold.

– Framework: We are the first to formalize skill graphs and propose skill-
based verification, a model-based verification technique allowing us to identify
poorly defined safety requirements in early design phases by combining skill
graphs with hybrid programs.

– Tool support: We implemented skill-based verification in a prototypical
open-source tool called Skeditor, which paves the way for users to model
and verify cyber-physical systems based on skill graphs.

– Evaluation: We demonstrate our approach on a realistic case study exam-
ining the follow mode of an automated vehicle. We show that skill-based ver-
ification decreases effort compared to monolithic modeling.

2 Background on Hybrid-System Modeling

A prominent mathematical foundation for cyber-physical systems is constituted
by hybrid systems [2, 11, 19, 30], which enable a mixed modeling of continuous
dynamics (expressed by differential equations) and discrete dynamics (expressed
by automata). The states change on the basis of flow conditions.

Example 1 Consider the example of an automatic headway control of a vehi-
cle depicted in Figure 2. Four variables exist: the host’s current position (x), the
current position of the leading vehicle (xl), the current velocity (v), and the cur-
rent acceleration (a). The headway control exhibits three states: (s1) the vehicle
is in cruise mode when the current distance to the leading vehicle is equal to a
defined constant D, (s2) the vehicle accelerates when the distance is greater than
D, and (s3) the vehicle decelerates when the distance is less than D, but only
until the vehicle comes to a full stop. The headway control ensures that the dis-
tance to the leading vehicle is approximately equal to D.

Skill-Based Verification of Cyber-Physical Systems 207

Hybrid programs define an imperative-like program notation for hybrid sys-
tems [28], which support the definition of variables that evolve along a differen-
tial equation and are interpreted by tools such as KeYmaera X [14]. The
syntax of hybrid programs is as follows.

α ::= α;β |α ∪ β |α∗ |x := Θ |x := ∗ |x′ = Θ&H | ?H (1)

α;β represents the sequential composition of two hybrid programs. α∪β expresses
the non-deterministic choice between two hybrid programs. α∗ expresses that the
execution of α may be repeated zero or more times. The discrete assignment to
x is either a term Θ (possibly over x) or an arbitrary value represented by the
wildcard ∗. The continuous evolution of a variable x along a differential equation
is described by x′ = Θ&H, where H is an optional evolution domain. Finally,
?H describes a testable condition that aborts the evolution if H is false. For
instance, the program α=̇(v := ∗; a := ∗; ?(−ab ≤ a ≤ 0); {v′ = a& v ≥ 0}) sets
velocity v to an arbitrary value and acceleration a to a value between −ab (i.e.,
maximum braking force) and zero. The execution stops nondeterministically at
any time but at the latest before velocity v reaches a negative value.

Semantics of hybrid programs are based on differential dynamic logic dL [28,
29, 31] to specify and verify properties of hybrid programs associated with a
skill in a skill graph. Models specified in dL can be verified with KeYmaera
X, a matured open-source theorem prover for hybrid programs. The following
grammar describes all valid formulas of dL. Symbol ∼ is a placeholder for a
comparison operator (i.e., ∼∈ {<, ≤, >, ≥, =, 6=}) between two terms Θ1 and
Θ2. Terms are polynomials with rational coefficients over the set of continuous
variables.

Φ ::= Θ1 ∼ Θ2 | ¬Φ |Φ ∧ Ψ |Φ ∨ Ψ |Φ→ Ψ | ∀xΦ | ∃xΦ | [α]Φ (2)

The semantics of the logical connectives is defined as in first-order logic. Addi-
tionally, the modal formula [α]Φ holds if all runs of the hybrid program α end
in a state that satisfies the given condition Φ. Following the idea of Hoare-style
specification in classical deductive reasoning [1, 7, 10,18, 34], we are particularly
interested to prove validity of the condition Ψ → [α]Φ with Ψ expressing assump-
tions we have and Φ expressing guarantees to meet by the hybrid program α.

3 A Formalization for Skill-Based Modeling

In this section, we propose the first formalization of modeling cyber-physical
systems based on skill graphs. First, we define the essence of a skill. Second,
we continue with the definition of a skill graph and what makes it well-formed.
Third, we define how to compose skill graphs to exhibit more complex behaviors.

3.1 Formalizing Skills

In the context of cyber-physical systems, skills describe fine-grained executable
activities inspired by human behaviors [32, 33]. For instance, a skill may repre-
sent longitudinal driving (i.e., driving with constant velocity) or even a more

208 A. Knüppel et al.

complex combination of longitudinal and lateral maneuvers (i.e., following the
lane). To ensure that such maneuvers are executed safely, skills are associated
with so-called safety guarantees, which they must fulfill to be considered safe.
For example, a skill exhibiting the following of a leading vehicle should keep a
minimum distance of a specified constant D (cf. Fig. 2). Informal safety guaran-
tees are typically formulated by experts who identify numerous hazardous sce-
narios with respect to a maneuver and resolutions to prevent them.

The implementation of skills was only vaguely specified before. Typically,
skills are implemented by software components [33]. However, our goal of early
verification at design time requires to also consider a model of the physical en-
vironment. Therefore, we propose to implement skills by hybrid programs [28],
which already incorporate assumptions about the physical environment and en-
able the verification of implementation against safety guarantees at design time.

To separate concerns, a skill has an associated type. We define the set Type

= {observable behavior, action, perception, planning, sensor, actuator},
which categorizes the purpose of a skill. Moreover, a skill has dependency-
relationships with other skills. Informally, the idea is that a hybrid program of
a skill may introduce a set of continuous state variables, their computation, and
their valid domains (e.g., velocity v ∈ [0, 60] with v′ = a), but may also require
the presence of variables and their domains defined by other skills (e.g., accelera-
tion a ∈ [0, 4]). In the following, we formally define a skill. Let X denote the uni-
verse of continuous variables. The syntactic domain of a skill is defined as follows.

Definition 1 (Skill). A skill is a 5-tuple
〈
Xdef, Xreq, α, τ, Φ

〉
, where

• Xdef ⊆ X is a finite set of variables defined in the hybrid program α,
• Xreq ⊆ X is a finite set of variables required by the hybrid program α,
• α is the (possibly empty) hybrid program (cf. Eq. 1) over variables in Xdef∪
Xreq,

• τ ∈ Type is the associated type,
• Φ = {φ1, . . . , φm} is a finite set of safety guarantees in first-order logic over

variables in Xdef ∪Xreq (cf. Eq. 2).
To be well-formed, we require that the sets of defined and required variables of
a skill are disjoint (i.e., Xdef ∩Xreq = ∅). To access a skill’s attribute, we use
the ’.’ (dot) operator (e.g., s.τ expresses the type of skill s).

3.2 Formalizing Skill Graphs

We formalize skill graphs as directed acyclic graphs comprising a set of skills
(i.e., nodes), which are connected through directed edges representing their de-
pendencies. We denote by S the universe of all skills and define the syntactic
domain of skill graphs as follows.

Definition 2 (Skill Graph). A skill graph is given by G =̂ 〈S, r, E〉, where
• S ⊂ S is a finite set of skills,
• r ∈ S is the root skill,
• E ⊆ S × S is set of directed edges between skills. We denote (sc, sp) ∈ E as
sc ≺ sp meaning that sc is a child of sp.

Skill-Based Verification of Cyber-Physical Systems 209

τs \ τt observable action actuator planning perception sensor

observable - -

action - -

planning - - - -

perception - - - -

Table 1: Valid types of a child skill t for a skill s (i.e., t ≺ s).

A skill graph is an acyclic directed graph with exactly one root skill r. To
guarantee that skill graphs are well-formed, we impose specific constraints. We
formally introduce the path between two skills as follows.

Definition 3 (Path). Let E be a set of edges and s1, . . . , sl ∈ S skills of a skill
graph. A path of length l−1 is a (possibly empty) sequence of l−1 edges (s1, s2),
(s2, s3), . . . , (sl−1, sl) ∈ E denoted by πs1→sl = [(s1, s2), (s2, s3), . . . , (sl−1, sl)].
We say that a path between skills s, s′ ∈ S exists if πs→s′ is non-empty, and does
not exists otherwise.

As mentioned before, each skill has an assigned type. Based on our definition of
a well-formed graph, we enforce that only skills with particular types can form
valid parent-child relationships (cf. Table 1). For instance, for two skills s, s′ ∈ S,
if s ≺ s′ holds and skill s′ is of type perception, then skill s is only allowed to
have type sensor or perception.

Definition 4 (Well-Formed Skill Graph). Let G = 〈S, r, E〉 be a skill graph.
G is well-formed if and only if

• each skill s ∈ S \ {r} in a skill graph has at least one parent skill s′ ∈ S
(i.e., {s′ ∈ S | s ≺ s′} 6= ∅) and there exists at least one path from skill s to
root skill r,
• for each edge (s, s′) ∈ E, skills s, s′ satisfy the typing restriction depicted in

Table 1,
• for each skill s ∈ S and variable x ∈ s.Xreq there exists a path πs′→s′ from

a skill s′ ∈ S that introduces variable x (i.e., x ∈ s′.Xdef),
• for each pair of skills s, s′ ∈ S, the sets of defined variables are disjoint (i.e.,
s.Xdef ∩ s′.Xdef = ∅).

• for each skill s in G, formula
∧
φ∈s′.Φ∧s′≺s φ must be satisfiable.

Remark. Unlike behavioral models, skill graphs as defined here do not suggest an
execution order of skills on the same level (i.e., child skills). The reason is twofold.
First, the information needed for the scheduling may be incomplete at design
time (i.e., concrete hardware and scheduling parameters). Second, the intent of
skill graphs is to abstract away from implementation details, while providing
guarantees about the correctness of defined safety requirements. In Section 4.2,
we illustrate how to assemble the decomposed hybrid programs of a skill graph
to a complete hybrid program, while being safe with respect to our chosen level
of abstraction.

210 A. Knüppel et al.

A

B

C

A

D

C

E

A

B

C

E

D◦ =πC→A

Fig. 3: Example of a composition of two skill graphs.

3.3 Composition of Skill Graphs

From the perspective of software engineering practices, an advantage of skill
graphs is their modular nature. Multiple skill graphs can be designed in isolation,
but may also share the same skills. To model and verify more complex skill graphs
and to prevent unnecessary redundancy, the idea is to adequately reuse previously
designed skill graphs and subsequently compose them together. This method
further supports the identification and location of design mistakes, maintenance
of skill graphs in general, and also enables the distribution of modeling tasks in
multi-team software development.

Our composition technique of skill graphs is inspired by superimposition [8],
a simple process that composes two graphs recursively together by merging their
substructures. Starting from the root skill of one of the skill graphs, skills at
the same level fulfilling defined criteria can then be composed to form a new
resulting skill. Starting from a joint root skill of two different skill graphs G1 =
〈S1, r, E1〉 and G2 = 〈S2, r, E2〉, two skills s1 ∈ S1 and s2 ∈ S2 are composed to
a new skill s if:

– both paths, πs1→s′1 and πs2→s′2 , exist and s′1, s′2 are already composed,
– s1 and s2 have an equal type and equal sets of defined and required variables,
– and either any of the two hybrid programs is empty or both are identical.

For illustration, Fig. 3 depicts an abstraction of the composition of two skill
graphs. Both skill graphs share the identical skills A and C. First, the root skill
A of both skill graphs is superimposed, and second, skill C is superimposed after
identifying that in both skill graphs there exists a path to a skill already subject to
composition (i.e., A). In the following, we call two skills from different skill graphs
composable if they are subject to the composition as explained here. The resulting
skill s receives all the properties (i.e., variables, type, and hybrid program) from
the composable skills and additionally the union of their safety guarantees:

Definition 5 (Composition of Skills). Let s1 ∈ S1 and s2 ∈ S2 be two
composable skills. The binary composition of s1 and s2 then produces the skill

s1 ⊕ s2 =
〈
s1.Xdef, s1.Xreq, s1.α, s1.τ, s1.Φ ∪ s2.Φ

〉
. (3)

The binary composition of two skill graphs is then formally defined as follows,
where M = {(s1, s2) ∈ S1 × S2 | s1 and s2 are composable} is the set of com-
posable skills and f is a function that maps every skill in (S1 ∪ S2) \ {s1, s2 ∈
S1 ∪ S2 | (s1, s2) ∈ M} to itself and maps all skills s1, s2 with (s1, s2) ∈ M to a
new skill s = s1 ⊕ s2.

Skill-Based Verification of Cyber-Physical Systems 211

Definition 6 (Composition of Skill Graphs). Let G1 = 〈S1, r1, E1〉 and G2

= 〈S2, r2, E2〉 be two well-formed skill graphs with r2 ∈ S1. The composition of
G1 and G2 then produces the skill graph

G1 ◦G2 = 〈S, f(r1), E〉 (4)

where
– S = {f(s) | s ∈ S1 ∪ S2},
– for every s, s′ ∈ (S1 ∪ S2), there exists an edge (f(s), f(s′)) ∈ E if and only

if there exists an edge (s, s′) ∈ (E1 ∪ E2).

A mathematical convenience of our definition of composition is that it requires
the root skill of one skill graph to be present in the second skill graph. This is
not a severe limitation, as it is always possible to add an artificial root to one
skill graph (or both) with respect to well-formedness.

4 Compositional Verification of Skill Graphs

In this section, we formalize the generation of verification conditions to check
correctness of skills in the context of a skill graph, show how correctness results
transfer to the composition of skill graphs, and discuss how this methodology
can be integrated into the development process for cyber-physical systems.

4.1 Verification Condition Generation

Our verification procedure relies on assume-guarantee reasoning. Thus, to verify
whether a skill s in the context of a skill graph adheres to its safety guarantees
s.Φ, we have to construct two logical conditions: (1) necessary assumptions on
a skill’s behavior denoted by assumes and (2) the overall safety condition in the
context of the skill graph denoted by safes. For instance, assumes for leaf skills
valuates trivially to true, but child skills impose constraints on their parent skills
through their safety guarantees. Both conditions can be computed automatically
based on the skill’s dependencies and by the manually defined safety guarantees
s.Φ. The overall verification condition then becomes assumes → [s.α]safes (cf.
Sec. 2). In the following, we describe how both conditions are constructed.

In the context of a skill graph, a particularity to deal with is that a skill
may require variables introduced in a distant skill (i.e., path length greater than
one), possibly with numerous updates along the path. These variables may be
unknown in direct children, so it is not possible to only define the assumption (i.e.,
assumes) of a skill s as the conjunction of the safety guarantees of all children
(i.e.,

∧
safes′ with s′ ≺ s). In Fig. 4, we illustrate this problem and its solution

on a simple skill graph comprising three skills.
Skill #1 introduces variables A and B including safety guarantees on them

in φ1. Typical for assume-guarantee reasoning, φ1 becomes the assumption for
all parent skills (i.e., Skill #2 in this case). However, the safety guarantee of
Skill #2 (i.e., φ2) states only a modification of variable A and not B, but Skill

212 A. Knüppel et al.

Skill #3

Skill #2

Skill #1assume1 ≡ true
safe1 ≡ A ≥ 0 ∧B ≤ 4︸ ︷︷ ︸

φ1

assume2 ≡ A ≥ 0 ∧B ≤ 4
safe2 ≡ A ≥ 0 ∧A ≤ 4︸ ︷︷ ︸

φ2

∧B ≤ 4

assume3 ≡ A ≥ 0 ∧A ≤ 4 ∧B ≤ 4
safe3 ≡ C = 7 ∧B ≥ 5︸ ︷︷ ︸

φ3

∧A ≥ 0∧ ≤ 4

Fig. 4: Computation of assumet and safet.

#3 may indeed need the information of the current domain of variable B to be
verifiable. To keep assume-guarantee propagation intact, we resolve this issue by
additionally encoding all safety guarantees that remain valid for a skill in its
safety guarantee safes (highlighted in blue). In the following, we introduce our
formalization.

The definitions of both formulas, assumes and safes, are mutually recursive.
The logical formula assumes for a skill s results from the conjunction of the
overall safety guarantees safes′ of all children s′ ≺ s. The assumption for skills
with no children valuates trivially to true.

assumes ≡
∧
s′≺s

safes′ (5)

To compute the overall safety guarantee safes, we exploit that assumes exhibits
an overapproximation on the current state of the required variables for a skill s
prior to executing the hybrid program s.α. As the behavior of a skill may change
the initial state, we discard all clauses in assumes sharing a variable with one of
the user provided safety guarantees in s.Φ. The remaining clauses become part
of safes. For instance, in Fig. 4, Skill #3 guarantees a change of variable B in
φ1. Thus, only clauses of assume3 without mentioning B transfer to safe3. For
mathematical convenience, we denote the conjunction of all safety guarantees
of a skill by the logical formula φs ≡

∧
φ∈s.Φ φ and the set of assumptions of a

skill in a skill graph by the set As = {ψ1, . . . , ψn | assumes ≡ ψ1 ∧ · · · ∧ ψn}.
Furthermore, set var(·) denotes the set of variables of a logical formula. The
overall safety guarantee of a skill is then computed as follows.

safes ≡ φs ∧ (
∧

ψ∈As∧
var(φs)∩var(ψ)=∅

ψ) (6)

We can now define the validity of a skill graph as follows.

Definition 7 (Valid Skill Graph). Let G = 〈S, r, E〉 be a well-formed skill
graph. We say that skill graph G is valid if and only if ∀s ∈ S formula assumes
is satisfiable and formula assumes → [s.α]safes is valid. We denote by s |=G s.Φ
the validity of a skill s in a skill graph G with respect to its safety guarantees
and by |= G the validity of the entire skill graph (i.e., |= G ≡ ∀s ∈ S, s |=G s.Φ).

The upcoming important theorem states that the individual validity of two
skill graphs also transfers to the validity of their composition. However, based on

Skill-Based Verification of Cyber-Physical Systems 213

Def. 6, composition may also lead to an invalid skill graph if the assumption of
a skill in the new skill graph is not satisfiable (e.g., possible in case of diamond
structures). Therefore, we require satisfiability checks for the computed assump-
tions and define the compatibility between two skill graphs as follows.

Definition 8 (Compatible Skill Graphs). Let G1 and G2 be two well-formed
skill graphs. We say that G1 and G2 are compatible if the following holds.

– G1 ◦G2 is a well-formed skill graph,
– for each skill s in G1 ◦G2, formula assumes is satisfiable.

Theorem 1 (Composition of Skill Graphs Retains Validity). Let G1 and
G2 be two compatible skill graphs and G = G1 ◦G2 their composition. Then, G
is valid if G1 and G2 are valid (i.e., |= G if |= G1 and |= G2).

Proof. Let s1 and s2 be two composed skills and s = s1 ⊕ s2 their composition.
Following Def. 6, the verification condition for s becomes

(assumes1 ∧ assumes2)→ [s.α](safes1 ∧ safes2).

Based on the semantics of dL [31], condition Ψ → [α]Φ1 ∧ Ψ → [α]Φ2 ↔ Ψ →
[α](Φ1 ∧Φ2) holds. As the hybrid programs of s1 and s2 are identical (or at least
one of them is empty), the resulting two conditions to check are the following:

(1) (assumes1 ∧ assumes2)→ [s1.α](safes1)

(2) (assumes1 ∧ assumes2)→ [s2.α](safes2)

Satisfiability of (assumes1 ∧assumes2) follows from Def. 8. Then, validity of both
conditions follow from Def. 7 and, consequently, |= G holds. ut

4.2 Assembling Hybrid Programs in a Skill graph

Skill graphs decompose the system into smaller parts. Likewise, the hybrid pro-
gram that represents the complete behavior is also distributed over the skill graph.
Now that we have defined the structure and behavior of single skills in the context
of a skill graph, we define how we can construct the complete behavior of a skill
as a single monolithic hybrid program. The resulting hybrid program is then a
complete representation of the skill’s behavior while also retaining all safety guar-
antees without the need of re-verifying skills or even entire skill graphs. We start
by giving a definition on how hybrid programs of skills are assembled together.

Definition 9 (Hybrid Program Assembly). Let G = 〈S, r, E〉 be a skill
graph, HP the set of all hybrid programs, and let s ∈ S denote an arbitrary
skill of G. A hybrid program assembly of s is a function ρ : S → HP , which is
recursively defined as follows.

ρ(s) =

{
s.α if s has no children (i.e., ¬∃s′ ∈ S : s′ ≺ s)
(
⋃
s′≺s ρ(s′)); s.α otherwise

214 A. Knüppel et al.

The motivation is that such assemblies are safe to be used in other contexts,
such as code generation for the validation of prototypes or monitor generation.
Assuming a valid skill graph G, the following theorem guarantees that any hybrid
program assembly over skills in G retains the respective safety guarantees.

Theorem 2 (Safety Compliance of Hybrid Program Assemblies). Let
G = 〈S, r, E〉 be a valid skill graph and let s ∈ S denote an arbitrary skill of G.
Then, formula [ρ(s)]safes is valid.

Proof. We proceed by induction on the skills of skill graph G. For the basis
step, we assume that s has no children (i.e., ¬∃s′ ∈ S : s′ ≺ s). Because
[ρ(s)]safes ≡ [s.α]safes and G is a valid skill graph, it follows from Def. 7
that formula [ρ(s)]safes is valid. From now on, we assume that s has children.
Our induction hypothesis is that if for each skill s′ ≺ s program assembly ρ(s′)
satisfies safes′ , then hybrid program assembly ρ(s) satisfies safes:

(IH) (
∧

s′≺s

[ρ(s
′
)]safes′)→ [ρ(s)]safes

(1) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′)→ [

⋃
s′≺s

ρ(s
′
); s.α]safes

(2) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′)→ [

⋃
s′≺s

ρ(s
′
)][s.α]safes

(3) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′)→

∧
s′≺s

[ρ(s
′
)][s.α]safes

(4) ↔ (
∧

s′≺s

safes′)→ [s.α]safes

(5) ↔ assumes → [s.α]safes

Transformation step (1) follows from substituting ρ(s) with its definition given
in Def. 9. Steps (2)–(4) are again based on the semantics of dL [31]. Step (2)
follows from the sequential composition axiom [a; b]P ↔ [a][b]P , step (3) from
the nondeterministic choice axiom [a ∪ b]P ↔ [a]P ∧ [b]P , and step (4) from
monotonicity. Because G is a valid skill graph, validity of assumes → [s.α]safes
follows again from Def. 7. Consequently, [ρ(s)]safes is valid. ut

4.3 Integration into the Software Development Process

In Figure 5, we summarize the methodology for modeling and verifying skill
graphs. The main idea is that the safety verification of skill graphs modeled in
isolation transfers to the composition of compatible skill graphs. This (a) eases
the modeling process, as smaller models tend to be less complex and easier to
repair, (b) fosters reusability, which is known to be cost-effective and less error-
prone, and (c) is promising for scaling the verification to large skill graphs.

In particular, the methodology consists of five major parts. In the first
part (1), practitioners define and model skills together with their hybrid pro-
grams and relevant safety guarantees in isolation and subsequently connect them
to form well-formed skill graphs (if possible). In the second part (2), for each

Skill-Based Verification of Cyber-Physical Systems 215

(1) Identify safety guarantees
and model skill graphs G1, . . . , Gn

(2) For each skill s in G,
identify the pair 〈assumes, safes〉

(3) For each skill s in G, verify validity of
assumes → [s.α]safes to establish |= G

and ∀s, |= ρ(s)safes

(4) To verify that Gj ◦ Gk is valid,
check compatibility of Gj and Gk

(5) Gj ◦ Gk is valid if
Gj and Gk are both valid

(6) Identify and
localize design flaws

Gj and Gk are
incompatible

G is invalid

Re-modeling

Fig. 5: Methodology of modeling and verifying skill graphs.

skill s in a skill graph, the assumption assumes and safety guarantee safes are
computed by evaluating the context of the skill in the skill graph. The third part
(3) uses the identified assumptions and the safety guarantee to validate each skill
in a skill graph individually. If each skill is proven valid (cf. Theorem 1), the com-
plete skill graph is proven valid and can be put into a repository to be reused.
Following Theorem 2, all program assemblies over skills in this skill graph retain
the respective safety guarantees. The fourth part (4) becomes relevant, if two
skill graphs are composed together to represent a more complex task of a cyber-
physical system. In this case, compatibility of the skill graphs is checked and, if
successful, the validity of the composed skill graph is established (5). The final
part (6) is relevant in the presence of unsuccessful proof attempts. If validity of
a skill graph or the composition of multiple skill graphs cannot be established,
practitioners need to identify and fix mistakes in their models. Typically, the
complexity of localizing design mistakes is reduced with our methodology, as it
is explicitly known which exact skills in a skill graph with respect to their safety
guarantees could not be verified.

5 Evaluation and Discussion

We evaluate our skill-based verification approach on a case study to answer the
following two research questions.

RQ-1 How does the skill-based methodology compare to monolithic modeling and
verification?

RQ-2 To what extent can skill-based compositional verification reduce the veri-
fication effort?

5.1 Open-Source Implementation

We implemented skill-based verification in a tool with the name Skeditor.
The implementation is written in Java as an Eclipse plug-in based on Graphiti [13],

216 A. Knüppel et al.

root:

Follow mode

s1:
Keep distance

to leading

vehicle

s2:
Select target

object

s3:
Perceive

movable

objects

s4:
Radar

s5:
Camera

s6:
Control

longitudinal

dynamics

s11:
Estimate

motion

s12:
Intertial

sensors

s7:
Decelerate

s8:
Brake system

s10:
Powertrain

s9:
Accelerate

s13:
Follow hard

shoulder

s14:
Control

lateral

dynamics
s15:

Estimate

angle &

distance

to marking

s16:
Perceive

hard shoulder

marking

s17:
Yaw

s18:
Steering

system

Obs. Obs.

Plan.

Plan.

Perc.

Perc.

Perc.

Action

Action Action

Action

Action

Sensor Sensor

Sensor

Actua. Actua.
Actua.

Fig. 6: Complete skill graph expressing an automated vehicle follow mode.

a framework for developing diagram editors in the context of model-driven devel-
opment. The prototype allows practitioners to model and annotate well-formed
skill graphs with safety guarantees as described in Section 3.

Thereupon, we implemented our compositional verification approach as de-
scribed in Section 4. Skeditor allows to synthesize hybrid programs of spe-
cific skills with respect to their dependencies in the skill graph. Compliance
checks of the provided safety guarantees are performed by employing the deduc-
tive theorem prover KeYmaera X [14] in version 4.7.3. Skeditor and all
experimental results can be found online.3 We use the Skeditor to answer
research questions RQ-1 and RQ-2.

5.2 Case Study: Vehicle Follow Mode

To illustrate the practicality of our approach, we model and verify the vehicle fol-
low mode of an automated protective vehicle as adopted from Nolte et al. [26] and
depicted in Figure 6. The aim of was to develop an unmanned protective vehicle
which is able to drive on the hard shoulder autonomously (i.e., without any hu-
man interaction). On the lowest level, the skill graph consists of three sensors (i.e.,
Radar , Camera , and Inertial sensor) to perceive information from the envi-
ronment. Additionally, three actuators (i.e., Brake system , Powertrain , and
Steering system) represent concrete technical aspects. These skills propagate in-
formation about typical properties of a concrete model of a vehicle (e.g., the max-
imal deceleration). As highlighted with two shades of gray, this skill graph is divid-
able into two separate skill graphs, which we refer to as G1 and G2. G1 has Keep
distance to leading vehicle as the root skill, which is responsible for ensuring
a minimum distance to a leading vehicle. G2 has Follow hard shoulder as root
skill, which is responsible for ensuring the vehicle’s position inside the lane mark-
ings on a road. Skills shared by both skill graphs are highlighted with both shades.

3 https://github.com/TUBS-ISF/Skeditor

Skill-Based Verification of Cyber-Physical Systems 217

Skill Requirement

Follow hard shoulder Vehicle deviates from the center of the lane by at most
half the lane width

Control lateral dynamics Lateral controller must guarantee overshoot of less than
25 cm

Yaw Vehicle yaw rate must not exceed 0.3 rad s−1

Control longitudinal dynamics Vehicle speed must not exceed 2.7 m s−1

Accelerate Acceleration must not exceed 4 m s−2

Decelerate Vehicle must at least provide a deceleration of 5 m s−2

Keep distance to leading vehicle Vehicle must keep a minimum distance of 10 m to leading
vehicle

Select target object Object recognition must always select an object of lateral
position of x > 10 m

Perceive movable objects Object recognition must track vehicles of relative speeds
between 0 and 60 m s−1

Estimate angle and distance to marking Angle to lanemarking must be extracted with maximum
error of ±0.5 degrees and distance to lanemarking must
be extracted with maximum error of ±3 cm

Perceive hard shoulder Image processing must extract right edge of shoulder
marking with a maximum error of 20 cm

Estimate motion Vehicle velocity must be estimated with a maximal error
of ±0.03 m s−1

Table 2: Specified safety requirements for the vehicle follow mode as adopted
from Nolte et al. [26].

The overall procedure Follow mode (i.e., the composition G1 ◦G2) requires
a combination of autonomously following a leading vehicle (i.e., skill s1) and
following the lane marking (i.e., skill s13). The informal safety guarantees for the
skill graph of our case study are adopted from Nolte et al. [26] and illustrated in
Table 2. Requirements are typically given informally, which is why we translated
them to their formal counterpart. For our case study, we focus on four particular
skills, as these are the only non-trivial skills in our case study that comprise both,
the vehicle’s dynamics and a control algorithm. Namely, these skills are Control
longitudinal dynamics (s6), Control lateral dynamics (s14), Follow hard
shoulder (s13), and Keep distance to leading vehicle (s1).

Example 2 Consider skill Control longitudinal dynamics (s6) in the con-
text of the overall skill graph. Skill s6 comprises the dynamic system for the lon-
gitudinal motion of the vehicle while depending on skills Accelerate and Decel-
erate as well as the perception skill Estimate motion. The control algorithm
of this skill as part of the hybrid program complies with the safety requirements
as given in Table 2 (e.g., velocity (vs) must not exceed 2.7 m s−1). Preconditions
for this skill are propagated from skills Estimate motion, Accelerate, and
Decelerate, and guarantee that the vehicle provides a maximal deceleration of
5 m s−2 (B) and a maximal acceleration of 4 m s−2 (A). Table 3 summarizes all
attributes of skill s6.

218 A. Knüppel et al.

Xdef = {x, v, vmax}

Xreq = {a,A,B, ep, t}

α ::=

init→ [(ctrl; dyn)∗](guar)
init ≡ v ≥ 0 ∧ v ≤ vmax ∧ A > 0 ∧ A ≤ 4 ∧ B ≥ 5 ∧ vmax = 2.7

ctrl ≡ (?vmax − v ≤ margin); a = ∗;−B ≤ a ≤ 0;

∪?vmax − v ≥ margin); a = ∗;−B ≤ a ≤ A;)

margin ≡ ep ∗ A
dyn ≡ t := 0; x

′
= v, v

′
= a, t

′
= 1&v ≥ 0 ∧ t ≤ ep

guar ≡ v ≤ vmax
τ = action

Φ = {vs ≤ vmax (2.7 m s−1)}

Table 3: Attributes for skill Control longitudinal dynamics (s6).

5.3 Results

All measurements were conducted on an Intel i7-6600U CPU @ 2.60GHz with
12 GB RAM and Z3 [12] in version 4.6.0 was used as the underlying solver for
KeYmaera X in version 4.7.3.

RQ-1: How does the skill-based methodology compare to monolithic
modeling and verification? We modeled the overall behavior of G1 ◦G2 as a
monolithic model (i.e., following the hard shoulder and following a leading vehicle
in concert) as described in Section 4.2. As mentioned before, the skill-based
approach has a high reuse potential. Each skill needs to be verified only once,
and the verification results can be reused in other skill graphs (cf. Theorem 1).
While in case of a change of parameters or an update of control algorithms
the monolithic model has to be re-modeled and re-verified completely, a change
impact analysis identifying only affected skills may reduce the re-verification
effort even further for the compositional approach. Importantly, skill s13 and
the monolithic model could only be verified interactively, whereas skills s1, s14,
and s6 were verified fully automatically with the automatic proof search of
KeYmaera X. Chances of an automatic re-verification are thus higher with
the skill-based methodology.

An important hypothesis of ours is that skill-based verification is more ef-
fective in discovering modeling defects compared to a monolithic model. To get
some insights into this hypothesis, we developed three initial experiments to ren-
der the verification attempt invalid. We (1) changed the safety guarantee of skills,
(2) changed the control algorithm of skills, and (3) did a combination of both
and compared these results to the same changes performed in the monolithic
model. Following our methodology helped to trace and resolve defects effectively
with respect to this case study, whereas identifying multiple modeling defects
in the monolithic model became quickly intractable. During the resolution of
Scenario 3, re-verification had to be performed several times for the monolithic
model (i.e., resolving one conflict at a time), which emphasizes the advantage of
our compositional approach over the monolithic modeling. However, we do not
want to overclaim the importance of our insights, as more complex experiments

Skill-Based Verification of Cyber-Physical Systems 219

Verified Skill Proof steps

s1 s6 s13 s14 s1 s6 s13 s14 Σ Σreuse

G1 4,746 3,769 8,515 8,515

G2 3,769 16,924 7,223 27,916 24,147

G1 ◦G2 4,746 3,769 16,924 7,223 32,662 0*

Σtotal 69,093 32,662

*No re-verification of skills with Theorem 1

Table 4: Comparison of the verification effort for skill-based compositional veri-
fication.

and a larger evaluation have to be conducted to adequately test whether our hy-
pothesis is significant.

RQ-2: To what extent can skill-based compositional verification reduce
the verification effort? To answer RQ-2, we measured the verification effort
in proof steps for each of the three skills mentioned before per skill graph. In
Table 4, we summarize the results. Column Verified Skill describes which skill is
part of which skill graph and column Proof steps compares the number of proof
steps needed for each skill individually. A common scenario is to model and
verify each maneuver individually (i.e., each skill graph). The total verification
effort Σtotal would then cumulate to 69,093 proof steps. Instead, our skill-based
approach allows to reuse verification results for skill s6 in skill graph G2 and per
Theorem 1 even the verification results for all skills in skill graph G1◦G2. Entries
highlighted in gray indicate that the respective skill could be reused instead of
re-verification. The compositional approach needs approximately 53% less proof
steps in our case study.

6 Related Work

Skill Graphs. Maurer [23] pioneered the concept of skills by introducing so-
called abilities in vehicle guidance systems. Abilities are similar to skills, as they
concisely describe the capabilites of a vehicle, and are intended to be perma-
nently monitored at run-time to enforce safety mechanics. Reschka et al. [32,33]
introduced skill graphs informally in their work giving definitions for skills and
abilities in relation to autonomous vehicles. Nolte et al. [26] built upon this ap-
proach by employing the informal concept of skill graphs for the development of
self-aware automated road vehicles. We adopted their case study to evaluate our
skill-based verification approach.

Hybrid Systems and Verification of Cyber-Physical Systems. Hybrid
systems [3] are a generalization of timed automata [4] and well-suited for mod-
eling and verifying cyber-physical systems. Krishna et al. [20] show that using
hybrid automata to model and verify cyber-physical systems is, in principle, fea-
sible. Typically, hybrid systems are verified employing reachability analyses and

220 A. Knüppel et al.

model checking [2, 21, 22, 35]. However, these technqiues are not compositional
in general (i.e., modular verification of individual parts to establish correctness
of the entire systems is not possible). It is also not intended to generate and
reuse proofs to increase trust in the system’s correctness, as, for instance, possi-
ble with theorem proving. To address this issue, we built our methodology upon
the notion of hybrid programs [30] and the theorem prover KeYmaera X [14],
which helped us to also satisfy the important property of compositionality in the
modeling and formal verification of hybrid systems. We further extend this con-
cept with skill graphs by modularizing the verification of complex driving tasks,
such that the verification of the entire behavior is reduced to simpler sub-tasks
and compatibility checks.

Finally, there exists a seamless connection to the work conducted by Müller
et al. [24], who present a compositional component-based approach for the ver-
ification of hybrid systems based on hybrid programs. Skill graphs provide an
abstract and organized view of the system and are applied (1) in the verifica-
tion and validation phase of the requirements analysis and (2) the early stages
of the design phase. Subsequently, a skill may be implemented by a set of mul-
tiple interacting components to take more necessary specifics into account, such
as communication protocols and resource consumption. To conclude, the process
of refining skill graphs including their safety requirements to formally specified
component-based systems exhibits a high level of quality assurance at the level
of both, requirement engineers and software architects.

7 Conclusion and Future Work

In this work, we proposed skill-based verification of cyber-physical systems with
the notion of skill graphs that (1) encourages the modular development of small
and reusable actions in isolation, and (2) enables the identification of poorly
defined requirements in early software development processes by considering
formal verification of hybrid systems. We provide the first formalization of skill
graphs, showed how skill graphs and hybrid programs can be combined, and also
introduced a proved notion of compositionality for skills. The investigated case
study on a vehicle follow mode showcases that the compositionality property of
skill graphs is important for scaling, as the verification effort is reduced by more
than 53%. Compositionality is particularly important for model and software
evolution, as costly re-verification of a skill’s requirement can be minimized.

For the future, we want to enable the composition of skills with dissimilar
hybrid programs, for which the theoretical groundwork partially exists. Moreover,
our current focus is on the integration of skill graphs into software engineering
practices for cyber-physical systems to amplify the utilization of formal methods
from the start of new software projects.

Acknowledgements. We are grateful to Enis Belli and Arne Windeler for
their help with the implementation of Skeditor. This work was supported by
the DFG (German Research Foundation) under the Researcher Unit FOR1800:
Controlling Concurrent Change (CCC).

Skill-Based Verification of Cyber-Physical Systems 221

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive Software Verification–The KeY Book: From Theory to Practice. Springer
(2016)

2. Alur, R.: Formal Verification of Hybrid Systems. In: Embedded Software (EM-
SOFT), 2011 Proceedings of the International Conference on. pp. 273–278. IEEE
(2011)

3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In:
Hybrid systems, pp. 209–229. Springer (1993)

4. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical computer science
126(2), 183–235 (1994)

5. Alur, R., Henzinger, T.A., Sontag, E.D.: Hybrid Systems III: Verification and
Control, vol. 3. Springer Science & Business Media (1996)

6. Baheti, R., Gill, H.: Cyber-physical Systems. The impact of control technology
12(1), 161–166 (2011)

7. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and Verification: The Spec# Experience. Communications of the
ACM 54, 81–91 (Jun 2011)

8. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering (TSE) 30(6), 355–371 (2004)

9. Broy, M.: Yesterday, Today, and Tomorrow: 50 Years of Software Engineering. IEEE
Software 35(5), 38–43 (2018)

10. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications 7(3), 212–232 (Jun
2005)

11. Cuijpers, P.J.L., Reniers, M.A.: Hybrid Process Algebra. The Journal of Logic and
Algebraic Programming 62(2), 191–245 (2005)

12. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of the
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 337–340. Springer (2008)

13. Foundation, T.E.: Graphiti - a Graphical Tooling Infrastructure, [Available at
https://www.eclipse.org/graphiti/; accessed 22-January-2018

14. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An Ax-
iomatic Tactical Theorem Prover for Hybrid Systems. In: International Conference
on Automated Deduction. pp. 527–538. Springer (2015)

15. Garcia, A., Sant’Anna, C., Chavez, C., da Silva, V.T., de Lucena, C.J., von Staa,
A.: Separation of Concerns in Multi-agent Systems: An Empirical Study. In: Inter-
national Workshop on Software Engineering for Large-Scale Multi-agent Systems.
pp. 49–72. Springer (2003)

16. Gleirscher, M., Foster, S., Woodcock, J.: Opportunities for Integrated Formal Meth-
ods. CoRR abs/1812.10103 (2018), http://arxiv.org/abs/1812.10103

17. Gleirscher, M., Marmsoler, D.: Formal Methods: Oversold? Underused? A Survey.
arXiv preprint arXiv:1812.08815 (2018)

18. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
Interface Specification Languages 44(3), 16:1–16:58 (Jun 2012)

19. Henzinger, T.A.: The Theory of Hybrid Automata. In: Verification of Digital and
Hybrid Systems, pp. 265–292. Springer (2000)

https://www.eclipse.org/graphiti/
http://arxiv.org/abs/1812.10103

222 A. Knüppel et al.

20. Krishna, S.N., Trivedi, A.: Hybrid Automata for Formal Modeling and Verification
of Cyber-Physical Systems (Mar 2015)

21. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory,
Tools, Applications. Cambridge University Press (2009)

22. Maler, O.: Algorithmic Verification of Continuous and Hybrid Systems. arXiv
preprint arXiv:1403.0952 (2014)

23. Maurer, M.: Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen
(2000)

24. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical
Contract Composition for Hybrid System Component Verification. International
Journal on Software Tools for Technology Transfer 20(6), 615–643 (2018)

25. Nerode, A., Kohn, W.: Models for Hybrid Systems: Automata, Topologies, Con-
trollability, Observability. In: Hybrid systems, pp. 317–356. Springer (1993)

26. Nolte, M., Bagschik, G., Jatzkowski, I., Stolte, T., Reschka, A., Maurer, M.: To-
wards a Skill-and Ability-based Development Process for Self-aware Automated
Road Vehicles. In: Intelligent Transportation Systems (ITSC), 2017 IEEE 20th In-
ternational Conference on. pp. 1–6. IEEE (2017)

27. Parnas, D.L.: On the Criteria to be used in Decomposing Systems into
Modules. Communications of the ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

28. Platzer, A.: Differential Dynamic Logic for Hybrid Systems. Journal of Automated
Reasoning 41(2), 143–189 (2008)

29. Platzer, A.: Logics of Dynamical Systems. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science. pp. 13–24. IEEE Computer
Society (2012)

30. Platzer, A.: The Complete Proof Theory of Hybrid Systems. In: Proceedings of
the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science. pp.
541–550. IEEE Computer Society (2012)

31. Platzer, A.: A Complete Uniform Substitution Calculus for Differential Dynamic
Logic. Journal of Automated Reasoning 59(2), 219–265 (2017)

32. Reschka, A.: Fertigkeiten- und Fähigkeitengraphen als Grundlage des sicheren Be-
triebs von automatisierten Fahrzeugen im öffentlichen Straßenverkehr in städtischer
Umgebung. Ph.D. thesis (Jul 2017)

33. Reschka, A., Bagschik, G., Ulbrich, S., Nolte, M., Maurer, M.: Ability and Skill
Graphs for System Modeling, Online Monitoring, and Decision Support for Vehicle
Guidance Systems. In: Intelligent Vehicles Symposium (IV), 2015 IEEE. pp. 933–
939. IEEE (2015)

34. Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer
Science & Business Media (2001)

35. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer Science & Business Media (2009)

36. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proceedings of the International
Conference on Software Engineering (ICSE). pp. 107–119. ACM (1999)

37. Ulbrich, S., Reschka, A., Rieken, J., Ernst, S., Bagschik, G., Dierkes, F., Nolte, M.,
Maurer, M.: Towards a Functional System Architecture for Automated Vehicles.
arXiv preprint arXiv:1703.08557 (2017)

https://doi.org/10.1145/361598.361623

Skill-Based Verification of Cyber-Physical Systems 223

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Skill-Based Verification of Cyber-Physical Systems
	1 Introduction
	2 Background on Hybrid-System Modeling
	3 A Formalization for Skill-Based Modeling
	3.1 Formalizing Skills
	3.2 Formalizing Skill Graphs
	3.3 Composition of Skill Graphs

	4 Compositional Verification of Skill Graphs
	4.1 Verification Condition Generation
	4.2 Assembling Hybrid Programs in a Skill graph
	4.3 Integration into the Software Development Process

	5 Evaluation and Discussion
	5.1 Open-Source Implementation
	5.2 Case Study: Vehicle Follow Mode
	5.3 Results

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

