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Abstract. In the context of software model-driven development, artifacts are
specified by several models describing different aspects, e.g., different views,
dynamic behavior, structure, distributed information, etc. Then, maintaining and
repairing consistency of the whole specification are crucial issues if the models
can be separately developed and updated. Model Synchronization is the process
of restoring consistency after the update of one or several of the models. In the
present work, we approach the case when conflicts may arise due to concurrently
updating different models. Specifically, based on the Triple Graph Grammar ap-
proach, we propose an incremental algorithm CSynch for solving conflicts and
repairing consistency. In addition, we identify and formalize when a synchroniz-
ing solution can be considered adequate and show that our procedure CSynch is
sound and complete.

1 Introduction

In the context of model-driven development, artifacts are specified by several models
describing different aspects, e.g., different views, dynamic behaviour, structure, interac-
tions, etc. Moreover, a given set of models is said to be consistent if they describe some
software artifact. Along the process of designing and implementing an artifact, and also
after the artifact is implemented, it is common to modify or update some aspects of a
given model, or of several models. These changes may cause inconsistencies between
the given set of models. To restore consistency, we have to propagate these modifica-
tions to the rest of the models. This process is called model synchronization. If at each
time, we just propagate the updates on one model, synchronization is said sequential,
but if we propagate simultaneously updates on several models, synchronization is called
concurrent. Most existing work on model synchronization deals with the sequential
case, which is simpler than the concurrent one, since in the latter case we have to deal
with possible inconsistencies between the modifications applied to different models,
implying that in the synchronization process we may need to backtrack some updates.
Moreover, the existing approaches to concurrent synchronization [37,38,14,11,34,35]
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are based on sequentializing the process, i.e., on combining in some way propagation
procedures defined in sequential synchronization. For this reason, these approaches are
called propagation-based in [24], where it is shown that they have important limitations.

When the given concurrent updates are inconsistent among themselves, the syn-
chronization procedure must backtrack some of these updates to restore consistency.
However, in this case, not all synchronizing solutions are adequate. For instance, a pos-
sible inadequate solution could be backtracking all updates. None of the approaches
considering conflict resolution [14,11,34,35] define any form of adequacy, other than
consistency of the given result. Moreover, these approaches return only one possible
solution, which may not coincide with the user wishes.

A simple but powerful way of describing a class of consistent (synchronized) mod-
els is by using a Triple Graph Grammar (TGG) [27,28], since this approach provides
techniques and tools that allow the general formulation and resolution of problems as-
sociated with synchronization. In these years these techniques have had considerable
success, producing a large number of contributions of proven utility.

In [10], it is claimed that synchronization procedures should be incremental, mean-
ing that their execution cost should not depend on the size of the models, but on the
size of the update, so that the final consistent models must not be rebuilt from scratch.
Other approaches that propose incremental sequential synchronization procedures are
[22,12,25]. In contrast, none of the existing approaches to concurrent synchronization
is incremental.

The main contributions of this paper are:

– The definition of properties, other than consistency, to ensure the adequacy of con-
current synchronization solutions.

– The definition of a non-deterministic incremental algorithm for concurrent syn-
chronization, that is not propagation-based, whose solutions satisfy our adequacy
properties. The algorithm is nondeterministic to consider the possible choices of
conflict resolution. In particular, the algorithm is shown to be complete, in the sense
that it finds all adequate solutions to the synchronization problem.

The rest of the paper is organized as follows. In Sect. 2, we summarize the basic and
preliminary notions and terminology required in the rest of the paper, and we introduce
a running example. In Sect. 3 we introduce and formalize the properties that should be
satisfied by the synchronizing solutions in order to be considered adequate. In Sect. 4,
we propose our synchronizing algorithm which is proven to find all solutions that satisfy
the properties mentioned above. Finally, in Sections 5 and 6 we present related work,
conclude and describe future work.

2 Preliminaries

In this section, we describe some basic notions and terminology concerning model
transformation and model synchronization by Triple Graph Grammars (TGGs). More-
over, we introduce the example that we will use in the paper.
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2.1 Triple Graph Grammars

TGGs are a formalism developed by Schürr ([27]) to specify and implement model
transformations. They are based on three main ideas:

– Models can be represented by some kind of graphs.
– Instead of representing a consistent pair of models by two graphs, it is better to do

it by a triple graph ([27]) which, in addition, includes the correspondence between
the elements of the two models.

– To specify the class of consistent triple graphs we use a (triple graph) grammar, i.e.,
a triple graph is consistent if it can be generated from a given start graph (typically,
the empty graph) using the production rules of the grammar.

More precisely, a triple graph G = (GS sG← GC tG→ GT ) consists of a source graph
GS and a target graph GT , which are related via the correspondence graph GC and two
mappings (graph morphisms) sG : GC→GS and tG : GC→GT specifying how source
elements correspond to target elements3. For simplicity, we use the notation 〈GS,GT 〉
whenever the explicit correspondence graph can be omitted.

L

m
��

� � // R

m′
��

G1
� � // G2

Then, a TGG G consists of a start triple graph4, SG, and a set
of production rules of the form r : L→R, where L and R are triple
graphs and L⊆ R. Then, L(G) = {G | SG ∗⇒G} is called the class
of consistent models and D(G) = {SG ∗⇒G} is the set of deriva-
tions defined by G , where ∗⇒ is the reflexive and transitive closure
of the one step transformation relation⇒ defined as follows: G1⇒G2 if there is a pro-
duction rule r : L→R in G and a matching monomorphism m : L→G1 such that G2
can be obtained by replacing (the image of) L in G1 by (a corresponding image of) R.
Formally, this means that the diagram above on the right is a pushout in the category of
triple graphs. In this case, we write G1

r,m⇒G2, or just G1⇒G2 if r and m are implicit.
For instance, in Fig.1 we depict the graph grammar that we use as a running example

to illustrate our techniques. It is a simplified, and slightly modified, version of the well-
known transformation between class diagrams and relational schemas.

The graphs considered in this example are typed, which means that a type graph
describes the different classes of nodes and edges of our triple graphs, in a similar way
as a metamodel describes the kinds of elements that we have in a model. In particular,
the type graph of our example is depicted on the left of Fig.1. Source models, whose
type graph is depicted on the left, consist of three kinds of nodes: classes, attributes and
sub-attributes5, and three kinds of edges: A (thick) edge between two classes represents
a subclass relationship between them; attributes are bound to their associated classes
and sub-attributes to their associated attribute, respectively, by the second and third kind
of (thin) edges. Similarly, the type graph of target models is depicted on the right of the

3 In the context of this paper, it does not make too much sense to speak about source and target
models. Nevertheless, we have kept this terminology to simplify the notation for referring to
each of the two models involved.

4 As said above, without loss of generality, we consider that SG is always the empty triple graph.
5 It is not necessary to associate any semantics to sub-attributes and sub-columns since we just

use them to introduce a bit more complexity to the example.
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Fig. 1. Type graph, four rules for class-to-table transformations

type triple graph, consisting of tables, columns and sub-columns, together with edges
between them. Finally, in the middle, there is the type graph of the correspondence
models, consisting of three kinds of nodes: square nodes to bind classes with their
associated tables, round nodes to bind attributes with their associated columns, and
triangle nodes to bind sub-attributes with their associated sub-columns.

The rules of the TGG defining the consistent transformations between class dia-
grams and relational schemas are depicted on the right of Fig. 1. Rule r1, Class2Table,
creates a new class and its corresponding table, together with the correspondence ele-
ment that relates the class and the table. Rule r2, Attribute2Column, given a class and a
corresponding table, creates an attribute of that class, a related column of the table, and
their associated correspondence element. Rule r3, Subclass2Table, given a class and a
corresponding table, creates a new subclass. In this case, the subclass is related to the ta-
ble through a new correspondence element. Finally, rule r4, SubAttribute2SubColumn,
creates a new sub-attribute together with its corresponding sub-column.

On the left of Fig. 2 we depict a triple graph generated by this grammar. For in-
stance, it could have been created from the empty graph, firstly, applying twice rule
Class2Table to create classes c1 and c2 together with their associated tables t1 and t2 and
correspondence elements; next, applying rule Subclass2Table, to create c3 as a subclass
of c2, together with a correspondence element that specifies that t2 is the table associated
to c3; finally, applying three times the rule Attribute2Column, to create attributes a1, a2
and a3, together with their associated columns, the associated edges binding attributes
and columns to their classes and tables, and their correspondence elements.

2.2 Model Update and Model Synchronization

For different reasons, given a consistent model G, we may perform some modifications
or updates in it producing a model G′ that is not consistent anymore. Then the synchro-
nization problem consists of repairing that model, so that it becomes consistent.

For instance, in our running example, we assume given the consistent model on the
left of Fig. 2, and that two updates are defined on that consistent model: removing the
subclass relation between c2 and c3 in the source model, and adding a new sub-column
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sco3 to the column co3 in the target model. In the middle of the figure some elements of
the triple graph have been marked. These marks ({+,x, !,?}) represent possible actions
to be taken on the elements (adding, deleting or keeping them) as the result of the
analysis performed in our algorithm, which we describe in the paper. Some elements
have several marks that are contradictory. This tells us that some conflicting situations
may arise when defining a repair. Finally, on the right of the figure, there is one possible
repair of the marked triple graph that avoids conflicts and restores consistency. As we
will see, this repair can be made incrementally, acting only on some elements (grey
area) without having to rebuild the whole triple graph.

Fig. 2. Concurrent update, marked affected area with conflict and possible repair

Formally, an update or modification [8] u on a graph G is a span of inclusions
u :G←K→G′ for some graph K. Intuitively, the elements in G that are not in K are the
elements deleted by u, and the elements in G′ that are not in K are the elements added
by u. So, K consists of all the elements in G that remain invariant after the modification.
When K may remain implicit we will denote the update u :G←K→G′ by u :G =⇒G′.

G K1oo // X K2oo // H

K

`` >>
(1)

Updates can be composed and de-
composed [24]. Given two updates v :
G←K1→ X and w : X←K2→H, the
composition of v and w is the update u=
w ◦ v : G←K→H such that, roughly, K
is the intersection of K1 and K2, i.e. K includes all the elements of G that are neither
deleted by v nor by w. In addition, we say that u decomposes into v and w if u = w ◦ v
and moreover no element added by v is deleted by w. Roughly this means that X is the
union of K1 and K2 with respect to the common part K. If u decomposes into v and w,
we also say that v is a subupdate of u, which we denote by v�u, since in this case, v
adds and deletes less elements than u.
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In the non-concurrent case, given a triple graph G and an update wS :GS =⇒ HS on
the source graph, the synchronization problem [16] is to find an update wT :GT =⇒HT ,
such that H is consistent. In this case, we say that wT is the propagation of wS.

G

u
�#

w
+3 H

H0

v

;C
In contrast, in the concurrent case, given updates

uS :GS =⇒HS
0 and uT :GT =⇒HT

0 , or equivalently the
triple graph update 〈uS, id,uT 〉 : G =⇒ H0, also called
a concurrent update, the concurrent synchronization
problem is to find a concurrent update w : G =⇒ H,
such that u = 〈uS, id,uT 〉 is a subupdate of w and H is
consistent. Previous work on this problem is based on building concurrent solutions by
combining (in some way) vS and vT , where vS (respectively, vT ) is the propagation of uT

(respectively, of uS). For this reason, in [24] these approaches are called propagation-
based. However, as we pointed out in the introduction, in that paper it is shown that
propagation-based approaches have important limitations.

A main problem in concurrent synchronization is that the given updates uS and uT

may be in conflict. For instance, uS may delete a node n in GS and uT may add an edge
whose source-node is in correspondence to n in GS. When a concurrent update is in
conflict it will be impossible to solve the synchronization problem, so we will have to
backtrack (or to ignore) some of the deletions or additions in u to eliminate that conflict.
In these situations, the concurrent synchronization problem needs to be reformulated. If
u is in conflict, we would look for an update w such that a subupdate u′ of u (i.e., some
part of u not in conflict) is also a subupdate of w. This is equivalent to saying that there
is an update v such that v◦u = w, where v backtracks some conflicting updates included
in u. We must note that detecting conflicts is in general not an easy task, since uS and uT

modify different models, so they do not directly interfere, which means that conflicts
are never explicit. We may also note that, according to this definition, id : G =⇒ G,
i.e., the identity modification that changes nothing, would always be a solution to the
concurrent synchronization problem (in this case v would be the inverse of u, so we
would completely backtrack u). Obviously, this is not the kind of solution that we want.

2.3 Dependency Relations

Incrementality of (sequential or concurrent) model synchronization requires two con-
ditions for any given approach: to be able to identify what part of the given model is
affected by an update, so that the rest can remain unchanged and we can concentrate
on the affected part to build a solution; and that we can do this identification without
having to fully analyze the given consistent model. Otherwise, the computational cost
of a synchronization algorithm will always depend on the size of the given models.

Our approach to incrementality, which follows the ideas introduced in [25] for se-
quential synchronization, is based on the idea that the structure of a given consistent
model depends essentially on the derivation that was used to create it. We mean that if
we perform any update on the model, we just have to care about the parts of that deriva-
tion that are affected by the update. For instance, if the update consists of the deletion of
some element, then the application of the rule that created that element in the original
derivation and the further application of other rules that depend on that creation, will be
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considered the affected part of the derivation. It must be clear that this does not mean
that, if SG⇒G1⇒ ·· · ⇒Gk⇒ ·· · ⇒G is the derivation used to create G, the deletion
of an element in Gk will affect all the rule applications in the derivation Gk⇒ ··· ⇒ G,
because some of these rule applications may be independent of that deletion. For in-
stance, in our example, if the deleted element is a class, the creation of other classes,
attributes or subattributes that are not related to that class would be independent of that
deletion. Technically, the reason would be that the application of these rules is sequen-
tially independent ([6]) of the application of the rule that created the class. In what
follows we will denote by dG the derivation6 used to create G.

Since in the synchronization algorithm we need to know which is the derivation used
to create the given consistent model and storing and analyzing that derivation may be
costly, the second idea of our approach is to define some dependency relations between
the elements of G that allow us to know if the application of some rule depends on the
application of another rule. We assume that these relations are stored together with G.
The first relation, called strict dependency, denoted e1/

Ge2, holds if e1 is matched by
the left-hand side of the rule that created e2. For instance, in the triple graph on the
left of Fig. 2, we have c2/

Gc3 and t2/Gc3, since the application of rule Subclass2Table
that creates c3 has to match its left hand side to c2 and t2. The second relation, called
interdependency, denoted e1 ./

G e2, holds if e1 and e2 are created by the same rule. For
instance, in Fig. 2, c2 ./

G t2, since they are both created by the same application of the
Class2Table rule in dG. Finally, dependency, denoted EG, is the reflexive and transitive
closure of the union of /G and ./G.

Definition 1 (Dependency Relations [25]). Given a TGG G and a derivation dG :
SG ∗⇒G, we define the following relations on elements of G:

L

m
��

� � // R

m′
��

Gi−1
� � // Gi

1. Strict dependency: /G is the smallest relation satisfying that
if dG includes the transformation step depicted on the right,
then for every e in L and e′ in R\L, m(e)/Gm′(e′).

2. Strict interdependency: ./G is the smallest relation satisfying
that if dG includes the transformation step depicted on the
right, then for every e,e′ in R\L, m′(e)./G m′(e′).

3. Dependency: EG= (/G∪ ./G)∗.

It may be noticed that there is a bijective correspondence between derivations (up to
permutation equivalence) and their associated relations. This means that storing these
relations together with a model is equivalent to storing the derivation used to create it.

3 Synchronizing Solutions for Concurrent Updates

According to what we discussed in the previous section, we consider the general prob-
lem of concurrent synchronization when there may be conflicts in the given concur-
rent update. Moreover, we assume that we are only interested in incremental solutions,

6 It may be noted that there may be many derivations that lead to G, here we assume that dG is
the one chosen to generate it.
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which means that our solutions are assumed to preserve a certain triple subgraph of the
given consistent model7. Finally, to avoid having to mention explicitly the TGG of the
given synchronization problem, we will consider that we are working with a fixed TGG,
G , which has been given a priori.

Definition 2 (Incremental Synchronizing Solutions). Given a concurrent update u :
G =⇒ H0, such that G is a consistent model, and given a submodel G0 ⊆ G, a concur-
rent incremental solution of u with respect to G0 is an update w :G =⇒ H such that H
is consistent and dH includes the derivation dG0

. Then, SynchSol(G,G0,u) is the set of
all concurrent incremental solutions of u with respect to G0.

In general, a concurrent synchronization problem may have several possible solu-
tions especially if it has some conflicts, because in this case there may be different op-
tions of backtracking to eliminate the conflicts. To decide which solutions are “better”,
we may use different criteria but, unfortunately, these criteria may be contradictory. For
this reason, we believe that it should be the user who decides which is the preferred
solution. Nevertheless, there are solutions which may be considered inadequate or not
fully adequate. For instance, backtracking all updates, so that the final outcome is the
original consistent model, would technically be a correct solution, but we can not con-
sider that it is adequate. The adequacy criteria that we consider are the following:

– Maximal covering: When u has conflicts, we would like that our solution back-
tracks as few as possible additions and deletions in u, because users decided these
additions and deletions. In this sense, the solution w has a maximal covering if H
contains as many as possible elements that are added by u and as few as possible el-
ements that are deleted by u. In this case, a solution would be optimal if H includes
all the elements added by u and no elements deleted by u.

– Minimal information loss: The addition or deletion of an element in u may force
the deletion of other elements from G. Since these elements may include some
information, their deletion will cause an information loss in the model, which we
would like to minimize. In this sense, the solution w has minimal information loss
if H cannot be extended to a solution that contains more elements from G without
having more additions than H.

– Minimal unrelated additions: The addition or deletion of an element in u may cause
the addition of other elements in w. For instance, if in our example we add a table
the synchronization procedure will need to add its associated class. However, a
solution may include other added elements that are not required by the given update.
We consider that we should minimize this kind of additions.

Definition 3 (Properties of Synchronizing Solutions). Given a derivation d = SG ∗⇒
G∈D(G) and a concurrent update u :G←K0→H0, we say that a consistent incremen-
tal solution w :G←K→H ∈SynchSol(G,G0,u) has:

1. Maximal covering: if there does not exist any other solution v∈SynchSol(G,G0,u),
such that w′ � v′, where v′ is the largest common subupdate of v and u, and w′ is the

7 We may notice that if that subgraph is the empty graph then we would be looking for all
possible solutions.
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largest common subupdate of w and u, i.e., v′ (resp. w′) consists of all the additions
and deletions that are both in u and v (resp. w).

2. Minimal information loss: if there is no other update v ∈SynchSol(G,G0,u), with
v = G←K′→H ′, such that H ∗⇒ H ′, K ⊂ K′ and (H ′\K′) = (H\K).

3. Minimal unrelated additions: if for any element x ∈ H added by w, there is an
element y ∈ H ∩G, such that x EH y.

For instance, on the right of Fig. 2 we can see an example of a consistent solution
which has maximal covering, minimal information loss and no unrelated additions. In
contrast, in Fig. 3 neither the solution on the left nor the one in the middle have maximal
covering, even though both of them are consistent. The solution on the right of Fig. 3
has maximal covering, minimal information loss, and no unrelated additions, but it is
not comparable with the one in Fig. 2.

Fig. 3. Other three consistent solutions for example in Fig. 2.

4 An Incremental Procedure CSynch

In this section we propose a two-step nondeterministic incremental algorithm CSynch

that allow us to find all solutions to the concurrent synchronization problem that are
minimal, in the sense that they do not have unrelated additions, and that, moreover,
have maximal covering and minimal information loss. More precisely, depending on
the choices made we will get a different solution.

The algorithm is not based on propagation, but on using rules derived from the given
TGG which allow us to identify which elements are affected by the update, to identify
and solve possible conflicts, and to restore consistency. This identification is done by
a marking algorithm CMark that simulates the addition and deletion of elements by
applying these derived rules on the model such that some of its elements have being
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decorated with some marks from the set {+,x, !,?}. If an element e is marked with any
of these marks, it means that e has been added or deleted by a user (+ or x, respectively),
it is required for an addition (!), or it is affected by a deletion (?). Technically, this means
that every element of the model has an attribute called marks⊆ {+,x, !,?} that denotes
the set of marks that an element has at a given moment. Initially, before starting the
synchronization process, it is assumed that marks= /0 for every element of the model.
If it happens that, at certain point, an element is marked with different marks, it may
denote an apparent conflict8, which may need to be solved.

Since we need to know the dependencies between the marked elements, we will
build extensions of the dependency relations of the given model G. This extended rela-
tions are denoted E′, /′, and ./′, i.e., EG⊆E′, /G ⊆ /′, and ./G⊆./′. In addition, using
these relations, CMark computes G0, the submodel of G not affected by the update.

Once the model is marked, an algorithm CRepair detects and solves conflicts and
repairs the model. This process removes the marks of some elements and deletes the
rest of them, in such a way that the final outcome is a consistent triple graph.

4.1 Marking

Before defining the marking algorithm that we use in the first step of our synchroniza-
tion procedure, let us first explain how we deal with additions and deletions.

In our running example, let us suppose that the user has added an edge between
the attribute a1 and the class c2 (perhaps to apply a refactoring to the given system).
We know that in consistent models an edge between an attribute and a class is added
when applying rule r2 : L→ R, Attribute2Column. This rule, given a class and a table,
adds to a given model an attribute, a column, edges between the attribute and the class,
and between the column and the table, and a correspondence element that relates the
attribute to the column. So, the idea is that in the synchronization algorithm, we are
going to “simulate” the application of that rule to create the edge between a1 and c2,
and to do this, we are going to apply a rule r′2 : L′ → R′, derived from r2, but before
describing this rule, we have to take into account two questions:

1. Some of the elements that are created by r2 may be already in the model. So, instead
of creating them again, we include them in the left-hand side L′ of the derived rule.
Similarly, some other elements created by r2 may coincide with other elements
added by u, then we will consider that r′2 creates also these elements. For instance,
if u would create an attribute a and an edge associating a to a class c, in this case,
the associated marking rule would create simultaneously the attribute and the edge.
But this is not enough to ensure that the final outcome is consistent, we need to
be sure that all the elements in L′ are in the final result. Otherwise, these elements
could be deleted as a consequence of some other addition or deletion in the given
update u. For this reason, r′2 will mark the elements in L′\L with !, expressing that
they are required for the correctness of the result. In addition, the rule will also
mark the elements created by the rule, i.e. in R′\L′, with the mark +. This includes
the elements added by u, but also some other elements created by the rule. For

8 As we will see, not all apparent conflicts are real conflicts.
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instance, if we want to add the edge from a1 to c2 to the model, we must also add
the edge from co1 to t2. Following these ideas, rule r′2 is depicted on the left of Fig.
4. Moreover, on the right of that figure we also show which would be the associated
marking rule, when we add an attribute to a class in a given model.

2. Since in the resulting model, H, we assume that this edge from a1 to c2 is created
using r2, this means that we assume that in H, the edge was created together with
the attribute a1, the corresponding column co1, the edge between a1 and c2, the edge
between co1 and t2, and the correspondence element between a1 and co1. However,
in the original model G these elements were created using a different application of
r2, and together with them, some other elements were also created (in this case, the
edges between a1 and c1 and between co1 and t1), that are still part of the model.
So if we want H to be consistent, we will need to delete these elements from the
model. As a consequence, we will mark them with ?, denoting that in principle,
we have to delete them, and we will say that they have been revoked. Finally, if
some elements are revoked, we may need to delete all the elements in the model
that depend on them. So we will mark all these other elements with ?, expressing
that they may need to be deleted too.

The case of marking the deletions in the update u is simpler. If an element x in G
is deleted by u, we will just mark it with x, denoting that x has to be deleted and, as
before, we will mark all the elements that depend on x with ?.

Finally, if we call G0 the graph consisting of all elements that have not been marked
with +, x, or ? then, as a consequence of the way that the marking algorithm works,
we can be sure that G0 is consistent (as shown in Thm. 1), since all elements in G0
were already in G and they are not dependent of any element that is not in G0. Hence,
building our solution by adding to G0 some of the marked elements, using rules from
the given TGG, ensures that the final result is consistent. Moreover, the algorithm would
be incremental with respect to G0, since its elements will not be processed by CRepair

(except for deleting some ! marks).

Definition 4 (Derived Marking Rules). We say that a triple graph G is decorated with
marks if each of its elements has a marking attribute marks⊆ {+,x, !,?}. Let us denote
as RemAttr(G) the triple graph resulting from removing from G the attribute marks.

Given the rule r :L→R, we say that r′ :L′→R′ is a derived marking rule from r for
adding a set of elements X, if L′ and R′ are two decorated triple graphs such that:

1. L⊆ RemAttr(L′)⊆ R, RemAttr(R′) = R, and X ⊆ R′\L′.
2. All elements in RemAttr(L′)\L are included in R′ with the mark !.
3. All elements in R′\L′ are included in R′ with the mark +.

For instance, the rule on the left of Fig. 4 is derived from the rule r2 Attribute2Column
to add a new arrow from an already existing attribute to an already existing class in the
model. Notice that the elements that are really new, i.e., produced by the application
of r2, are marked with +, while the ones produced by r2 but reused from the model
by the derived rule, are marked with !. The rule on the right is also derived from At-
tribute2Column but now to add a new attribute to an existing class. As a consequence,
there are not reused elements that should be marked with !.
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Fig. 4. Examples of derived marking rules

Now we can introduce the marking algorithm CMark following the explanations
given above. A and D will be the set of elements that have to be added or deleted,
respectively. Initially, we assume that A and D consist of the elements added and deleted
by u, and that the sets of marks are empty for all the elements in the model. Then:

Algorithm 1 (CMark Algorithm)
Initialize relations E′=E, /′ = /, and ./′=./.

1. Addition and revocation: For every element x∈A, select a marking rule r′ :L′→R′

derived from r :L→R that may be used to create x, and let X ⊆A be a set of elements
that can also be created by r′:

– Eliminate from A the elements in {x}∪X.
– Apply r′ :L′→R′.
– Add ? to the attribute marks of every element which is not in RemAttr(L′)\L

but it is strictly interdependent with an element matched to RemAttr(L′)\L.
– Add ? to the attribute marks of every element which is dependent on a ?-marked

element.
2. Update the dependency relations adding the new dependencies and interdependen-

cies defined by the application of the original rules used in 1. to relations E′, /′,
and ./′; and computing the new transitive closure.

3. Deletion:
– Add x to the attribute marks of every element intended to be deleted.
– Add ? to the attribute marks of every element that is dependent of an x-marked

element.
4. Computing G0: Delete from E, /, and ./ all elements marked with +, ?, or x. Then

G0 would be the model generated by the derivation associated to the dependency
relations.

For instance, in the middle of Fig. 2 and Fig. 5 we can see examples of a marked
model following the above algorithm. In the case of the example in Fig. 5, the concur-
rent update would consist of adding a subclass relation between classes c1 and c2, in the
source; and, adding a new sub-column sco3 to the column co2 in the target. Again, in
the model of the middle, some elements are marked with contradictory marks. Notice
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that now, possible conflicts arise because of trying to integrate concurrent additions. In
fact, this example serves to illustrate that some additions may imply the deletion of el-
ements created by the original derivation, for instance, it is the case of the table t2. That
is, some additions may imply revocation of original derivation steps.

Fig. 5. Other example of concurrent updated, marked and possible repair

We must note that this algorithm is nondeterministic since, when we want to add an ele-
ment x to the model there may be more than one rule that can be used to create x. Then,
choosing different rules will lead to different results of our synchronizing procedure.

4.2 Repairing and Conflict-Solving

The first idea underlying our repair algorithm, used as a second step of our synchroniza-
tion procedure, is to extend the model G0, represented by the dependency relations E,
/, and ./, using rules from the given TGG, to include the elements that the user asked
to add to the model (i.e. added by the given update u) and to reduce the information
loss. In particular, if in the marking process we decided to use a rule r :L→ R to create
an element x required by u (i.e., to create x we used a marking rule r′′ associated to r),
we will use another rule also derived from r, r′ : L′→R, where L ⊆ RemAttr(L′) = R
that unmarks all the elements that we marked with + or !, i.e., if we remove all marks
in L′ we get R. We call these rules derived recreating rules, because they create again
(by reusing them) some elements that were originally in G. We must note that, using
the information in the dependence relations E′, /′, and ./′, we may know which is the
rule r. In particular, L would consist of x and all the elements y such that x ./′ y, and R
would consist of all the elements z such that x/′ z.

This idea for reusing elements from the original model has already been used in
[12,25]. Notice that these rules eliminate the marks from the recreated elements, and as
a consequence, the recreated elements will be now part of the solution.

The second idea for our repair algorithm is that we can also use derived recreation
rules for reducing the information loss, including in the solution elements that were
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removed from the given model because they depended on elements that could have
been deleted.

Finally, the third idea in which our algorithm is based is that, if we try to create
an added element x using the derived rule r′ : L′ → R, if an element of L′ is matched
to an element y of the model having the mark x, this means that we have discovered a
conflict, because we have a conflict between the deletion of y and the addition of x. As a
consequence, we have two options, either we do not apply that rule, which is equivalent
to backtrack the addition of x, or we do apply the rule, which would be equivalent to
backtrack the deletion of the element including the mark x.

Definition 5 (Derived Recreating Rules). Given a rule r :L→R, we say that r′ :L′→R
is a derived recreating rule9 from r if L⊆ RemAttr(L′) = R, such that

1. The elements in L′ from L must be matched to elements without marks.
2. The elements in L′ not in L can be matched to elements with any mark.

For instance, in Fig. 6 we can see some examples of some derived recreating rules.

Fig. 6. Examples of derived recreating rules

9 To be precise, recreating rules are like standard DPO rules, i.e. of the form L′←R→R, which
means that the rule does not add anything, since it just deletes the marks from the given ele-
ments. We may note that an unmarking rule is always applicable, since the gluing conditions
always hold. For details, we may look at [17,15].
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Algorithm 2 (CRepair)

1. Recreating and conflict solving: While there is a recreation rule that can be ap-
plied:

– If there is an element marked + by a marking rule associated to a rule r :L→R
and when trying to apply the associated recreating rule r′ :L′→R, no element
in L′ is matched to an element including the x mark, then apply r′ and modify
accordingly the dependency relations of the solution, adding to / and ./ the
dependency and interdependency relations between the elements matched by
elements in L and R; and computing the new transitive closure for E.

– In the same situation as in the previous case, but where there is an element in L′

that is matched to an element marked x, choose between applying r′ modifying
accordingly the dependency relations of the solution, or replacing the mark +
by the mark x for all elements matched by L′ that include the mark +.

– Otherwise, apply a recreating rule r′ : L′→ R such that no element in L′ is
matched to an element marked x and modify accordingly the dependency rela-
tions of the solution.

2. Removing: Delete every marked element.

That is, in step 1. of CRepair, we first try to recreate every + or ! element and to
reduce information loss as much as possible. However, when we detect a conflict when
trying to recreate an element marked +, it is nondeterministically chosen between ap-
plying the addition or the deletion. And in step 2 all elements still marked are removed
from the model, because they needed to be deleted or because it was not possible to
recreate them.

Algorithm 3 (CSynch)

1. Apply CMark.
2. Apply CRepair

The resulting update is w :G =⇒ H, where H is the result obtained by CSynch.

4.3 Properties of CSynch

In this subsection we prove the properties that our algorithm satisfies. Firstly, we will
prove that all solutions obtained by CSynch are consistent, incremental and they have
no unrelated additions. We will also prove that CSynch can compute all incremental so-
lutions that, in addition, have maximal covering and minimal information loss, provided
that the right choices are made.

Theorem 1. Given a consistent model G and an update u : G =⇒ H ′ if the update w :
G =⇒ H is a solution obtained by CSynch, then:

1. H is consistent.
2. w is incremental with respect to the triple graph G0 computed by CMark.
3. w has no unrelated additions
4. w has minimal information loss.
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Proof. The last three properties are just a consequence of how CSynch is defined. Let
us prove that H is consistent, but before we will prove that G0 is consistent.

Let SG⇒ G1 ⇒ ·· · ⇒ Gk ⇒ ·· · ⇒ G be the derivation used to create G and let
SG⇒ G1⇒ ··· ⇒ Gi be its longest subderivation such that Gi ⊆ G0, let us show that
Gi = G0, which implies the consistency of G0.

Suppose that there is an element x∈G0, which means that x is not marked with +, ?,
or x and it does not depend on any marked element, such that x /∈Gi. Let k be the earliest
derivation step Gk ⇒ Gk+1, with i < k, where an element x ∈ (G0\Gi) was generated
i.e., x ∈ (Gk+1\Gk). By definition of ./, we know that x ./ y for every y ∈ Gk+1\Gk,
and according to the definition of CMark, if x has not any of those marks, then y has
not either. This means that Gk+1\Gk ⊆ G0. Now, if r : L→ R is the rule applied in the
derivation step Gk⇒ Gk+1 then there are two possibilities:

1. If the elements matched by L in Gk are already in Gi, it would mean that this
derivation step is sequentially independent from all derivation steps Gi⇒ ·· ·⇒Gk

and we would have Gi
r⇒ Gi+1, with Gi+1 ⊆ G0, contradicting the hypothesis that

SG⇒ G1⇒ ··· ⇒ Gi was the longest subderivation such that Gi ⊆ G0.
2. If the elements matched by L in Gk are not in Gi, it would mean that x depends on

elements added in the derivation Gi ⇒ ··· ⇒ Gk. Moreover, we know that all the
elements y generated in that derivation such that y E x are unmarked with +, ?, or x
and therefore they are included in G0, because otherwise x would not be in G0. But
this contradicts the hypothesis that x was an element in G0\Gi added in the earliest
possible derivation step.

To prove that H is consistent, it is enough to notice that, because of how recreation
rules are defined, if Gi is a consistent unmarked subgraph of a marked graph G′i, and

r′ : L′ → R is a recreating rule associated to the rule r : L→ R, then if G′i
r′⇒G′i+1, we

have that Gi
r⇒Gi+1 such that Gi+1 is a consistent subgraph of G′i+1. In particular, if G′0

is the result obtained by applying the marking algorithm to G and G0 is its unmarked
consistent subgraph, then applying the first step of CRepair leads to a sequence of
recreation transformations G′0

∗⇒G′k. This means that given the associated sequence of
transformations G0

∗⇒Gk, we have that Gk is a consistent subgraph of G′k. Finally the
second step of CRepair leads to H = Gk, which is the final result of CSynch.

Before showing the rest of the properties of CSynch, we must first define which
is the subgraph G0 such any solution of CSynch is incremental with respect to it. In
general, depending on the choices of CSynch, the consistent model G0 computed by
CMark may be different, because the choice of rules used to add to G the elements
added by u defines different markings. So, if we want that all solutions of CSynch are
incremental over the same graph, we can take the intersection of all these G0.

Definition 6 (Set of Computed Solutions). Given a consistent model G∈L(G) and a
concurrent update u : G←K→H0, we denote by CSynch(G,u) the set of all possible
solutions computed by the algorithm CSynch when G and u are given.

If for every w :G←K→H, we denote by Gw the subgraph of G computed by CMark,
then we define M(G,u) as: M(G,u) = ∩w∈CSynch(G,u)Gw.
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Obviously, if w is incremental over Gw, then w is also incremental with respect to
any submodel of Gw.

Proposition 1. If w ∈ CSynch(G,u) then w is incremental over M(G,u).

Finally, we can show that our algorithm is complete, i.e., that any consistent update
that is incremental over M(G,u), and satisfies the required properties, can be found by
CSynch.

Theorem 2. Given a consistent model G and an update u : G =⇒ H ′, if w : G←K→
H is consistent, it has no unrelated additions, it has maximal covering and minimal
information loss, and it is incremental over M(G,u) then w ∈ CSynch(G,u).

Proof. If w :G←K→H is a consistent update, such that it has no unrelated additions, it
has maximal covering and minimal information loss, and it is incremental over M(G,u)
this means that there is a derivation d = SG⇒ H1 ⇒ ··· ⇒ Hk ⇒ ··· ⇒ H such that
M(G,u) ⊆ Hk for some k. Then, if we make the right choices in CSynch we will com-
pute the solution w. In particular, if CMark uses the same rule applications that are used
in d to generate the additions in u, on the one hand, it will compute a model Gw that will
be preserved by CRepair and that includes CSynch(G,u). On the other hand, CMark
will mark the model in such a way that if CRepair chooses the same rule applications
(and in the same order) as in d, it will compute H.

5 Related Work

The concurrent synchronization problem can be considered as a special case of the
general problem of model (or graph) repair. In particular, in our case, a triple graph can
be easily represented by a single graph, so the consistency problem for triple graphs can
be seen as a special case of the consistency problem for graphs. The literature on model
repair is quite large (see [23] for an excellent survey on this topic), so it does not make
much sense to review all the existing approaches.

Concentrating on the problem of concurrent model synchronization, to our knowl-
edge, the only works addressing the general problem10 of concurrent synchronization
are [38,14,11,24,34,35]. All these approaches are propagation-based, which means that
synchronization is performed, first, propagating the updates in one model to the other
model, then checking if there is any conflict between the propagated updates and the
ones previously applied to that model and, if there are, solving the conflicts in some
given way, and finally, propagating back the updates in the second model to the first
one. That is, sequentializing concurrent synchronization. In all cases it is shown that
the result obtained is correct, but no other properties are shown. In particular, in all
these approaches, except in [38] the trivial solution obtained by backtracking all the up-
dates would be considered a valid solution. On the other hand, the approach presented

10 There is some work considering this problem in a more restrictive setting. For instance, in
[26] models are restricted to tree-like structures and the target model is an abstract view of the
source; and in [36] updates must be defined in terms of a given set of operations.
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in [38] may be unable to find some existing solutions, as shown in [24]. Actually, that
paper shows that propagation-based approaches have important limitations.

Our approach to incrementality is based on the ideas presented in [25], for the se-
quential synchronization case. Other approaches based on TGGs that propose incremen-
tal solutions to sequential model synchronization are [10,16,12,22] (and some variations
on them) but all of them are, in our opinion, not completely satisfactory. In particular,
even if the construction of the solution does not start from scratch but from the given
consistent model G, the approaches in [16,12,22] have to analyze the whole model G
(for instance, to know what parts of G must be modified) so their cost depends on the
size of the given model. This is not the case of [10], but their approach only works for
the case when source and target models are bijective, which excludes the case where
source models are views of target models (or vice versa). In addition, in [10,16,22] there
may be information loss, which we avoid using the approach developed in [12] and also
used in [25].

6 Conclusion

In this paper we have presented some properties that ensure the adequacy of solu-
tions for a concurrent synchronization problem, together with an incremental non-
deterministic algorithm that is able to return all possible sound solutions that, in ad-
dition, satisfy these properties.

Most existing algorithms for model synchronization return just one solution. We
believe that this is not adequate, especially in the case of concurrent synchronization. In
that context, one concrete solution corresponds to a specific way of solving the existing
conflicts, which may not be the way that the user would have preferred. For this reason,
we decided that completeness of the algorithm was an important issue. It is clear that,
in practice, delivering to a user a relatively large set of solutions is not very convenient.
However, we think that this is something to take into account at the implementation
level, for instance, by showing conflicts in a stepwise way and, then, showing the dif-
ferent ways of solving each conflict.

From a theoretical viewpoint, our algorithm works for any kind of graphs. However,
in practice, if the models have attributes, our algorithm would not be adequate. For
example, let us suppose that we are working with a class of models where a certain
attribute a1 must be equal to the addition of attributes a2 and a3 and let us suppose that
we are trying to synchronize a model G, where a1 has some given value v1, but a2 and
a3 have no value, i.e., the synchronization algorithm should provide values to a2 and a3,
such that their addition equals v1. In this context, our algorithm would deliver infinite
solutions, assigning to a2 and a3 all possible values v2 and v3 such that v1 = v2 + v3. In
general, dealing with attributed graphs in the context of sequential or concurrent model
synchronization poses problems that are described in [1,21].

As future work, on the one hand, we plan to address the case of attributed models
and, on the other hand, to extend our results to the multimodel case, i.e. when synchro-
nizing more than two models. This case has specific complications, see, for instance
[32,4]. It has already been approached in [34,35], but just as a straightforward general-
ization of [14], which means that it shares its limitations.
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