f‘)

Check for
updates

HybridTiger: Hybrid Model Checking and
Domination-based Partitioning for Efficient
Multi-Goal Test-Suite Generation
(Competition Contribution)

Sebastian Ruland'@®, Malte Lochau' @, and Marie-Christine Jakobs?

1 Technical University of Darmstadt, Department of Electrical Engineering and
Information Technology, Real-Time Systems Lab, Darmstadt, Germany
{sebastian.ruland,malte.lochau}@es.tu-darmstadt.de
2 Technical University of Darmstadt, Department of Computer Science, Semantics
and Verification of Parallel Systems, Darmstadt, Germany
jakobs@cs.tu-darmstadt.de

Abstract. In theory, software model checkers are well-suited for auto-
mated test-case generation. The idea is to perform (non-)reachability
queries for the test goals and extract test cases from resulting counter-
examples. However, in case of realistic programs, even simple coverage
criteria (e.g., branch coverage) force model checkers to deal with sev-
eral hundreds or even thousands of test goals. Processing each of these
test goals in isolation with model checking techniques does not scale.
Therefore, our tool HybridTiger builds on recent ideas on multi-property
verification. However, since every additional property (i.e., test goal) re-
duces the model checker’s abstraction possibilities, we split the set of
all test goals into different partitions. In Test-Comp 2019, we applied
a random partitioning strategy and used predicate analysis as model
checking technique. In Test-Comp 2020, we improved our technique in
two ways. First, we exploit domination information among control-flow
locations in our partitioning strategy to group test goals being located
on (preferably) similar paths. Second, we account to inherent weaknesses
of the predicate analysis by applying a hybrid software model-checking
approach that switches between explicit model checking and predicate-
based model checking on-the-fly. Our tool HybridTiger is integrated into
the software analysis framework CPACHECKER.

Keywords: CPAchecker - Test-Goal Set Partitioning - Hybrid Model-
Checking Cooperation

1 Software Architecture

The HybridTiger algorithm is implemented within the software verification
framework CPACHECKER [4]. CPACHECKER utilizes the Eclipse CDT C-parser®.

3 https://www.eclipse.org/cdt/

© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 520-524, 2020.
https:/ /doi.org/10.1007/978-3-030-45234-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_26&domain=pdf
http://orcid.org/0000-0003-2542-9754
http://orcid.org/0000-0002-8404-753X
https://www.eclipse.org/cdt/
https://doi.org/10.1007/978-3-030-45234-6_26

Hybrid Tiger 521

int ni

1 |int fib(int n){ n<0 W1 (n<0)
2 if(n <= 0) return -1; c
3 if(n == 1) return 1; . n==1H'm==1)
. __ . return —
4 if(n == 2) return 1; e N 7
5 return fib(n-1) return — 1
6 +fib(n-2); | Qeturnl return Q
71} o’ ffibé?—lz))
+fib(n —
(a) C-Program (b) CFA

Fig. 1. C Program to calculate the Fibonacci number of n and corresponding CFA

CPACHECKER allows developers to easily integrate new algorithms like Hybrid-
Tiger, which may use other algorithms implemented in CPACHECKER, such as
counterexample-guided abstraction refinement (CEGAR) [5]. Additionally, new
reachability analyses can be integrated as CONFIGURABLE PROGRAM ANALYSES
(CPAs) [2]. Each CPA consist of an abstract domain with the operators post,
merge, and stop. Multiple CPAs can also be combined into one CPA.

HybridTiger uses the COVERITEST [3] algorithm to sequentially combine
test-case generation runs utilizing different verification techniques. Each test-case
generation run applies the CPA /Tiger-MGP*(Tiger Multi-Goal-Partitioning)
algorithm, which utilizes the CEGAR algorithm.

2 Test-Generation Approach

HybridTiger first extracts test goals from input programs and repeatedly exe-
cutes reachability analyses provided by CPACHECKER until every reachable test
goal is covered by at least one test case. To this end, test goals are encoded into
(non-)reachability properties. If a test goal has been reached, CPACHECKER thus
returns a counterexample and HybridTiger extracts a test case (i.e., a vector of
input values), writes the test case to disk and marks the test goal as covered.

Hybrid Test-Case Generation. HybridTiger receives as inputs a C program and
a property specification (i.e., a set of test goals). Next, HybridTiger transforms
the C program into a control-flow automaton (CFA) [1]. Figure 1 shows an
example C program and the corresponding CFA. After CFA generation, the
COVERITEST algorithm as configured in HybridTiger (see Fig. 2) is executed.
In every new iteration, each analysis of our configuration first (re-)partitions
the set of uncovered test goals (e.g., partitions P1, P2, P3 and P4 for CPA/-
Tiger-MGP-Value and P1 and P2 for CPA /Tiger-MGP-Predicate in Fig. 2). In
each iteration, CPA /Tiger-MGP-Value is performed first using explicit model
checking and is stopped after 120s. After that, CPA /Tiger-MGP-Predicate is

4 https://www.es.tu-darmstadt.de/es/team /sebastian-ruland /testcomp19/

https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp19/

522 S. Ruland et al.

\ | Interleaved Algorithm
Ca) gormm.
| (tgz) 7 ~
t
P2 th Tiger-MGP- Tiger-MGP-
4
3] Value Predicate
\P3L_tgs)|
Pa(_tge S _
Iteration: O 1 2 ..
(G Ce) G)
Coverage ‘ ‘ Coverage

Ltg:][L9]1[‘92‘/]
tg3 l tg3 lltgs‘/l

Ceas II L9 Il tgs)

(Cegs) (Cegs) (e

\[tgs)i (tas]) i (t9s/]) j

VA-Partitioning PA-Partitioning

Fig. 2. Overview of HybridTiger

executed using predicate model checking for 780s, where the overall iteration
stops after reaching the global time limit.

Partitioning. HybridTiger utilizes domination information of test-goal locations
according to the respective CFA paths. This meta-information is retrieved from
the generated CFA: each CFA node (i.e., basic block of program locations) in
Fig. 1 is annotated with a post-order ID such that a node will only be reached
after all nodes on the same path with a larger ID have been reached at least
once. Hence, we use the IDs of predecessor nodes related to the CFA edges of
test goals as sorting criterion for the overall set of test goals before splitting
this set into partitions of predefined sizes. In this way, test goals sharing similar
paths are more likely to be assigned to the same partition thus facilitating reuse
potentials of reachability-information during reachability analysis.

3 Strengths and Weaknesses

HybridTiger has three main strengths. First, the directed generation of test cases
alming at covering particular test goals significantly reduces the overall number
of test cases. Additionally, most test cases produced by HybridTiger effectively
increase the overall coverage (i.e., Hybrid Tiger produces mostly correct and non-
redundant test cases). Second, HybridTiger uses control-flow information to par-
tition test goals which potentially enhances efficiency of test-case generation due
to information reuse among similar test goals. Lastly, HybridTiger uses combina-
tions of different analysis strategies (i.e., value analysis and predicate analysis) to
cope with structural diversity of input programs. One weakness of HybridTiger
is that the partitioning approach does not improve performance of a goal-by-goal
approach if being applied to programs with a small number of test goals (e.g.,
reaching one single error location as demanded in the Cover-Error category).

Hybrid Tiger 523

Results. In Test-Comp 2020, HybridTiger has participated in all categories and
managed to reach the 4th rank in Code Coverage and the 6th rank in Finding
Bugs, where HybridTiger performed better on tasks with many test goals.

4 Setup and Configuration

The version of HybridTiger submitted to Test-Comp 2020 is built from the
tigerIntegration2® branch revision 32283 of the CPACHECKER repository and is
archived at https://gitlab.com/sosy-lab/test-comp/archives-2020. Hybrid Tiger
can be applied to a single file using the command

1 scripts/cpa.sh —benchmark —heap 10000M —tigertestcomp20
—spec spec.prp file

where spec is the property file (e.g., coverage-error-call or coverage-branches)
and file is the input C program. Statistics of the analyses are printed to console
and meta data on generated test cases as well as the test suite are written to
files in the output folder. In order to run HybridTiger for the Test-Comp 2020
benchmarks a Linux system with Java 8, BenchExec® and the SV-benchmarks”
is required. Finally, run BenchFEzxec with:

— the benchmark definition cpa-tiger.zml (archived at https://gitlab.com/sosy-
lab/test-comp /bench-defs/tree/master /benchmark-defs), and

— the tool-info module cpachecker.py (archived at https://github.com/sosy-
lab /benchexec/tree /master /benchexec/tools).

5 Project and Contributors

CPACHECKER is maintained by the Software Systems Lab at LMU Munich
as open-source project, contributed by an international group of researchers
from LMU Munich, University of Passau, Technical University of Darmstadt and
the Institute for System Programming of the Russian Academy of Sciences.The
branch tigerIntegration2 from which HybridTiger is built is mainly developed
at the Technical University of Darmstadt. Additional information is available
at https://cpachecker.sosy-lab.org/.

Acknowledgement. This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project.

® https://svn.sosy-lab.org/software/cpachecker /branches/tigerIntegration2
6 https://github.com/sosy-lab/benchexec
7 https://github.com/sosy-lab/sv-benchmarks

https://gitlab.com/sosy-lab/test-comp/archives-2020
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/master/benchmark-defs
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/master/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/master/benchexec/tools
https://github.com/sosy-lab/benchexec/tree/master/benchexec/tools
https://cpachecker.sosy-lab.org/
https://svn.sosy-lab.org/software/cpachecker/branches/tigerIntegration2
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks

524 S. Ruland et al.

References

1. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M., Sebastiani, R.: Software model
checking via large-block encoding. In: 2009 Formal Methods in Computer-Aided
Design. pp. 25 — 32 (12 2009)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In: Proc. CAV,
LNCS 4590. pp. 504-518. Springer Berlin Heidelberg (2007)

3. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative Verifier-Based Testing. In: Proc.
FASE. pp. 389-408. Springer International Publishing (2019)

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verifi-
cation. In: Proc. CAV, LNCS 6806. pp. 184-190. Springer Berlin Heidelberg (2011)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50(5), 752-794 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	HybridTiger: Hybrid Model Checking and Domination-based Partitioning for Efficient Multi-Goal Test-Suite Generation (Competition Contribution)
	1 Software Architecture
	2 Test-Generation Approach
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

