
Integrating Topological Proofs with Model
Checking to Instrument Iterative Design

Claudio Menghi1 , Alessandro Maria Rizzi2, and Anna Bernasconi2

1 University of Luxembourg, Luxembourg, Luxembourg
claudio.menghi@uni.lu

2 Politecnico di Milano, Milano, Italy
{alessandromaria.rizzi,anna.bernasconi}@polimi.it

Abstract. System development is not a linear, one-shot process. It pro-
ceeds through refinements and revisions. To support assurance that the
system satisfies its requirements, it is desirable that continuous verifica-
tion can be performed after each refinement or revision step. To achieve
practical adoption, formal verification must accommodate continuous
verification efficiently and effectively. Model checking provides develop-
ers with information useful to improve their models only when a property
is not satisfied, i.e., when a counterexample is returned. However, it is
desirable to have some useful information also when a property is instead
satisfied. To address this problem we propose TOrPEDO, an approach
that supports verification in two complementary forms: model checking
and proofs. While model checking is typically used to pinpoint model
behaviors that violate requirements, proofs can instead explain why re-
quirements are satisfied. In our work, we introduce a specific notion of
proof, called Topological Proof. A topological proof produces a slice of
the original model that justifies the property satisfaction. Because mod-
els can be incomplete, TOrPEDO supports reasoning on requirements
satisfaction, violation, and possible satisfaction (in the case where satis-
faction depends on unknown parts of the model). Evaluation is performed
by checking how topological proofs support software development on 12
modeling scenarios and 15 different properties obtained from 3 exam-
ples from literature. Results show that: (i) topological proofs are ≈60%
smaller than the original models; (ii) after a revision, in ≈78% of cases,
the property can be re-verified by relying on a simple syntactic check.

Keywords: Topological Proofs · Iterative Design · Model Checking ·
Theorem Proving · Unsatisfiable Core.

1 Introduction

One of the goals of software engineering and formal methods is to provide au-
tomated verification tools that support designers in producing models of an
envisioned system which follows a set of properties of interest. Designers benefit
from automated support to understand why their system does not behave as
expected (e.g., counterexamples), but they might find it also useful to retrieve

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 53–74, 2020.
https://doi.org/10.1007/978-3-030-45234-6 3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_3&domain=pdf
http://orcid.org/0000-0001-5303-8481
http://orcid.org/0000-0001-8016-5750
https://doi.org/10.1007/978-3-030-45234-6_3

54 C. Menghi et al.

information when the system already follows the specified requirements. While
model checkers provide the former, theorem provers sustain the latter. Theorem
provers usually rely on some form of deductive mechanism that, given a set of
axioms, iteratively applies a set of rules until a theorem is proved. The proof
consists of the specific sequence of deductive rules applied to prove the theo-
rem. In the literature, many approaches have dealt with an integration of model
checking and theorem proving at various levels (e.g., [48,60,53,36]). These ap-
proaches are oriented to produce certified model checking procedures rather than
tools that actually help the design process. Even when the idea is to provide a
practically useful framework [49,50], the output consists of deductive proofs that
are usually difficult to understand and hardly connectable with the designer’s
modeling choices. Moreover, verification techniques only take into account com-
pletely specified designs. This is a remarkable limitation in practical contexts,
where the designer may start by providing an initial, high-level version of the
model, which is iteratively narrowed down as design progresses and uncertain-
ties are removed [13,42,8,19,65,43]. A recent work [4,5] considered cases in which
a partial knowledge of the system model is available. However, the presented
approach was mainly theoretical and lacked a practical implementation.

We formulate our problem on models that contain uncertain parts. We choose
Partial Kripke Structures (PKSs) as a formalism to represent general models for
the following reasons: (i) PKSs have been used in requirement elicitation to
reason about system behavior from different points of view [19,8], and are a
common theoretical reference language used in the formal method community
for the specification of uncertain models (e.g, [26,9,27,10]); (ii) other model-
ing formalisms commonly used in software development [23,64], such as Modal
Transition Systems [37] (MTSs), can be converted into PKSs through a simple
transformation [26] making our solution easily applicable to those models.

Kripke Structures (KSs) are particular instances of PKSs that represent com-
plete models. Requirements on the model are expressed in Linear-time Temporal
Logic (LTL). As such, the approach presented in the following is generic: it can
be applied on models that contain uncertain parts (PKSs) or not (KSs), and can
be easily adapted to support MTSs.

Verification techniques that consider PKSs return three alternative values:
true if the property holds in the partial model, false if it does not hold, and
maybe if the property possibly holds, i.e., its satisfaction depends on the parts
of the model that still need to be refined. As models are revised, i.e., they are
modified during design iterations, designers need support to understand why
properties are satisfied, or possibly satisfied.

A comprehensive and integrated design framework able to support software
designers in understanding such motivation is still missing. We tackle this prob-
lem by presenting TOrPEDO (TOpological Proof drivEn Development frame-
wOrk), a novel automated verification framework, that:

(i) supports a modeling formalism which allows a partial specification of the
system design;

Integrating Model Checking and Topological Proofs 55

(ii) allows performing analysis and verification in the context of systems in which
“incompleteness” represents a conceptual uncertainty;

(iii) provides guidance in producing model revisions through complementary out-
puts: counterexamples and proofs;

(iv) when the system is completely specified, allows understanding which changes
impact or not the satisfaction of certain properties.

TOrPEDO is based on the novel notion of topological proof (TP), which
tries to overcome the complexity of deductive proofs and is designed to make
proofs understandable on the original system design. A TP is a slice of the
original model that specifies which part of it impacts the property satisfaction.
If the slice defined by the TP is not preserved during a revision, there is no
assurance that the property holds (possibly holds) in the revised model. This
paper proposes an algorithm to compute topological proofs—which relies on the
notion of unsatisfiable cores (UCs) [56]—and proves its correctness on PKSs. It
also proposes an algorithm that checks whether a TP is preserved in a model
revision. This simple syntactic check avoids (in many cases) the execution of the
model checking procedure. While architectural decomposition and composition
of components can be considered during the system development [42], in this
work we present our solution by assuming that the system is modeled as a single
PKS. However, our framework can be extended to consider the composition of
components, such as the parallel composition of PKSs or MTSs. This can be done
by extracting the portions of the TP that refer to the different components.

TOrPEDO has been implemented on top of NuSMV [14] and PLTL-MUP [58].
The implementation has been exploited to evaluate TOrPEDO by considering
a set of examples coming from literature including both completely specified
and partially specified models. We considered 3 different example models and 4
variations for each model that was presented in the literature [12,20]. We con-
sidered 15 properties, i.e., 5 for each example, leading to a total of 60 (3×4×5)
scenarios that require the evaluation of a property on a model. We evaluated
how our framework supports model design by comparing the size of the gener-
ated topological proofs against the size of the original models. Results show that
topological proofs are ≈60% smaller than the original models. Moreover, after
a revision, in ≈78% of cases, our syntactic check avoids the re-execution of the
model checker.

Organization. Section 2 describes TOrPEDO. Section 3 discusses the back-
ground. Sections 4 and 5 present the theoretical results and the algorithms that
support TOrPEDO. Section 6 evaluates the achieved results. Section 7 discusses
related work. Section 8 concludes.

2 TOrPEDO

TOrPEDO is a proof based development framework which allows verifying PKSs
and evaluating their revisions. To illustrate TOrPEDO, we use a simple model
describing the states of a vacuum-cleaner robot that has to satisfy the require-
ments in Fig. 2, specified through LTL formulae and English natural language.

56 C. Menghi et al.

move = ⊥
suck = ⊥
on = ⊥

reached = ⊥

OFF

move = ⊥
suck = ⊥
on = >

reached =?

IDLE

move =?
suck = >
on = >

reached = >

CLEANING

move = >
suck =?
on = >

reached =?

MOVING

Fig. 1: PKS of a vacuum-cleaner robot.

LTL formulae

φ1 = G(suck → reached)
φ2 = G((¬move)W on)
φ3 = G(((¬move) ∧ on)→ suck)
φ4 = ((¬suck)W(move ∧ (¬suck)))

Textual requirements

φ1: the robot is drawing dust (suck) only if
it has reached the cleaning site.
φ2: the robot must be turned on before it can
move.
φ3: if the robot is on and stationary (¬move),
it must be drawing dust (suck).
φ4: the robot must move before it is allowed
to draw dust (suck).

Fig. 2: Natural language and LTL for-
mulation of the requirements of the
vacuum-cleaner robot.
G and W are the “globally” and “weak
until” LTL operators.

The TOrPEDO framework is illustrated in Fig. 3 and carries out verification in
four phases: initial design, analysis, revision, and re-check.

The model of the system is expressed using a PKS M
(1), which can be generated from other languages, along with the property of
interest φ, in LTL (2).

Running example. The PKS presented in Fig. 1 is defined over two atomic
propositions representing actions that a robot can perform: move, i.e., the agent
travels to the cleaning site; suck , i.e., the agent is drawing the dust, and two
atomic propositions representing conditions that can trigger actions: on, true
when the robot is turned on; reached , true when the robot has reached the
cleaning site. The state OFF represents the robot being shut down, IDLE the
robot being tuned on w.r.t. a cleaning call, MOVING the robot reaching the
cleaning site, and CLEANING the robot performing its duty. Each state is la-
beled with the actions move and suck and the conditions on and reached . Given
an action or condition α and a state s, we use the notation: α = > to indicate
that α occurs when the robot is in state s; α = ⊥ to indicate that α does not
occur when the robot is in state s; α =? to indicate that there is uncertainty on
whether α occurs when the robot is in state s.

TOrPEDO provides automated analysis support, which in-
cludes the following elements:

(i) Information about what is wrong in the current design. This information in-
cludes a definitive-counterexample, which indicates a behavior that depends
on already performed design choices and violates the properties of interest.
The definitive-counterexample (3 ⊥-CE) can be used to produce a revised
version M ′ of M that satisfies or possibly satisfies the property of interest.

Integrating Model Checking and Topological Proofs 57

Initial
design

The image part with relationship ID
rId3 was not found in the file.

TOrPEDO

M: PKS

!: LTL

True,M’

False,M

Def-CEDef-CE⊥ ⊥-CE

inspire

⊤ Def-TP⊤ Def-TP
inspire

? Poss-CE
Poss-TP? Poss-CE

Poss-TP? ?-CE
?-TP

⊤ ⊤-TP

M’: PKS

Re-check
Correct
design

Correct
design

Correct
designRevisionAnalysis

10

11

13

1

1

2
3 4

1

2

3

4

5

6

7 7

9

9

8

10
10

11

12

Fig. 3: TOrPEDO structure. Continuous arrows represent inputs and outputs to
phases. Numbers are used to reference the image in the text.

(ii) Information about what is correct in the current design. This information
includes definitive-topological proofs (4 >-TP) that indicate a portion of
the design that ensures satisfaction of the property.

(iii) Information about what could be wrong/correct in the current design, de-
pending on how uncertainty is removed. This information includes: a possible-
counterexample (5 ?-CE), indicating a behavior (which depends on uncer-
tain actions and conditions) that violates the properties of interest, and a
possible-topological proof (6 ?-TP), indicating a portion of the design that
ensures the possible satisfaction of the property of interest.

In the following we will use the notation x-topological proofs or x-TP to indi-
cate arbitrarily definitive-topological or possible-topological proofs. The results
returned by TORPEDO for the different properties in our motivating example
are presented in Table 1. Property φ2 is satisfied, φ3 is not. In those cases TOR-
PEDO returns respectively a definitive-proof and a definitive-counterexample.
Since φ1 and φ4 are possibly satisfied, in both cases a possible-counterexample
and a possible-topological proof are returned.

Running example. For φ1 the possible-counterexample shows a run that
may violate the property of interest. The possible-topological proof in Table 1
shows that if OFF remains the only initial state (TPI), reached still holds in
CLEANING , and suck does not hold in OFF and IDLE , while unknown in
MOVING (TPP), property φ1 remains possibly satisfied. In addition, all tran-
sitions must be preserved (TPT).3 Note that the proof highlights portions of the
model that influence the property satisfaction. For example, by inspecting the
proof, the designer understands that she can change the value of the proposition
reached in all the states of the PKS, with the exception of the state CLEANING ,
without making the property violated.

3 The precise formal descriptions of x-topological proofs, TPI, TPT and TPT are
presented in Section 4.

58 C. Menghi et al.

Table 1: Results provided by TOrPEDO for properties φ1, φ2, φ3 and φ4. >, ⊥
and ? indicate that the property is satisfied, violated and possibly satisfied.

φ1 ?
?-CE OFF , IDLE , (MOVING)ω.

?-TP

TPP: 〈CLEANING , reached ,>〉 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING , suck , ? 〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING , {MOVING ,CLEANING}〉, 〈CLEANING , {CLEANING , IDLE}〉

TPI: 〈{OFF}〉

φ2 > >-TP

TPP: 〈MOVING , on,>〉, 〈CLEANING , on,>〉, 〈OFF ,move, ⊥ 〉, 〈IDLE ,move,⊥〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING , {MOVING ,CLEANING}〉, 〈CLEANING , {CLEANING , IDLE}〉

TPI: 〈{OFF}〉

φ3 ⊥ ⊥-CE OFF , IDLEω

φ4 ?
?-CE OFF , (IDLE , MOVING , CLEANING , IDLE , OFF)ω

?-TP
TPP: 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING , suck , ? 〉, 〈MOVING ,move,>〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉
TPI: 〈{OFF}〉

Revisions (8) can be obtained by changing some parts of
the model: adding/removing states and transitions or by changing propositions
labelling inside states, and are defined by considering the TP (9).

Running example. The designer may want to propose a revision that still
does not violate properties φ1, φ2, and φ4. Thus, she changes the values of
some atomic propositions: move becomes > in state CLEANING and reached
becomes ⊥ in state IDLE . Since φ1, φ2, and φ4 were previously not violated,
TOrPEDO performs the re-check phase for each property.

The automated verification tool provided by TOrPEDO
checks whether all the changes in the current model revision are compliant with
the x-TPs (10), i.e., changes applied to the revised model do not include parts
that had to be preserved according to the x-topological proof. If a property of in-
terest is (possibly) satisfied in a previous model, and the revision of the model is
compliant with the property x-TP, the designer has the guarantee that the prop-
erty is (possibly) satisfied in the revision. Thus, she can perform another model
revision round (7) or approve the current design (11). Otherwise, TOrPEDO
re-executes the analysis (12).

Running example. In the vacuum-cleaner case, the revision passes the re-
check and the designer proceeds to a new revision phase.

3 Background

We present background notions by relying on standard notations for the selected
formalisms (see for example [26,9,10,30]).

Partial Kripke Structures (1) are state machines that can be adopted
when the value of some propositions is uncertain on selected states.

Definition 1 ([9],[35]). A Partial Kripke Structure (PKS) M is a tuple 〈S,R,
S0, AP, L〉, where: S is a set of states; R ⊆ S × S is a left-total transition

Integrating Model Checking and Topological Proofs 59

relation on S; S0 is a set of initial states; AP is a set of atomic propositions;
L : S×AP → {>, ?,⊥} is a function that, for each state in S, associates a truth
value to every atomic proposition in AP . A Kripke Structure (KS) M is a PKS
〈S,R, S0, AP, L〉, where L : S ×AP → {>,⊥}.

A PKS represents a system as a set of states and transitions between these states.
Uncertainty on the AP is represented through the value ?. The model in Fig. 1
is a PKS where propositions in AP are used to model actions and conditions.
LTL properties (2). For KSs we consider the classical LTL semantics [M |= φ]
over infinite words that associates to a model M and a formula φ a truth value
in the set {⊥,>}. The interested reader may refer, for example, to [3]. Let M
be a KS and φ be an LTL property. We assume that the function Check, such
that 〈res, c〉 = Check(M , φ), returns a tuple 〈res, c〉, where res is the model
checking result in {>,⊥} and c is the counterexample if res = ⊥, else an empty
set.

The three-valued LTL semantics [9] [M |= φ] associates to a model M and
a formula φ a truth value in the set {⊥, ?,>} and is defined based on the in-
formation ordering > > ? > ⊥. The three-valued LTL semantics is defined by
considering paths of the model M . A path π is an infinite sequence of states
s0, s1, . . . such that, for all i ≥ 0, (si, si+1) ∈ R. We use the symbol πi to in-
dicate the infinite sub-sequence of π that starts at position i, and Path(s) to
indicate all the paths that start in the state s.

Definition 2 ([9]). Let M = 〈S,R, S0, AP, L〉 be a PKS, π = s0, s1, . . . be a
path, and φ be an LTL formula. Then, the three-valued semantics [(M,π) |= φ]
is defined inductively as follows:

[(M,π) |= p] = L(s0, p)

[(M,π) |= ¬φ] = comp([(M,π) |= φ])

[(M,π) |= φ1 ∧φ2] = min([(M,π) |= φ1], [(M,π) |= φ2])

[(M,π) |= X φ] = [(M,π1) |= φ]

[(M,π) |= φ1 U φ2] = max
j≥0

(min({[(M,πi) |= φ1]|i < j} ∪ {[(M,πj) |= φ2]}))

Let M = 〈S,R, S0, AP, L〉 be a PKS, and φ be an LTL formula. Then [M |=
φ] = min({[(M,π) |= φ] | π ∈ Path(s) and s ∈ S0}).

The conjunction (resp. disjunction) is defined as the minimum (resp. max-
imum) of its arguments, following the order ⊥ < ? < >. These functions are
extended to sets with min(∅)=> and max(∅)=⊥. The comp operator maps >
to ⊥, ⊥ to >, and ? to ?. The semantics of the G (“globally”) and W (“weak
until”) operators is defined as usual [28].

Model Checking. Checking KSs with respect to LTL properties can be done
by using classical model checking procedures. For example, the model checking
problem of property φ on a KS M can be reduced to the satisfiability problem
of the LTL formula ΦM ∧¬φ, where ΦM represents the behaviors of model M .
If ΦM ∧¬φ is satisfiable, then [M |= φ] = ⊥, otherwise [M |= φ] = >.

60 C. Menghi et al.

Checking a PKS M with respect to an LTL property φ considering the three-
valued semantics is done by performing twice the classical model checking pro-
cedure for KSs [10], one considering an optimistic approximation Mopt and one
considering a pessimistic approximation Mpes. These two procedures consider the
LTL formula φ′ = F(φ), where F transforms φ with the following steps: (i) negate
φ; (ii) convert ¬φ in negation normal form; (iii) replace every subformula ¬α,
where α is an atomic proposition, with a new proposition α.

To create the optimistic and pessimistic approximations Mopt and Mpes,
the PKS M = 〈S,R, S0, AP, L〉 is first converted into its complement-closed
version Mc = 〈S,R, S0, APc, Lc〉 where the set of atomic propositions APc =
AP ∪AP is such that AP = {α | α ∈ AP}. Atomic propositions in AP are called
complement-closed propositions. Function Lc is such that, for all s ∈ S and α ∈
AP , Lc(s, α) = L(s, α) and, for all s ∈ S and α ∈ AP , Lc(s, p) = comp(L(s, p)).
The complement-closed PKS of the vacuum-cleaner agent in Fig. 1 presents eight
propositional assignments in the state IDLE: move = ⊥, move = >, suck = ⊥,
suck = >, on = >, on = ⊥, reached =?, and reached =?.

The two model checking runs for a PKS M = 〈S,R, S0, AP, L〉 are based
respectively on an optimistic (Mopt = 〈S,R, S0, APc, Lopt〉) and a pessimistic
(Mpes = 〈S,R, S0, APc, Lpes〉) approximation of M ’s related complement-closed
Mc = 〈S,R, S0, APc, Lc〉. Function Lpes (resp. Lopt) is such that, for all s ∈ S,
α ∈ APc, and Lc(s, α) ∈ {>,⊥}, then Lpes(s, α) = Lc(s, α) (resp. Lopt(s, α) =
Lc(s, α)), and, for all s ∈ S, α ∈ APc, and Lc(s, α) =?, then Lpes(s, α) = ⊥
(resp. Lopt(s, α) = >).

Let A be a KS and φ be an LTL formula, A |=∗ φ is true if no path that
satisfies the formula F(φ) is present in A.

Theorem 1 ([9]). Let φ be an LTL formula, let M = 〈S,R, S0, AP, L〉 be a
PKS, and let Mpes and Mopt be the pessimistic and optimistic approximations
of M ’s relative complement-closed Mc. Then

[M |= φ]
def
=


> if Mpes |=∗ φ
⊥ if Mopt 6|=∗ φ
? otherwise

(1)

We call Check∗ the function that computes the result of operator |=∗. It
takes as input either Mpes or Mopt and the property F(φ), and returns a tuple
〈res, c〉, where res is the model checking result in {>,⊥}, and c can be an empty
set (when M satisfies φ), a definitive-counterexample (3 , when M violates φ),
or a possible-counterexample (5 , when M possibly-satisfies φ).

4 Revising models

We define how models can be revised and the notion of topological proof, that is
used to describe why a property φ is (possibly) satisfied in a PKS M .

Initial design and revisions (1 , 3). In the initial design a preliminary PKS
is manually defined or automatically obtained from other modeling formalisms.

Integrating Model Checking and Topological Proofs 61

During a revision, a designer can add and remove states and transitions and/or
change the labeling of the atomic propositions in the states of the PKS. Let
M = 〈S, R, S0, AP, L〉 and M ′ = 〈S′, R′, S′0, AP ′, L′〉 be two PKSs. Then
M ′ is a revision of M if and only if AP ⊆ AP ′. Informally, the only constraint
the designer has to respect during a revision is not to remove propositions from
the set of atomic propositions. This condition is necessary to ensure that any
property that can be evaluated on M can also be evaluated on M ′, i.e., every
atomic proposition has a value in each of the states of the automaton. The
deactivation of a proposition can instead be simulated by associating its value
to ⊥ in all the states of M ′.

Topological proofs (4 , 6). The pursued proof is made of a set of clauses
specifying certain topological properties of M , which ensure that the property
is (possibly) satisfied.

Definition 3. Let M = 〈S, R, S0, AP, L〉 be a PKS. A Topological Proof clause
(TP-clause) γ for M is either:

– a Topological Proof Propositional clause (TPP-clause), i.e., a triad 〈s, α, v〉
where s ∈ S, α ∈ AP , and v ∈ {>, ?,⊥};

– a Topological Proof Transitions-from-state clause (TPT-clause), i.e., a pair
〈s, T 〉, such that s ∈ S, T ⊆ S;

– a Topological Proof Initial-states clause (TPI-clause), i.e., an element 〈S0〉.

These clauses indicate topological properties of a PKS M . Informally, TPP-
clauses constrain how states are labeled (L), TPT-clauses constrain how states
are connected (R), and TPI-clauses constrain from which states the runs on the
model begin (S0). For example, in Table 1, for property φ1, 〈CLEANING , reached ,
>〉 is a TPP-clause that constrains the atomic proposition reached to be labeled
as true (>) in the state CLEANING ; 〈OFF , {OFF , IDLE}〉 is a TPT-clause
that constrains the transition from OFF to OFF and from OFF to IDLE to
not be removed; and 〈{OFF}〉 is a TPI-clause that constrains the state OFF to
remain the initial state of the system.

A state s′ is constrained: by a TPP-clause 〈s, α, v〉 if s = s′, by a TPT-clause
〈s, T 〉 if s = s′ or s′ ∈ T , and by a TPI-clause 〈S0〉 if s′ ∈ S0.

Definition 4. Let M = 〈S,R, S0, AP, L〉 be a PKS and let Ω be a set of TP-
clauses for M . Then a PKS Ω-related to M is a PKS M ′ = 〈S′, R′, S′0, AP ′, L′〉,
such that the following conditions hold:

– AP ⊆ AP ′;
– for every TPP-clause 〈s, α, v〉 ∈ Ω, s ∈ S′, v = L′(s, α);
– for every TPT-clause 〈s, T 〉 ∈ Ω, s ∈ S′, T ⊆ S′, T = {s′ ∈ S′|(s, s′) ∈ R′};
– for every TPI-clause 〈S0〉 ∈ Ω, S0 = S′0.

Intuitively, a PKS Ω-related to M is a PKS obtained from M by changing
any topological aspect that does not impact on the set of TP-clauses Ω. Any
transition whose source state is not the source state of a transition included in

62 C. Menghi et al.

the TPT-clauses can be added or removed from the PKS and any value of a
proposition that is not constrained by a TPP-clause can be changed. States can
be always added and they can be removed if they are not constrained by any
TPT-, TPP-, or TPI-clause. Initial states cannot be changed if Ω contains a
TPI-clause.

Definition 5. Let M = 〈S,R, S0, AP, L〉 be a PKS, let φ be an LTL property,
let Ω be a set of TP-clauses, and let x be a truth value in {>, ?}. A set of TP-
clauses Ω is an x-topological proof (or x-TP) for φ in M if: (i) [M |= φ] = x;
and (ii) every PKS M ′ Ω-related to M is such that [M ′ |= φ] ≥ x.

Intuitively, an x-topological proof is a set of TP-clauses Ω such that ev-
ery PKS M ′ that satisfies the conditions specified in Definition 4 is such that
[M ′ |= φ] ≥ x. We call >-TP a definitive-topological proof and ?-TP a possible-
topological proof. In Definition 5, the operator ≥ assumes that values >, ?,⊥ are
ordered considering the classical information ordering > > ? > ⊥ among the
truth values [9].

Regarding the PKS in Fig. 1, Table 1 shows two ?-TPs for properties φ1 and
φ4, and one >-TP for property φ2.

Definition 6. Let M and M ′ be two PKSs, let φ be an LTL property, and let
Ω be an x-TP. Then M ′ is an Ωx-revision of M if M ′ is Ω-related to M .

Intuitively, since the Ωx-revision M ′ of M is such that M ′ is Ω-related to M ,
it is obtained by changing the model M while preserving the statements that
are specified in the x-TP. A revision M ′ of M is compliant with the x-TP for a
property φ in M if it is an Ωx-revision of M .

Theorem 2. Let M be a PKS, let φ be an LTL property such that [M |= φ] = >,
and let Ω be a >-TP. Then every Ω>-revision M ′ is such that [M ′ |= φ] = >.
Let M be a PKS, let φ be an LTL property such that [M |= φ] =?, and let Ω be
an ?-TP. Then every Ω?-revision M ′ is such that [M ′ |= φ] ∈ {>, ?}.

Proof Sketch. We prove the first statement of the Theorem; the proof of the
second statement is obtained by following the same steps.

If Ω is a >-TP, it is a >-TP for φ in M ′, since M ′ is an Ω>-revision of M (by
Definition 6). Furthermore, since Ω is a >-TP for φ in M ′, then [M ′ |= φ] ≥ >
(by Definition 5). ut

5 TOrPEDO automated support

This section describes the algorithms that support the analysis and re-check
phases of TOrPEDO.

To analyze a PKS M = 〈S,R, S0, AP, L〉 (1), TOrPEDO
uses the three-valued model checking framework based on Theorem 1. The model
checking result is provided as output by the analysis phase of TOrPEDO, whose
behavior is described in Algorithm 1.

Integrating Model Checking and Topological Proofs 63

1: function Analyze(M , φ)
2: 〈res, c〉 = Check∗(Mopt, φ)
3: if res == ⊥ then return 〈⊥, {c}〉
4: else
5: 〈res′, c′〉 = Check∗(Mpes, φ)
6: if res′ == > then return
7: 〈>, {Ctp KS(M,Mpes, F(φ))}〉
8: else
9: return

10: 〈?, {c′,Ctp KS(M,Mopt, F(φ))}〉
11: end if
12: end if
13: end function

Algorithm 1: The analysis algorithm.

1: function Ctp KS(M , A, ψ)
2: η(CA ∪ {ψ}) = Sys2LTL(A, ψ)
3: η(C ′A ∪ {ψ}) = GetUC(η(CA ∪ {ψ}))
4: TP = GetTP(M,η(C ′A ∪ {ψ}))
5: return TP
6: end function
Algorithm 2: Compute Topological Proofs.

The algorithm returns a tuple 〈x, y〉, where x is the verification result and y
is a set containing the counterexample, the topological proof or both of them.
The algorithm first checks whether the optimistic approximation Mopt of the
PKS M satisfies property φ (2 , Line 2). If this is not the case, the property is
violated by the PKS and the definitive-counterexample c (3 , ⊥-CE) is returned
(Line 3). Then, it checks whether the pessimistic approximation Mpes of the PKS
M satisfies property φ (Line 5). If this is the case, the property is satisfied and
the value > is returned along with the definitive-topological proof (4 , >-TP)
computed by the Ctp KS procedure applied on the pessimistic approximation
Mpes and the property F(φ) (Line 7).

If this is not the case, the property is possibly satisfied and the value ? is
returned along with the possible-counterexample c′ (5 , ?-CE) and the possible-
topological proof (6 , ?-TP) computed by the Ctp KS procedure applied to
Mopt and F(φ) (Line 10).

The procedure Ctp KS (Compute Topological Proofs) to compute x-TPs is
described in Algorithm 2. It takes as input a PKS M , its optimistic/pessimistic
approximation, i.e., denoted generically as the KS A, and an LTL formula ψ—
satisfied in A— corresponding to the transformed property F(φ) (see Section 3).
The three steps of the algorithm are described in the following.

Sys2LTL. Encoding of the KS A and the LTL formula ψ into an LTL formula
η(CA ∪ {ψ}). The KS A = 〈S,R, S0, APc, LA〉 (where LA is the optimistic or
pessimistic function, Lopt or Lpes, as defined in Section 3) and the LTL formula
ψ are used to generate an LTL formula

η(CA ∪ {ψ}) =
∧

c∈(CA∪{ψ})

c

64 C. Menghi et al.

Table 2: Rules to transform the KS in LTL formulae.

ci =
∨
s∈S0

p(s)

The KS is initially in one of its initial states.

CR = {G(¬p(s) ∨ X (
∨

(s,s′)∈R
p(s′))) | s ∈ S}

If the KS is in state s in the current instant, in the next instant it is in one of the successors s′ of s.

CL>,A = {G(¬p(s) ∨ α) | s ∈ S, α ∈ APc, LA(s, α) = >}
If the KS is in state s s.t. LA(s, α) = >, the atomic proposition α is true.

CL⊥,A = {G(¬p(s) ∨ ¬α) | s ∈ S, α ∈ APc, LA(s, α) = ⊥}.
If the KS is in state s s.t. LA(s, α) = ⊥, the atomic proposition α is false.

CREG = {G(¬p(s) ∨ ¬p(s′)) | s, s′ ∈ S and s 6= s′}
The KS is in at most one state at any time.

where CA are sets of LTL clauses obtained from the KS A.4 The set of clauses
that encodes the KS is CA = CKS ∪CREG , where CKS = {ci} ∪CR ∪CL>,A ∪
CL⊥,A and ci, CR, CL>,A and CL⊥,A are defined as specified in Table 2. Note
that the clauses in CA are defined on the set of atomic propositions APS = APc∪
{p(s)|s ∈ S}, i.e., APS includes an additional atomic proposition p(s) for each
state s, which is true when the KS is in state s. The size of the encoding depends
on the cardinality of CA i.e., in the worst case, 1 + |S|+ |S| × |APc|+ |S| × |S|.

GetUC. Computation of the Unsatisfiable Core (UC) η(C ′A∪{ψ}) of η(CA∪
{ψ}). Since the property ψ is satisfied on A, η(CA∪{ψ}) is unsatisfiable and the
computation of its UC core is performed by using the PLTLMUP approach [58].
Let C = {ϕ1, ϕ2, . . . , ϕn} be a set of LTL formulae, such that η(C) =

∧
ϕ∈C

ϕ is

unsatisfiable, then the function η(C ′) = GetUC(η(C)) returns an unsatisfiable
core η(C ′) =

∧
ϕ∈C′

ϕ of
∧
ϕ∈C

ϕ. In our case, since the property holds on the KS

A, GetUC(η(CA ∪ {ψ})) returns a subset of clauses η(C ′A ∪ {ψ}), where C ′A =
C ′KS ∪ C ′REG such that C ′KS ⊆ CKS and C ′REG ⊆ CREG .

Lemma 1. Let A be a KS and let ψ be an LTL property. Let also η(CA ∪ {ψ})
be the LTL formula computed in the step Sys2LTL of the algorithm. Then, any
unsatisfiable core η(C ′A ∪ {ψ}) of η(CA ∪ {ψ}) is such that C ′A ⊆ CA.

Proof Sketch. As the property φ is satisfied by M , the LTL formula η(CA∪{ψ}),
where ψ = F(φ) must be unsatisfiable as discussed in the Section 3. Indeed, F(φ)
simply perform some proposition renaming on the negation of the formula ψ.
As CA encodes a KS,

∧
c∈CA

c is satisfied. As such, the unsatisfiability is caused

by the contradiction of some of the clauses in CA and the property ψ, and as a
consequence ψ must be a part of the UC.

GetTP. Analysis of C ′A and extraction of the topological proof. The set C ′A,
where C ′A = C ′KS ∪ C ′REG , contains clauses regarding the KS (C ′KS and C ′REG)

4 Note that this formula is equivalent to φM ∧¬φ used in Section 3 as φM is generated
by the clauses in CA and ¬φ from ψ.

Integrating Model Checking and Topological Proofs 65

Table 3: Rules to extract the TP-clauses from the UC LTL formula.

LTL clause TP clause Type LTL clause TP clause Type

ci =
∨
s∈S0

p(s) 〈S0〉 TPI G(¬p(s) ∨ ¬α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s)∨
X (

∨
(s,s′)∈R

p(s′)))
〈s, T 〉 where
T = {s′|(s, s′) ∈ R} TPT G(¬p(s) ∨ α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ α) 〈s, α, L(s, α)〉 TPP G(¬p(s) ∨ ¬α) 〈s, α, L(s, α)〉 TPP

and the property of interest (ψ) that made the formula η(C ′A∪{ψ}) unsatisfiable.
Since we are interested in clauses related to the KS that caused unsatisfiability,
we extract the topological proof Ω, whose topological proof clauses are obtained
from the clauses in C ′KS as specified in Table 3. Since the set of atomic proposi-
tions of A is APc = AP ∪AP , in the table we use α for propositions in AP and
α for propositions in AP .

The elements in C ′REG are not considered in the TP computation as, given
an LTL clause G(¬p(s) ∨ ¬p(s′)), either state s or s′ is constrained by other
TP-clauses that will be preserved in the model revisions.

Lemma 2. Let A be a KS and let ψ be an LTL property. Let also η(CA ∪ {ψ})
be the LTL formula computed in the step Sys2LTL of the algorithm, where
CA = CREG ∪ CKS , and let η(C ′A ∪ {ψ}) be an unsatisfiable core, where C ′A =
C ′REG ∪ C ′KS . Then, if G(¬p(s) ∨ ¬p(s′)) ∈ C ′REG , either:

(i) there exists an LTL clause in C ′KS that constrains state s (or state s′); or
(ii) η(C ′′A ∪{ψ}), s.t. C ′′A = C ′A \ {G(¬p(s)∨¬p(s′))}, is an UC of η(C ′A ∪{ψ}).

Proof Sketch. We indicate G(¬p(s) ∨ ¬p(s′)) as τ(s, s′). Assume per absurdum
that conditions (i) and (ii) are violated, i.e., no LTL clause in C ′KS constrains
state s or s′ and η(C ′′A ∪ {ψ}) is not an unsatisfiable core of η(C ′A ∪ {ψ}).
Since η(C ′′A ∪ {ψ}) is not an unsatisfiable core of η(C ′A ∪ {ψ}), η(C ′′A ∪ {ψ})
is satisfiable, as C ′′A ⊂ C ′A. Since η(C ′′A ∪ {ψ}) is satisfiable, η(C ′A ∪ {ψ}) s.t.
C ′A = C ′′A ∪ {τ(s, s′)} must also be satisfiable. Indeed, it does not exist any
LTL clause that constrains state s (or state s′) and, in order to generate a
contradiction, the added LTL clause must generate it using the LTL clauses
obtained from the LTL property ψ. This is a contradiction. Thus, conditions (i)
and (ii) must be satisfied. ut

The Analyze procedure in Algorithm 1 obtains a TP (4 , 6) for a PKS by
first computing the related optimistic or pessimistic approximation (i.e., a KS)
and then exploiting the computation of the TP for such KS.

Theorem 3. Let M = 〈S,R, S0, AP, L〉 be a PKS, let φ be an LTL property,
and let x ∈ {>, ?} be an element such that [M |= φ] = x. If the procedure
Analyze, applied to the PKS M and the LTL property φ, returns a TP Ω, this
is an x-TP for φ in M .

Proof Sketch. Assume that the Analyze procedure returns the value > and
a >-TP. We show that every Ω-related PKS M ′ is such that [M ′ |= φ] ≥ x

66 C. Menghi et al.

(Definition 5). If Analyze returns the value >, it must be that Mpes |=∗ φ by
Lines 5 and 7 of Algorithm 1. Furthermore, by Line 7, ψ = F(φ) and A = Mpes .

Let N = 〈SN , RN , S0,N , APN , LN 〉 be a PKS Ω-related to M . Let η(CA ∪
{ψ}) be the LTL formula associated with A and ψ and let η(CB ∪ {ψ}) be the
LTL formula associated with B = Npes and ψ. Let us consider an UC η(C ′A∪{ψ})
of η(CA ∪{ψ}), where C ′A = C ′KS ∪C ′REG , C ′KS ⊆ CKS and C ′REG ⊆ CREG . We
show that C ′A ⊆ CB, i.e., the UC is also an UC for the LTL formula associated
with the approximation B of the PKS N .

– C ′A ⊆ CB, i.e., (C ′KS ∪ C ′REG) ⊆ CB. By Lemma 2 we can avoid considering
C ′REG . By construction (see Line 2 of Algorithm 2) any clause c ∈ C ′KS

belongs to one rule among CR, CLpes,>, CLpes,⊥ or c = ci:
• if c = ci then, by the rules in Table 3, there is a TPI-clause {S0} ∈ Ω.

By Definition 4, S0 = S′0. Thus, ci ∈ CB since N is Ω-related to M .
• if c ∈ CR then, by rules in Table 3, there is a TPT-clause 〈s, T 〉 ∈ Ω

where s ∈ S and T ⊆ R. By Definition 4, T = {s′ ∈ S′|(s, s′) ∈ R′}.
Thus, c ∈ CB since N is Ω-related to M .

• if c ∈ CLA,> or c ∈ CLA,⊥, by rules in Table 3, there is a TPP-clause
〈s, α, L(s, α)〉 ∈ Ω where s ∈ S and α ∈ AP . By Definition 4, L′(s, α) =
L(s, α). Thus, c ∈ CB since N is Ω-related to M .

Since N is Ω-related to M , it has preserved the elements of Ω. Thus η(C ′A∪{ψ})
is also an UC of CB. It follows that [N |= φ] = >.

The proof from the case in which Analyze procedure returns the value ?
and a ?-TP can be derived from the first case. ut

Let M = 〈S,R, S0, AP, L〉 be a PKS. The re-check algo-
rithm verifies whether a revision M ′ of M is an Ω-revision. Let Ω be an x-TP
(10) for φ in M , and let M ′ = 〈S′, R′, S′0, AP ′, L′〉 be a revision of M (8).
The re-check algorithm returns true if and only if the following holds:

– AP ⊆ AP ′;
– for every TPP-clause 〈s, α, v〉 ∈ Ω, s ∈ S′, v = L′(s, α);
– for every TPT-clause 〈s, T 〉 ∈ Ω, s ∈ S′, T ⊆ S′, T = {s′ ∈ S′|(s, s′) ∈ R′};
– for every TPI-clause 〈S0〉 ∈ Ω, S0 = S′0.

These conditions can be verified by a simple syntactic check on the PKS.

Lemma 3. Let M = 〈S,R, S0, AP, L〉 and M ′ = 〈S′, R′, S′0, AP ′, L′〉 be two
PKSs and let Ω be an x-TP. The re-check algorithm returns true if and only
if M ′ is Ω-related to M .

Proof Sketch. Since M ′ is Ω-related to M , the conditions of Definition 4 hold.
Each of these conditions is a condition of the re-check algorithm. Thus, if
M ′ is Ω-related to M , the re-check returns true. Conversely, if re-check
returns true, each condition of the algorithm is satisfied and, since each of these
conditions corresponds to a condition of Definition 4, M ′ is Ω-related to M . ut

This Lemma allows us to prove the following Theorem.

Integrating Model Checking and Topological Proofs 67

Table 4: Properties considered in the evaluation

φ1: G(¬OFFHOOK) ∨ (¬OFFHOOK U CONNECTED)
φ2: ¬OFFHOOK W (¬OFFHOOK ∧ CONNECTED)
φ3: G(CONNECTED → ACTIVE)
φ4: G(OFFHOOK ∧ACTIVE ∧ ¬CONNECTED → X (ACTIVE))
φ5 G(CONNECTED → X (ACTIVE))

ψ1: G(CONNECTED → ACTIVE)
ψ2: G(CONNECTED → X (ACTIVE))
ψ3: G(CONNECTED) ∨ (CONNECTED U ¬OFFHOOK)
ψ4: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK)
ψ5: G(CALLEE SEL→ OFFHOOK)

η1: G((OFFHOOK ∧ CONNECTED)→ X (OFFHOOK ∨ ¬CONNECTED))
η2: G(CONNECTED) ∨ (CONNECTED W ¬OFFHOOK)
η3: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK)
η4: G(CALLEE FREE ∨ LINE SEL)
η5: G(X (OFFHOOK) ∧ ¬CONNECTED)

Theorem 4. Let M be a PKS, let φ be a property, let Ω be an x-TP for φ in
M where x ∈ {>, ?}, and let M ′ be a revision of M . The re-check algorithm
returns true if and only if M ′ is an Ω-revision of M .

Proof Sketch. By applying Lemma 3, the re-check algorithm returns true if
and only if M ′ is Ω-related to M . By Definition 6, since Ω is an x-TP, the re-
check algorithm returns true if and only if M ′ is an Ω-revision of M . ut

The analysis and re-check algorithms assume that the three-valued LTL
semantics is considered. While the thorough LTL semantics [10] has been shown
to provide an evaluation of formulae that better reflects the natural intuition,
the two semantics coincide in the case of self-minimizing LTL formulae. In this
case, our results are correct also w.r.t. the thorough semantics. Note that, as
shown in [24], most practically useful LTL formulae are self-minimizing. Future
work will consider how to extend the analysis and re-check to completely
support the thorough LTL semantics.

6 Evaluation

We implemented TOrPEDO as a Scala stand alone application and made it
available online [62]. We evaluated how the analysis helps in creating models
revisions and how frequently running the re-check algorithm allows the user
to avoid the re-execution of the analysis algorithm from scratch.

We considered a set of example PKSs proposed in the literature to evaluate
the χChek [20] model checker and defined a set of properties (see Table 4)
inspired by the original properties and based on the LTL property patterns [18].5

support (2). We checked how the size of the proofs compares w.r.t.
the size of the original models. Intuitively, since the proofs represent constraints

5 The original properties used in the examples were specified in Computation Tree
Logic (CTL), which is currently not supported by TOrPEDO.

68 C. Menghi et al.

Table 5: Cardinalities |S|, |R|, |AP |, |?|, and |M | are those of the evaluated
model M . |Ωp|x is the size of proof Ωp for a property p; x indicates if Ωp is a
>-TP or a ?-TP.

analysis re-check

Model |S| |R| |AP | |?| |M | |Ωφ1 | |Ωφ2 | |Ωφ3 | |Ωφ4 | |Ωφ5 | φ1 φ2 φ3 φ4 φ5

callee-1 5 15 3 7 31 7? 9? 21? 23? 23? - - - - -
callee-2 5 15 3 4 31 7? 9? 21? 22> × 3 3 3 3 7

callee-3 5 15 3 2 31 7? 9? 21? 23> × 3 3 3 3 -
callee-4 5 15 3 0 31 × × 23> 21> × 7 7 3 3 -

Model |S| |R| |AP | |?| |M | |Ωψ1 | |Ωψ2 | |Ωψ3 | |Ωψ4 | |Ωψ5 | ψ1 ψ2 ψ3 ψ4 ψ5

caller-1 6 21 5 4 52 28? × 2> 9? 28? - - - - -
caller-2 7 22 5 4 58 30? × 2> 9? 30? 3 - 3 3 3

caller-3 6 19 5 1 50 26> 28> 2> 11> 26> 3 - 3 3 3

caller-4 6 21 5 0 52 28> × 2> 9> 28> 3 7 3 3 3

Model |S| |R| |AP | |?| |M | |Ωη1 | |Ωη2 | |Ωη3 | |Ωη4 | |Ωη5 | η1 η2 η3 η4 η5

caller-callee-1 6 30 6 30 61 37? 2> 15? 37? × - - - - -
caller-callee-2 7 35 6 36 78 43? 2> 18? 43? × 3 3 3 3 -
caller-callee-3 7 45 6 38 88 53? 2> 53? 53? 53? 3 3 3 3 -
caller-callee-4 6 12 4 0 42 × × × 19> × 7 7 7 3 7

that, if satisfied, ensure that the property is not violated (or possible violated),
the smaller are the proofs the more flexibility the designer has, as more elements
can be changed during the revision. The size of a PKS M = 〈S,R, S0, AP, L〉
was defined as |M | = |AP | ∗ |S|+ |R|+ |S0|. The size of a proof Ω was defined as
|Ω| =

∑
c∈Ω
|c| where: |c| = 1 if c = 〈s, α, v〉; |c| = |T | if c = 〈s, T 〉, and |c| = |S0|

if c = 〈S0〉. Table 5 summarizes the obtained results (columns under the label
analysis). We show the cardinalities |S|, |R| and |AP | of the sets of states,
transitions, and atomic propositions of each considered PKS M , the number |?|
of couples of a state s with an atomic proposition α such that L(s, α) =?, the
total size |M | of the model, and the size |Ωp|x of the proofs, where p indicates
the considered LTL property and x indicates whether p is satisfied (x = >) or
possibly satisfied (x =?). Proofs are ≈ 60% smaller than their respective initial
models. Thus, we conclude that the proofs are significantly coincise w.r.t. the
original model enabling a flexible design.

support (3). We checked how the results output by the re-check
algorithm were useful in producing PKSs revisions. To evaluate the usefulness
we assumed that, for each category of examples, the designer produced revisions
following the order specified in Table 5. The columns under the label re-check
contain the different properties that have been analyzed for each category. A
cell contains 3 if the re-check was passed by the considered revised model,
i.e., a true value was returned by the re-check algorithm, 7 otherwise. The
dash symbol - is used when the model of the corresponding line is not a revi-
sion (i.e., the first model of each category) or when the observed property was
false in the previous model, i.e., an x-TP was not produced. We inspected the
results produced by the re-check algorithm to evaluate their benefit in verify-
ing if revisions were violating the proofs. Table 5 shows that, in ≈ 32% of the

Integrating Model Checking and Topological Proofs 69

cases, the TOrPEDO re-check notified the designer that the proposed revi-
sion violated some of the clauses contained in the Ω-proof, while in ≈ 78% the
re-check allowed designers to avoid re-runnning the analysis (and thus the
model checker).

Scalability. The analysis phase of TOrPEDO combines three-valued model
checking and UCs computation, therefore its scalability improves as the perfor-
mance of frameworks enhances. Three-valued model checking is as expensive as
classical model checking [9], i.e., it is linear in the size of the model and expo-
nential in the size of the property. UCs computation is FPSPACE complete [55].
In our cases running TOrPEDO required on average 8.1s and for the callee ex-
amples, 8.2s for the caller examples, and 7.15s for the caller-callee examples.6

However, while model checking is currently supported by very efficient tech-
niques, UCs computation of LTL formulae is still far from being applicable in
complex scenarios. For example, we manually designed an additional PKS with
10 states and 5 atomic propositions and 26 transitions and defined a property
satisfied by the PKS and with a >-TP proof that requires every state of the
PKS to be constrained by a TPP-clause. We run TOrPEDO and measure the
time required to compute this proof. Computing the proof required 1m33s. This
results show that TOrPEDO has a limited scalability due to the low efficiency
of the procedure that extracts the unsatisfiable core. For an analysis of the scal-
ability of the extraction of the unsatisfiable core the interested reader can refer
to [58]. We believe that reporting the current lack of FM techniques to support
the proposed framework (that, as just discussed, is effective in our preliminary
evaluation), is a further contribution of this paper.

7 Related work

Partial knowledge has been considered in requirement analysis and elic-
itation [46,45,38,13], in novel robotic planners [40,41,43], software mod-
els [66,65,22,1], and testing [15,63,67]. Several researchers analyzed the model
checking problem for partially specified systems [44,12], considering both three-
valued [37,25,9,10,28] and multi-valued [30,11] semantics. Other works apply
model checking to incremental program development [33,6]. However, all these
model checking approaches do not provide an explanation on why a property is
satisfied, by means of a certificate or proof. Although several works have tackled
this problem [4,60,50,49,29,16], differently from this work, they mostly aim to
automate proof reproducibility.

Tao and Li [61] propose a theoretical solution to model repair: the problem
of finding the minimum set of states in a KS which makes a formula satisfi-
able. However, the problem is different from the one addressed in this paper.
Furthermore, the framework is only theoretical and based on complete systems.

Approaches were proposed in the literature to provide explanations by using
different artifacts. For example, some works proposed using witnesses. A witness

6 Processor: 2,7 GHz Quad-Core Intel Core i7, Memory: 16 GB 2133 MHz LPDDR3.

70 C. Menghi et al.

is a path of the model that satisfies a formula of interest [7,34,48]. Other works
(e.g., [31,59]) studied how to enrich counterexamples with additional informa-
tion in a way that allows better understanding the property violation. Work has
also been done to generate abstractions of the counterexamples that are easier
to understand (e.g., [21]). Alur et al. [2] analyzed the problem of synthesizing a
controller that satisfies a given specification. When the specification is not real-
izable, a counter-strategy is returned as a witness. Pencolé et al. [51] analyzed
model consistency, i.e., the problem of checking whether the system run-time be-
haviour is consistent with a formal specification. Bernasconi et al. [4] proposed an
approach that combines model checking and deductive proofs in a multi-valued
context. The notion of topological proof proposed in this work is substantially
different from the notion of deductive proof.

Some works (e.g., [52,54]) considered how to understand why a property is
unsatisfiable. This problem is different from the one considered in this paper.

Approaches that detect unsatisfiable cores of propositional formulae were pro-
posed in the literature [47,39,17,32,57]. Understanding whether these approaches
can be re-used to develop more efficient techniques to detect the unsatisfiable
cores of LTL formulae is definitely an interesting future work direction, which
deserves to be considered in a separate work since it is far from trivial.

8 Conclusions

We have proposed TOrPEDO, an integrated framework that supports the itera-
tive creation of model revisions. The framework provides a guide for the designer
who wishes to preserve slices of her model that contribute to satisfy fundamental
requirements while other parts of the model are modified. For these purposes,
the notion of topological proof has been formally and algorithmically described.
This corresponds to a set of constraints that, if kept when changing the proposed
model, ensure that the behavior of the model w.r.t. the property of interest is pre-
served. Our Lemmas and Theorems prove the soundness of our framework, i.e.,
how it preserves correctness in the case of PKS and LTL. The proposed frame-
work can be used as baseline for other FM frameworks, and can be extended by
considering other modeling formalisms that can be mapped onto PKSs.

TOrPEDO was evaluated by showing the effectiveness of the analysis and
re-check algorithms included in the framework. Results showed that proofs are
smaller than the original models, and can be verified in most of the cases using
a simple syntactic check, paving the way for an extensive evaluation on real case
scenarios. However, the scalability of existing tools, upon which TOrPEDO is
based, is not sufficient to efficiently support the proposed framework when bigger
models are considered.

Acknowledgments. This work has received funding from the European Re-
search Council under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No 694277).

Integrating Model Checking and Topological Proofs 71

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-approximations to
over-approximations and back. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2012.

2. R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement of GR(1)
temporal logic specifications. In Formal Methods in Computer-Aided Design, pages
26–33, Oct 2013.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

4. A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and C. Ghezzi. From model
checking to a temporal proof for partial models. In International Conference on
Software Engineering and Formal Methods. Springer, 2017.

5. A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and C. Ghezzi. From model
checking to a temporal proof for partial models: preliminary example. arXiv
preprint arXiv:1706.02701, 2017.

6. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, 2007.

7. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Design Automation Conference.
ACM, 1999.

8. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh.
A manifesto for model merging. In International workshop on Global integrated
model management. ACM, 2006.

9. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tem-
poral logics. In International Conference on Computer Aided Verification. Springer,
1999.

10. G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In International Conference on Concurrency Theory. Springer, 2000.

11. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In Interna-
tional Colloquium on Automata, Languages and Programming. Springer, 2004.

12. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-valued symbolic
model-checking. Transactions on Software Engineering and Methodology, 12(4):1–
38, 2004.

13. M. Chechik, R. Salay, T. Viger, S. Kokaly, and M. Rahimi. Software assurance
in an uncertain world. In R. Hähnle and W. van der Aalst, editors, Fundamental
Approaches to Software Engineering, pages 3–21, Cham, 2019. Springer.

14. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In International Conference on Computer Aided Verification. Springer,
2002.

15. P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic. Compositional specifications
for ioco testing. In International Conference on Software Testing, Verification and
Validation, pages 373–382. IEEE, 2014.

16. C. Deng and K. S. Namjoshi. Witnessing network transformations. In International
Conference on Runtime Verification. Springer, 2017.

17. N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal unsat-
isfiable core extraction. In International Conference on Theory and Applications
of Satisfiability Testing, pages 36–41. Springer, 2006.

72 C. Menghi et al.

18. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In International Conference on Software engineering.
ACM, 1999.

19. S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over
inconsistent viewpoints. In International conference on software engineering. IEEE,
2001.

20. S. Easterbrook, M. Chechik, B. Devereux, A. Gurfinkel, A. Lai, V. Petrovykh,
A. Tafliovich, and C. Thompson-Walsh. χChek: A model checker for multi-valued
reasoning. In International Conference on Software Engineering, pages 804–805,
2003.

21. N. Een, A. Mishchenko, and N. Amla. A single-instance incremental SAT formu-
lation of proof- and counterexample-based abstraction. In Conference on Formal
Methods in Computer-Aided Design, FMCAD, pages 181–188. FMCAD Inc, 2010.

22. M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and
reasoning with uncertainty. In International Conference on Software Engineering.
IEEE, 2012.

23. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ltsa-ws: a tool for model-based
verification of web service compositions and choreography. In International con-
ference on Software engineering. ACM, 2006.

24. P. Godefroid and M. Huth. Model checking vs. generalized model checking: Se-
mantic minimizations for temporal logics. In Logic in Computer Science. IEEE,
2005.

25. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking us-
ing modal transition systems. In International Conference on Concurrency Theory.
Springer, 2001.

26. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
International Workshop on Verification, Model Checking, and Abstract Interpreta-
tion. Springer, 2003.

27. P. Godefroid and N. Piterman. LTL generalized model checking revisited. In
Verification, Model Checking, and Abstract Interpretation, pages 89–104. Springer,
2009.

28. P. Godefroid and N. Piterman. LTL generalized model checking revisited. Inter-
national journal on software tools for technology transfer, 13(6):571–584, 2011.

29. A. Griggio, M. Roveri, and S. Tonetta. Certifying proofs for LTL model checking.
In Formal Methods in Computer Aided Design (FMCAD), pages 1–9. IEEE, 2018.

30. A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model
checking. In International Conference on Concurrency Theory. Springer, 2003.

31. A. Gurfinkel and M. Chechik. Proof-like counter-examples. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 160–175. Springer, 2003.

32. O. Guthmann, O. Strichman, and A. Trostanetski. Minimal unsatisfiable core
extraction for SMT. In Formal Methods in Computer-Aided Design (FMCAD),
pages 57–64. IEEE, 2016.

33. T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido. Extreme model
checking. In Verification: Theory and Practice, Essays Dedicated to Zohar Manna
on the Occasion of His 64th Birthday. Springer, 2003.

34. H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2002.

35. S. A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

Integrating Model Checking and Topological Proofs 73

36. O. Kupferman and M. Y. Vardi. From complementation to certification. Theoretical
computer science, 345(1):83–100, 2005.

37. K. G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer
Science. IEEE, 1988.

38. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transition
systems from goal-oriented requirements models. Automated Software Engineering,
2008.

39. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

40. C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova. Multi-robot LTL planning
under uncertainty. In Formal Methods. Springer, 2018.

41. C. Menghi, S. Garćıa, P. Pelliccione, and J. Tumova. Towards multi-robot ap-
plications planning under uncertainty. In International Conference on Software
Engineering: Companion Proceeedings. ACM, 2018.

42. C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi. Supporting verification-
driven incremental distributed design of components. In Fundamental Approaches
to Software Engineering. Springer, 2018.

43. C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi. A verification-driven frame-
work for iterative design of controllers. Formal Aspects of Computing, Jun 2019.

44. C. Menghi, P. Spoletini, and C. Ghezzi. Dealing with incompleteness in automata-
based model checking. In Formal Methods. Springer, 2016.

45. C. Menghi, P. Spoletini, and C. Ghezzi. COVER: Change-based Goal Verifier and
Reasoner. In International Conference on Requirements Engineering: Foundation
for Software Quality: Companion Proceeedings. Springer, 2017.

46. C. Menghi, P. Spoletini, and C. Ghezzi. Integrating goal model analysis with iter-
ative design. In International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2017.

47. A. Nadel. Boosting minimal unsatisfiable core extraction. In Conference on Formal
Methods in Computer-Aided Design, pages 221–229. FMCAD Inc, 2010.

48. K. S. Namjoshi. Certifying model checkers. In Computer Aided Verification.
Springer, 2001.

49. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. In Foundations
of Software Technology and Theoretical Computer Science. Springer, 2001.

50. D. Peled and L. Zuck. From model checking to a temporal proof. In International
SPIN Workshop on Model Checking of Software. Springer, 2001.

51. Y. Pencolé, G. Steinbauer, C. Mühlbacher, and L. Travé-Massuyès. Diagnosing
discrete event systems using nominal models only. In DX, pages 169–183, 2017.

52. I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator
level. In Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

53. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Computer Aided Verification. Springer, 1995.

54. V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. P. Marcus, and H. Kress-Gazit.
Sorry Dave, I’m Afraid I Can’t Do That: Explaining Unachievable Robot Tasks
Using Natural Language. In Robotics: Science and Systems, volume 2, pages 2–1,
2013.

55. L. Säıs, M. Hacid, and F. Hantry. On the complexity of computing minimal un-
satisfiable LTL formulas. Electronic Colloquium on Computational Complexity
(ECCC), 19:69, 2012.

74 C. Menghi et al.

56. V. Schuppan. Enhancing unsatisfiable cores for LTL with information on temporal
relevance. Theoretical Computer Science, 655(Part B):155 – 192, 2016. Quantita-
tive Aspects of Programming Languages and Systems (2013-14).

57. V. Schuppan. Enhanced unsatisfiable cores for QBF: Weakening universal to exis-
tential quantifiers. In International Conference on Tools with Artificial Intelligence
(ICTAI), pages 81–89. IEEE, 2018.

58. T. Sergeant, S. R. Goré, and J. Thomson. Finding minimal unsatisfiable subsets
in linear temporal logic using BDDs, 2013.

59. S. Shoham and O. Grumberg. A game-based framework for ctl counterexamples
and 3-valued abstraction-refinement. In International Conference on Computer
Aided Verification, pages 275–287. Springer, 2003.

60. L. Tan and R. Cleaveland. Evidence-based model checking. In International Con-
ference on Computer Aided Verification, pages 455–470. Springer, 2002.

61. X. Tao and G. Li. The complexity of linear-time temporal logic model repair.
In International Workshop on Structured Object-Oriented Formal Language and
Method, pages 69–87. Springer, 2017.

62. Torpedo. http://github.com/alessandrorizzi/torpedo, 2020.
63. J. Tretmans. Testing concurrent systems: A formal approach. In International

Conference on Concurrency Theory, pages 46–65. Springer, 1999.
64. S. Uchitel. Partial behaviour modelling: Foundations for incremental and iterative

model-based software engineering. In M. V. M. Oliveira and J. Woodcock, editors,
Formal Methods: Foundations and Applications. Springer, 2009.

65. S. Uchitel, D. Alrajeh, S. Ben-David, V. Braberman, M. Chechik, G. De Caso,
N. D’Ippolito, D. Fischbein, D. Garbervetsky, J. Kramer, et al. Supporting in-
cremental behaviour model elaboration. Computer Science-Research and Develop-
ment, 28(4):279–293, 2013.

66. S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behavior models from
properties and scenarios. Transactions on Software Engineering, 35(3):384–406,
2009.

67. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In Formal Approaches to Software Testing, pages 86–100. Springer, 2004.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://github.com/alessandrorizzi/torpedo
http://creativecommons.org/licenses/by/4.0/

	Integrating Topological Proofs with ModelChecking to Instrument Iterative Design
	1 Introduction
	2 TOrPEDO
	3 Background
	4 Revising models
	5 TOrPEDO automated support
	6 Evaluation
	7 Related work
	8 Conclusions
	Acknowledgments
	References

