
LLVM-based Hybrid Fuzzing with LibKluzzer
(Competition Contribution)

Hoang M. Le

Insitute of Computer Science
University of Bremen, Germany

hle@uni-bremen.de

Abstract. LibKluzzer is a novel implementation of hybrid fuzzing, which
combines the strengths of coverage-guided fuzzing and dynamic symbolic
execution (a.k.a. whitebox fuzzing). While coverage-guided fuzzing can
discover new execution paths at nearly native speed, whitebox fuzzing
is capable of getting through complex branch conditions. In contrast
to existing hybrid fuzzers, that operate directly on binaries, LibKluzzer
leverages the LLVM compiler framework to work at the source code
level. It employs LibFuzzer as the coverage-guided fuzzing component
and KLUZZER, an extension of KLEE, as the whitebox fuzzing compo-
nent.

Keywords: Hybrid Fuzzing · Coverage-guided Fuzzing · Symbolic Ex-
ecution · LLVM.

1 Test Generation Approach

LibKluzzer is based on hybrid fuzzing which tries to combine the strengths of
coverage-guided fuzzing and whitebox fuzzing. Most existing advanced hybrid
fuzzers, e.g. [6,7,8], employ coverage-guided fuzzing as the main search algorithm
and only apply whitebox fuzzing selectively on the most promising inputs. While
such advanced approach is also being under development and evaluation for
LibKluzzer, for simplicity and given the short time frame available for adapting
to Test-Comp, the participating version of LibKluzzer combines coverage-guided
fuzzing and whitebox fuzzing in a very simple way. Without any intrinsic inte-
gration, multiple instances of coverage-guided fuzzing and whitebox fuzzing are
scripted to run in parallel in their own OS process. They operate on a common
corpus to enable sharing the individual progresses. Each instance keeps an in-
memory set of inputs it has generated, together with the code coverage achieved
so far. Whenever an instance discovers an input that covers new code, it writes
this input as a file to the common corpus. The corpus is scanned periodically
by the instances to check for newly added files. Despite of (or thanks to) its
simplity, LibKluzzer managed to perform very well in Test-Comp 2020.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 535–539, 2020.
https://doi.org/10.1007/978-3-030-45234-6 29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_29&domain=pdf
http://orcid.org/0000-0002-8957-4144
https://doi.org/10.1007/978-3-030-45234-6_29


536 H. M. Le

2 Software Architecture

Two major components of LibKluzzer are LibFuzzer [1] for coverage-guided
fuzzing and KLUZZER [5] for whitebox fuzzing. As mentioned earlier, KLUZZER
is an extension of KLEE [2]. While it uses most of the KLEE infrastructure in-
cluding the underlying SMT solver STP [3], KLUZZER provides several signicant
enhancements that make it more suitable for hybrid fuzzing (see [5] for more de-
tails). For Test-Comp, both LibFuzzer and KLUZZER have been extended to
support its specific requirements. The extension involves writing test cases in
XML format, glue logic to convert the random byte array needed for the fuzzers
into a sequence of calls to nondet functions, and implementing a fuzzing target
as described later.

Workflow First, the C program under test undergoes a set of source-to-source
program transformations to enable in-process coverage-guided fuzzing. The trans-
formed program is then compiled using Clang to create an LLVM bitcode file
and an executable. The compilation involves, among others, code coverage in-
strumentation and linking with LibFuzzer. Finally, the LLVM bitcode file is fed
to KLUZZER to perform whitebox fuzzing, while the executable is started in
two instances to perform coverage-guided fuzzing. These three fuzzing instances
run concurrently until terminated by the Test-Comp BenchExec runner due to
time limit exceeded. They share generated inputs via a common corpus of files
as mentioned earlier and write XML test cases to the test suite on-the-fly.

Transformations for in-process fuzzing While the main components of
LibKluzzer are implemented in C++, the program transformations, that are
required to enable in-process coverage-guided fuzzing, consist of a set of Bash
and Python scripts. This form of fuzzing is much faster than traditional out-
of-process fuzzing, which forks a new process for each execution of the main
function, but requires the global state of the fuzzing target to remain largely un-
changed or to be resetted between executions. The transformations esssentially
perform the following steps for each benchmark:

1. rename the existing main function to FuzzMe;
2. identify and duplicate global variables;
3. insert additional functions: FuzzerSaveCtx to capture the initial global state

into the duplicated variables and FuzzerRestoreCtx to restore this state be-
fore each new execution of the FuzzMe function;

4. redirect calls to exit and abort to custom functions to prevent unwanted
early exit from the fuzzing loop.

The current script-based implementation of these transformations is very
fragile and might not work out-of-the-box for non-Test-Comp benchmarks. The
next version of LibKluzzer will replace these with proper Clang-based source-to-
source transformations.



LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution) 537

int nondet_int() {

int Value = 0;

if (Used + 4 <= Size) {

memcpy(&Value, Data + Used, 4);

Used += 4;

}

return Value;

}

int LLVMFuzzerTestOneInput(

uint8_t *Data, size_t Size) {

FuzzerRestoreCtx();

MakeGlobalCopy(Data, Size);

Used = 0;

FuzzMe();

}

Fig. 1. Implementation of nondet functions and fuzzing target for Test-Comp

Test-Comp fuzzing target and nondet functions Both KLUZZER and
LibFuzzer require the definition of a fuzzing target, i.e. an implementation of
the declared LLVMFuzzerTestOneInput function. The main function provided
by the fuzzers will repeatedly call LLVMFuzzerTestOneInput with fuzz inputs
in a loop to perform fuzzing. Each fuzz input consists of an array of random
bytes and its size. Fig. 1 shows a conceptual implementation of LLVMFuzzerTe-
stOneInput on the right hand side. First, the initial global execution state is
restored. Then, the given fuzz input is copied into a global array and the number
of bytes already consumed for fuzzing is set to zero; Finally, FuzzMe is invoked.
During its execution, each time a nondet function is called to provide input, a
corresponding number of bytes from the global byte array will be consumed to
create the requested value, as exemplarily shown on the left hand side of Fig. 1
for int. With this conversion from random bytes, no changes are needed in the
core algorithms of KLUZZER and LibFuzzer for Test-Comp.

3 Strengths and Weaknesses

The main strength of LibKluzzer lies in achieving high code coverage as demon-
strated by winning the branch coverage category of Test-Comp. Multiple factors
contribute to this success including the extremely high throughput of in-process
coverage-guided fuzzing implemented by LibFuzzer and the use of generational
search in KLUZZER, a coverage-maximizing search heuristic for dynamic sym-
bolic execution/whitebox fuzzing first proposed by SAGE [4]. The individual
contribution of each single component is to be analyzed more thoroughly in a
further detailed study.

The main conceptual weakness of LibKluzzer is that the same coverage-
maximizing search strategy is used for reaching error calls. It is a big surprise
that LibKluzzer has still achieved the second place in the corresponding category.
We expect that adapting the search heuristics of both LibFuzzer and KLUZZER
to be directed by the distance to the location of error calls should improve the
performance significantly.

Especially, the big ECA benchmarks have proven to be problematic for both
LibFuzzer and KLUZZER and hence also for LibKluzzer. The sequence of nondet
values required to reach the error calls is very specific and nearly impossible to
find with coverage-guided fuzzing, while KLUZZER suffers from path explosion.



538 H. M. Le

In addition to error-directed search, path/state merging might be required to
efficiently deal with these benchmarks.

A further weakness is that LibKluzzer makes little effort on minimizing the
test suite with respect to both the size of the test suite and the size of each
test case. Too many redundant test cases might cause the validator to timeout.
Furthermore, some produced test cases are too big hitting a corner case in the
validator and forcing it to exceed the given memory limit. In these cases, the
validator crashes prematurely, leaving the remaining test cases uncounted.

4 Tool Setup and Configuration

Installation The LibKluzzer archive submitted to Test-Comp 2020 (version 0.6)
can be downloaded from https://gitlab.com/sosy-lab/test-comp/archives-2020/
blob/testcomp20/2020/libkluzzer.zip. After unpacking, the main executable script
LibKluzzer can be found in the bin folder.

Configuration The main script has been configured to reflect the resource
restrictions of Test-Comp 2020. LibKluzzer treats every benchmark as 64-bit
and always tries to maximize code coverage, and thus is agnostic to the property
and architecture specification. The only meaningful parameter is the path to the
source code file of the benchmark.

Participation LibKluzzer participates in both available categories of Test-
Comp 2020: Finding Bugs and Code Coverage.

5 Software Project and Contributors

LibKluzzer and KLUZZER are being developed by the author at University of
Bremen, Germany. This research and development are supported by the Central
Research Development Fund, University of Bremen, Germany within the project
SYMVIR. The source code of LibKluzzer will be made available at https://
github.com/hoangmle/LibKluzzerTestComp2020Submission. Much of the cred-
its should go to the respective development teams of LibFuzzer and KLEE, which
lay the foundation for LibKluzzer.

References

1. LibFuzzer - a library for coverage-guided fuzz testing. Available at https://llvm.
org/docs/LibFuzzer.html.

2. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In USENIX OSDI, pages 209–
224, 2008.

3. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In CAV,
pages 519–531, 2007.

https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/libkluzzer.zip
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/libkluzzer.zip
https://github.com/hoangmle/LibKluzzerTestComp2020Submission
https://github.com/hoangmle/LibKluzzerTestComp2020Submission
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html


LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution) 539

4. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In NDSS, 2008.

5. H. M. Le. KLUZZER: Whitebox fuzzing on top of LLVM. In ATVA, pages 246–252.
6. N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-

taishvili, C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing through selective
symbolic execution. In NDSS, 2016.

7. I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security, pages 745–761, 2018.

8. L. Zhao, Y. Duan, H. Yin, and J. Xuan. Send hardest problems my way: Proba-
bilistic path prioritization for hybrid fuzzing. In NDSS, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution)
	1 Test Generation Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References




