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Abstract. Streaming APIs allow for big data processing of native data
structures by providing MapReduce-like operations over these structures.
However, unlike traditional big data systems, these data structures typi-
cally reside in shared memory accessed by multiple cores. Although popu-
lar, this emerging hybrid paradigm opens the door to possibly detrimental
behavior, such as thread contention and bugs related to non-execution
and non-determinism. This study explores the use and misuse of a popular
streaming API, namely, Java 8 Streams. The focus is on how developers
decide whether or not to run these operations sequentially or in parallel
and bugs both specific and tangential to this paradigm. Our study in-
volved analyzing 34 Java projects and 5.53 million lines of code, along
with 719 manually examined code patches. Various automated, including
interprocedural static analysis, and manual methodologies were employed.
The results indicate that streams are pervasive, parallelization is not
widely used, and performance is a crosscutting concern that accounted
for the majority of fixes. We also present coincidences that both confirm
and contradict the results of related studies. The study advances our
understanding of streams, as well as benefits practitioners, programming
language and API designers, tool developers, and educators alike.

Keywords: empirical studies · functional programming · Java 8 · streams
· multi-paradigm programming · static analysis.

1 Introduction

Streaming APIs are widely-available in today’s mainstream Object-Oriented
programming (MOOP) languages and platforms [5], including Scala [14], Java-
Script [44], C# [33], F# [47], Java [39], and Android [27]. These APIs allow for
“big data”-style processing of native data structures by incorporating MapReduce-
like [10] operations. A “sum of even squares” example in Java, where a stream of
numbers is derived from a list, filtered for evens, mapped to its squared, and
summed [5] is: list.stream().filter(x -> x % 2 == 0).map(x -> x * x).sum().
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Traditional big data systems, for which MapReduce is a popular backbone [3],
minimize the complexity of writing massively distributed programs by facilitating
processing on multiple nodes using succinct functional-like constructs. This makes
writing parallel code easier, as writing such code can be difficult due to possible
data races, thread interference, and contention [1,4,28]. The code above, e.g., can
execute in parallel simply by replacing stream() with parallelStream().

However, unlike traditional big data systems, data structures processed by
streaming APIs like Java 8 Streams typically reside in shared memory accessed
by multiple cores. Therefore, issues may arise from the close intimacy between
shared memory and the operations being performed, especially for developers not
previously familiar with functional programming. Streams are not just an API
but rather an emerging, hybrid paradigm. To obtain the expressiveness, speed,
and parallelism that streams have to offer, developers must adopt the paradigm
as well as the API [6, Ch. 7]. This requires determining whether running stream
code in parallel yields an efficient yet interference-free program [24] and ensuring
that no operations on different threads interleave [42].

Despite the benefits [53, Ch. 1], misusing streams may result in detrimental
behavior, and the ∼4K questions related to streams on Stack Overflow [48], of
which ∼5% remain unanswered, suggest that there is ample confusion surrounding
the topic. Bugs related to thread contention (due to λ-expressions, i.e., units of
computation, side-effects, buffering), non-execution (due to deferred execution),
non-determinism (due to non-deterministic operations), operation sequencing
(ordering of stream operations), and data ordering (ordering of stream data) can
lead to programs that undermine concurrency, underperform, are incorrect, and
are inefficient. Worse yet, these problems may increase over time as streams rise
in popularity, with Mazinanian et al. [32] finding a two-fold increasing trend in
the adoption of λ-expressions, an essential part of streams.

This study explores the use and misuse of a popular and representative
streaming API, namely, Java 8 Streams. We set out to understand the usage and
bug patterns involving streams in real software. Particularly, we are interested
in discovering (i) how developers decide whether to run streams sequentially or
in parallel, (ii) common stream operations, (iii) common stream attributes and
whether they are amenable to safe and efficient parallelization, (iv) bugs both
specific and tangential to streams, (v) how often incorrect stream APIs were
used, and (vi) how often stream APIs were misused and in which ways?

Knowing the kinds of bugs typically associated with streams can, e.g., help
improve (automated) bug detection. Being aware of the typical usage patterns
of streams can, e.g., improve code completion in IDEs. In general, the results
(i) advance our understanding of this emerging hybrid paradigm, (ii) provide
feedback to language and API designers for future API versions, (iii) help tool
designers comprehend the struggles developers have with streams, (iv) propose
preliminary best practices and anti-patterns for practitioners to use streaming
APIs effectively, (v) and assist educators in teaching streaming APIs.

We analyzed 34 Java projects and 5.53 million lines of source code (SLOC),
along with 140,446 code patches (git commits), of which 719 were manually
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Listing 1 Snippet of Widget collection processing using Java 8 streams [24,39].

1 Collection<Widget> unorderedWidgets = new HashSet<>(); // populate ...
2 Collection<Widget> orderedWidgets = new ArrayList<>(); // populate ...
3 List<Widget> sortedWidgets = unorderedWidgets.stream()
4 .sorted(Comparator.comparing(Widget::getWeight)).collect(Collectors.toList());
5 // collect weights over 43.2 into a set in parallel.
6 Set<Double> heavyWidgetWeightSet = orderedWidgets.parallelStream().map(Widget::getWeight)
7 .filter(w -> w > 43.2).collect(Collectors.toSet());
8 // sequentially collect into a list, skipping first 1000.
9 List<Widget> skippedWidgetList = orderedWidgets.stream().skip(1000)

10 .collect(Collectors.toList());

examined. The methodologies varied depending on the research questions and
encompassed both automated, including interprocedural static analysis, and
manual processes aided by automated software repository mining. Our study
indicates that (i) streams have become widely used since their inception in 2014,
(ii) developers tend to reduce streams back to iterative-style collections, favor
simplistic, linear reductions, and prefer deterministic operations, (iii) stream
parallelization is not widely used, yet streams tend not to have side-effects,
(iv) performance is the largest category of stream bugs and is crosscutting.

This work makes the following contributions:
Stream usages patterns A large-scale analysis of stream and collector method

calls and an interprocedural static analysis on 1.65 million lines source code
is performed, reporting on attributes essential to efficient parallel execution.

Stream bug hierarchical taxonomy From the 719 git patches from 22 projects
manually examined using 140 identifying keywords, we build a rich hierarchi-
cal, crosscutting taxonomy of common stream bugs and fixes.

Best practices and anti-patterns We propose preliminary best practices and
anti-patterns of using streams in particular contexts from our statistical results
as well as an in-depth analysis of first-hand conversations with developers.

2 Motivating Example and Conceptual Background

Lst. 1 portrays code that uses the Java 8 Stream API to process collections
of Widgets (class not shown) with colors and weights. A Collection of Widgets
is declared (line 1) that does not maintain element ordering as HashSet does not
support it [38]. Note that ordering is dependent on the run time type.

A stream (a view representing element sequences supporting MapReduce-style
operations) of unorderedWidgets is created on line 3. It is sequential, i.e., its
operations will execute serially. Streams may also have an encounter order that
may depend on its source. Here, it is unordered since HashSets are unordered.

On line 4, the stream is sorted by the corresponding intermediate oper-
ation, the result of which is a stream with the encounter order rearranged.
Widget::getWeight is a method reference denoting the comparison scheme. In-
termediate operations are deferred until a terminal operation is executed like
collect() (line 4). The collect() operation is a (mutable) reduction that aggre-
gates results of prior intermediate operations into a given Collector. In this case,
it is one that yields a List. The result is a Widget List sorted by weight.
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To potentially improve performance, this stream’s “pipeline” (sequence of
operations) may be executed in parallel. Note, however, that had the stream
been ordered, running the pipeline in parallel may result in worse performance
due to the multiple passes or data buffering required by stateful intermediate
operations (SIOs) like sorted(). Because the stream is unordered, the reduction
can be done more efficiently as the run time can use divide-and-conquer [39].

In contrast, line 2 instantiates an ArrayList, which maintains element ordering.
Furthermore, a parallel stream is derived from this collection (line 6), with each
Widget mapped to its weight, each weighted filtered (line 7), and the results
collected into a Set. Unlike the previous example, however, no optimizations are
available here as an SIO is not included in the pipeline and, as such, the parallel
computation does not incur possible performance degradation.

Lines 9–10 create a list of Widgets gathered by (sequentially) skipping the first
thousand from orderedWidgets. Like sorted(), skip() is also an SIO. Unlike the
previous example, executing this pipeline in parallel could be counterproductive
because the stream is ordered. It may be possible to unorder the stream (via
unordered()) so that its pipeline would be more amenable to parallelization. In
this situation, however, unordering could alter semantics as the data is assembled
into a structure maintaining ordering. As such, the stream correctly executes
sequentially as element ordering must be preserved.

This simplified example demonstrates that using streams effectively is not
always straight-forward and can require complex (and interprocedural due to
aliasing) analysis. It necessitates a thorough understanding of API intricacies, a
problem that can be compounded in more extensive programs. As streaming APIs
become more pervasive, it would be extremely valuable to MOOP developers not
familiar with functional programming if statistical insight can be given on how
best to use streams efficiently and how to avoid common bugs.

3 Study Subjects

At the core of our study is 34 open source Java projects that use streams. They
vary widely in their domain and application, as well as size and popularity.
All the subjects have their sources publicly available on GitHub and include
popular libraries, frameworks, and applications. Many subjects were selected from
previous studies [20,21,22,24], others because they contained relatively diverse
stream operations and exhibited non-trivial metrics, including stars, forks, and
number of collaborators. It was necessary to use different subjects for different
parts of the study due to the computationally intensive nature of some of the
experiments. For such experiments, subjects were chosen so that the analysis
could be completed in a reasonable time period with reasonable resources.

4 Stream Characteristics

We explore the typical usage patterns of streams, including the frequency of
parallel vs. sequential streams and amenability to safe and efficient parallelism,
by examining stream characteristics. This has important implications for under-
standing the use of this incredibly expressive and powerful language feature. It
also offers insight into developers’ perceived risks concerning parallel streams.
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Table 1. Stream characteristics.

subject KLOC age eps k str seq para ord unord se SIO

bootique 4.91 4.18 362 4 14 14 0 11 3 4 0
cryptomator 7.99 6.05 148 3 12 12 0 11 1 2 0
dari 64.86 5.43 3 2 18 18 0 15 3 0 0
elasticsearch 585.71 10.03 78 6 210 210 0 165 45 10 0
htm.java 41.14 4.53 21 4 190 188 2 189 1 22 5
JabRef 138.83 16.36 3,064 2 301 290 11 239 62 9 0
JacpFX 23.79 4.71 195 4 12 12 0 9 3 1 0

jdp* 19.96 5.53 25 4 38 38 0 35 3 11 1

jdk8-exp* 3.43 6.35 34 4 49 49 0 47 2 5 0
jetty 354.48 10.93 106 4 57 57 0 47 10 8 0
JetUML 20.95 5.09 660 2 7 7 0 4 3 0 0
jOOQ 154.01 8.58 43 4 23 23 0 22 1 2 0
koral 7.13 3.47 51 3 8 8 0 8 0 0 0
monads 1.01 0.01 47 2 3 3 0 3 0 0 0
retrolambda 5.14 6.52 1 4 11 11 0 8 3 0 0

spring* 188.46 11.62 5,981 4 61 61 0 60 1 21 0
streamql 4.01 0.01 92 2 22 22 0 22 0 2 18

threeten* 27.53 7.01 36 2 2 2 0 2 0 0 0

Total 1,653.35 116.40 11,047 6 1,038 1,025 13 897 141 97 24

* jdp is java-design-patterns, jdk8-exp is jdk8-experiments, spring is a
portion of spring-framework, and threeten is threeten-extra.

4.1 Methodology

For this part of the study, we examined 18 projects that use streams,5 spanning
∼1.65 million lines of Java source code. The subjects are depicted in tab. 1.
Column KLOC corresponds to thousands of source lines of code, which ranges
from ∼1K for monads to ∼586K for elasticsearch. Column age is the age of the
subject project in years, averaging 6.47 years per subject. Column str is the
total number of streams analyzed. The remaining columns are discussed in § 4.2.

Stream Pipeline Tracking Several factors contribute to determining stream
attributes. First, streams are typically derived from a source (e.g., a collection)
and take on its characteristics (e.g., ordering), as seen in lst. 1. There are
several ways to create streams, including being derived from Collections, being
created from arrays (e.g., Arrays.stream()), and via static factory methods (e.g.,
IntStream.range()). Second, stream attributes can change by the invocation of
various intermediate operations in the building of the stream pipeline. Such
attributes must be tracked, as it is possible to have arbitrary assignments of
stream references to variables, as well as be data-dependent.

Our study involved tracking streams and their attributes (i.e., state) using
a series of labeled transition systems (LTSs). The LTSs are fed into the static
analysis portion of a refactoring tool [23] based on typestate analysis [16,49].
Stream pipelines are tracked and stream state when a terminal operation is issued
is determined by the tool. Typestate analysis is a program analysis that augments
the type system with “state” information and has been traditionally used for
prevention of program errors such as those related to resource usage. It works
by assigning each variable an initial (⊥) state. Then, method calls transition
the object’s state. States are represented by a lattice and possible transitions

5 Recall from § 3 that it was necessary to use different subjects for different parts of
the study due to the computationally intensive nature of some of the experiments.

https://github.com/iluwatar/java-design-patterns
https://github.com/edalorzo/jdk8-experiments
https://github.com/spring-projects/spring-framework
https://github.com/ThreeTen/threeten-extra
https://github.com/RutledgePaulV/monads
https://github.com/elastic/elasticsearch
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are represented by LTSs. If each method call sequence on the receiver does not
eventually transition the object back to the ⊥ state, the object may be left in a
nonsensical state, indicating the potential presence of a bug.

The LTSs for execution mode and ordering work as follows. The state ⊥ is
a phantom initial state immediately before stream creation. Different stream
creation methods may transition the newly created stream to one that is either
sequential or parallel or ordered or unordered. The transition continues for each
invoked intermediate operation and ends with a terminal operation.

Since the analysis is focused on client-side analysis of stream APIs, the call
graph is constructed using a k-CFA, where k is the call string length. It is an
analysis parameter, with k = 2 being the default, as it is the minimum k needed
to consider client-code, for methods returning streams and k = 1 elsewhere. The
refactoring tool includes heuristics for determining sufficient and tractable k.

Counting Streams Since stream attributes are control flow sensitive, the
streams studied must be in the control flow of entry points. For non-library
subjects, all main methods were chosen, otherwise, all unit tests were chosen.

Streams are counted as follows. First, every syntactic stream is counted, i.e.,
every allocation site. Streams in the control flow of the program starting from an
entry point transition according to the LTSs. If a stream is not in the control
flow, it is still counted but it remains at the state following ⊥. This way, more
information about various stream attributes is available for the study as we do
not need control flow to determine the state following ⊥.

Side-effects and Stateful Intermediate Operations Stream side-effects
are determined using a ModRef analysis on stream operation parameters (λ-
expressions) using WALA [52]. SIOs are obtained from the documentation [39].

4.2 Results

Tab. 1 illustrates our findings on stream characteristics. Column eps is the
number of entry points. Column k is the maximum k value used (see § 4.1).
Columns seq and para correspond to the number of sequential and parallel
streams, respectively. Column ord is the number of streams that are ordered,
i.e., those whose operations must maintain an encounter order, which can be
detrimental to efficient parallel performance, while column unord is the number
unordered streams. Column se is the number of stream pipelines that include side-
effects, which may induce race conditions. Finally, column SIO is the number
of pipelines that include stateful intermediate operations, which may also be
detrimental to efficient parallel performance.

4.3 Discussion

Parallel streams are not popular (1.25%) despite their ease-of-use. Although Niele-
bock et al. [36] did not consider λ-expressions in stream contexts, this confirms
that their findings extend into stream contexts. It may also coincide with the
finding of Lu et al. [28], i.e., that developers tend to “think” sequentially.

Finding 1 : Stream parallelization is not widely used.

When considering using parallel streams, it may also be important to consider
the context. For example, many server applications deal with thread pools that
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span the JVM, and developers may be leery of the interactions of such pools
with the underlying stream parallelization run time system. We found this to be
the case with several pull requests [15,45] that were issued by Khatchadourian
et al. [24] as part of their refactoring evaluation to introduce parallel streams into
existing projects. It may also be the case that the locations where streams operate
are already fast enough or do not process significant amounts of data [7,30]. In
fact, Naftalin [35, Ch. 6] found that there is a particular threshold in data size
that must be reached to compensate for overhead incurred by parallel stream
processing. Lastly, developers pointed us to several blog articles [54,59] expressing
that parallel streams could be problematic under certain conditions.

There were, however, two projects that use parallel streams. Particularly,
JabRef used the most parallel streams at 11. We conjecture that JabRef’s use
of parallel streams may stem from its status as a desktop application. Such
applications typically are not managed by application containers and thus may
not utilize global thread pools as in more traditional server applications.

Many streams are ordered (86.42%), which can prevent optimal performance
of parallel streams under certain conditions [24,35,40]. Thus, even if streams were
run in parallel, they may not reap all of the benefits. This extends the findings
of Nielebock et al. [36] that λ-expressions do not appear in contexts amenable to
parallelization to streams for the case of ordering. Streams may still be amenable
to parallelization, as § 5.2 shows that many streams are traversed using API that
ignores ordering (e.g., forEach() vs. forEachOrdered()).

Finding 2 : Streams are largely ordered, possibly hindering parallelism.

That only ∼10% of streams have side-effects and only 2.31% have SIOs
contradict the findings of Nielebock et al. [36] in the context of streams. This
suggests that streams may run efficiently in parallel as, although they are largely
ordered, they include minimal side-effects and SIOs. streamql had the most
streams with SIOs (18/22), which may be due to its querying features using
aggregate operations that are manifested as SIOs in the Java 8 Streaming API
(e.g., distinct()).

Finding 3 : Streams tend not to have side-effects.

5 Stream Usage

We discover the common operations on streams and the underlying reasons by
examining stream method calls. This has important implications in understanding
how streams are used, and studying language feature usage has been shown to
be beneficial [11,43]. It provides valuable insight to programming language API
designers and tool-support engineers on where to focus their evaluation efforts.
We may also comprehend contexts where developers struggle with using streams.

5.1 Methodology

We examined 34 projects that use streams, spanning ∼5.53 million lines of source
code. To find method calls, we parsed ASTs with source-symbol bindings using
the Eclipse Java Developer Tools (JDT) [12]. Then, method invocation nodes
were extracted whose compile-time targets are declared in types residing in the
java.util.stream package. This includes types such as Streams and Collectors.

https://github.com/JabRef/jabref
https://github.com/JabRef/jabref
https://github.com/deephacks/streamql
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While stream creation is interesting and a topic for future work, our focus is
on operations on streams as our scope is stream usage. We also combined methods
with similar functionalities, e.g., mapToLong() with map() but not forEach() and
forEachOrdered(). Additionally, only the method name is presented, resulting in
a comparison of methods from both streams and collectors. The type is clear from
the method name (e.g., map() is for Streams, while groupingBy() is for Collectors).
We then proceeded to count the number of method calls in each project.

5.2 Results

Fig. 1 depicts the result of our analysis.6 A full table is available in our dataset [25].
The horizontal axis lists the method name, and the legend depicts projects
analyzed. The chart is sorted by the total number of calls in descending order.
Calls per project range from 4 for threeten-extra to 4,635 for cyclops. Calls per
method range from 2 for characteristics(), which returns stream attributes
such as whether it is ordered or parallel, and 3,161 for toList().

5.3 Discussion

The number of method calls in fig. 1 is substantial. There are 14,536 calls to
methods operating on streams in 34 projects. This is impressive considering that
Android, which uses the Java syntax, did not adopt streams immediately.

It is not surprising that the four most used stream methods are toList(),
collect(), map(), and filter(), as these are the core MapReduce data transforma-
tion operations. collect() is a specialized reduction that reduces to a non-scalar
type (e.g., a map) as opposed to the traditional scalar type. The toList() method
is a static method of Collectors, which are pre-made reductions, in this case, to
an ArrayList. This informs the collect() operation of the non-scalar type to use.
It is peculiar that there are more calls to toList() than collect(). This is due
to cyclops. We conjecture that it has some unorthodox usages of Collectors as it
is a platform for writing functional-style programs in Java ≥ 8 [2].

That collect() and toList(), along with other terminal operations such
as forEach(), iterator(), toSet(), and toArray(), appear towards the top to
the list suggest that, although developers are writing functional-style code to
process data in a “big data” processing style, they are not staying there. Instead,
they are “bridging” back to imperative-style code, either by collecting data into
imperative-style collections or processing the data further iteratively.

There can be various reasons for this, such as unfamiliarity with functional
programming, the need to introduce side-effects, or the need to interoperate with
legacy code. Further investigation is necessary, yet, Nielebock et al. [36] mention
that developers tend to introduce side-effects into λ-expressions, which is related.

Finding 4 : Although stream usage is high, developers tend to reduce
streams back to iterative-style collections.

We infer that developers tend to favor more simplistic (linear) rather than more
specialized (higher-dimensionality) non-scalar reductions. It is surprising that
more of the advanced reductions, such as those that return maps (e.g., toMap(),

6 Similar conclusions hold when normalizing with subject KLOC.

https://github.com/ThreeTen/threeten-extra
https://github.com/aol/cyclops
https://github.com/aol/cyclops
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groupingBy()) are not used more frequently as these are highly expressive opera-
tions that can save substantial amounts of imperative-style code. For example, one
may group Widgets by their Color as Map<Color, List<Widget>> widgetsByColor =

widgets.stream().collect(Collectors.groupingBy(Widget::getColor)). Although
these advanced reductions are powerful and expressive, developers may be leery
of using them, perhaps due to unfamiliarity or risk adversement. This motivates
future tools that refactor to uses of advanced reductions to save developers time
and effort while possibly mitigating errors.

Finding 5 : Developers favor simplistic, linear reductions.

Another powerful stream feature is its non-determinism. For instance, findAny()
returns any stream element. However, this operation has only 62 calls, while its
deterministic counterpart, findFirst(), has 270, suggesting that developers tend
to favor determinism. Yet, in contrast, developers overwhelmingly favor the non-
deterministic forEach() operation (552) over the deterministic forEachOrdered()

(32). We conjecture that although forEach() does not guarantee a particular
ordering [41], in practice, since developers are inclined to use sequential over
parallel streams, as suggested by § 4 and mirrored by Nielebock et al. [36] in
terms of λ-expressions, the difference does not play out.

It could also be that traversal order is largely unimportant for many streams.
This is curious because, as demonstrated in § 4, the majority of streams are
ordered, an attribute detrimental to efficient parallelism [24,35,40]. As such, there
may exist opportunities to alleviate the burden of stream ordering maintenance
to make parallel streams more efficient. It may also entice developers to use more
parallel streams as the performance gains may be significant.

Finding 6 : Developers prefer deterministic operations.

Lastly, there is a minimal amount of calls to parallel stream APIs. Of particular
concern is that there are only 4 calls to groupingByConcurrent() in contrast to
the 87 calls to groupingBy(). This suggests that either advanced reductions to
maps are not being used on parallel streams or that they are not used safely
as the concurrent version provides synchronization [37]. Furthermore, not using
groupingByConcurrent() on a parallel stream may produce inefficient results [40].

6 Stream Misuses

This section is focused on discovering stream bug patterns. We are interested
in bugs both specific and tangential to streams, i.e., bugs that occur in stream
contexts. Understanding this can, e.g., help improve (automated) bug detection
and other tool-support for writing optimal stream code. We may also begin to
understand the kinds of errors developers make with streams, which may positively
influence how future API and language feature versions are implemented.

6.1 Methodology

Here, we explore 22 projects that use streams, comprising ∼4.68 million lines
of source code and 140,446 git commits.7 Tab. 2 summarizes the subjects used.

7 Recall from § 3 that it was necessary to use different subjects for different parts of
the study due to the computationally intensive nature of some of the experiments.
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Table 2. Studied subjects.

subject KLOC studied periods cmts kws exe

binnavi 328.28 2015-08-19 to 2019-07-17 286 4 4
blueocean-plugin 49.70 2016-01-23 to 2019-07-24 4,043 118 25
bootique 15.47 2015-12-10 to 2019-08-08 1,106 5 5
che 189.24 2016-02-11 to 2019-08-19 8,093 75 75
cryptomator 9.83 2014-02-01 to 2019-08-08 1,443 50 10
dari 72.46 2012-09-26 to 2018-03-02 2,466 18 6
eclipse.jdt.core 1,527.89 2001-06-05 to 2019-08-07 24,085 234 106
eclipse.jdt.ui 712.91 2001-05-02 to 2019-08-09 28,136 149 32
error-prone 165.85 2011-09-14 to 2019-08-15 3,893 71 71
guava 393.47 2009-06-18 to 2019-08-15 5,031 36 36
htm.java 41.63 2014-08-09 to 2019-02-19 1,507 40 1
JacpFX 24.06 2013-08-12 to 2018-04-27 365 37 14
jdk8-experiments 3.47 2013-08-03 to 2018-03-10 8 1 1
java-design-patterns 33.52 2014-08-09 to 2019-07-31 2,192 37 12
jetty 400.26 2009-03-16 to 2019-08-02 17,051 835 219
jOOQ 184.25 2011-07-24 to 2019-07-31 7,508 94 4
qbit 52.27 2014-08-25 to 2018-01-18 1,717 65 9
retrolambda 5.10 2013-07-20 to 2018-11-30 522 17 4
selenium 234.12 2004-11-03 to 2019-08-09 24,145 114 57
streamql 4.26 2014-04-27 to 2014-04-29 27 2 2
threeten-extra 31.26 2012-11-17 to 2019-07-14 559 28 2
WALA 203.84 2006-11-22 to 2019-07-24 6,263 52 24

Total 4,683.12 140,446 2,082 719

To find changesets (patches) corresponding to stream fixes, we compiled 140
keywords from the API documentation [39] that match stream operations and
related method names from the java.util.stream package. We then randomly
selected a subset of these commits whose changesets included these keywords
and were likely to be bug fixes to manually examine.

Commit Mining To discover commits that had changesets including stream
API keywords, we used gitcproc [9], a tool for processing and classifying git
commits, which has been used in previous work [17,50]. Due to the keyword-based
search used, not all of the examined commits pertained to streams (e.g., “map”
has a broad range of applications outside of streams). To mitigate this, we focused
more on keywords that were specific to stream contexts, e.g., “Collector.” Also
to reduce false positives, we only considered commits after the Java 8 release
date of March 18, 2014, which is when streams were introduced.

Finding Bug Fixes We used a feature of gitcproc that uses heuristics based
on commit log messages to identify commits that are bug fixes. Natural language
processing (NLP) is used to determine which commits fall in this category. This
helps us to focus on the likely bug-fix commits for further manual examination.

Next, the authors manually examine these commits to determine if the com-
mits were indeed related to stream-related bugs. Three of the authors are software
engineering and programming language professors with extensive expertise in
streaming and parallel systems, concurrent systems, and empirical software engi-
neering. The authors also have several years of industrial experience working as
software engineers. As the authors did not always have expertise in the subject
domains, only changes where a bug fix was extremely likely were marked as
such. The authors also used commit comments and referenced bug databases to
ascertain whether a change was a bug fix. This is a common practice [8,26,28].
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Table 3. Stream bug/patch category legend.

name description acronym

Bounds Incorrect/Missing Bounds Check BC
Exceptions Incorrect/Missing Exception Handling EH
Other Other change (e.g., syntax, refactoring) Other
Perf Poor Performance PP
Concur Concurrency Issue CI
Stream Source Incorrect/Missing Stream Source SS
Intermediate Operations Incorrect/Missing Intermediate Operations IO
Data Ordering Incorrect Data Ordering DO
Operation Sequencing Incorrect Operation Sequencing OS
Filter Operations Incorrect/Missing Filter Operations FO
Map Operations Incorrect/Missing Map Operations MO
Terminal Operations Incorrect/Missing Terminal Operations TO
Reduction Operations Incorrect Reduction Operations RO
Collector Operations Incorrect/Missing Collector Operations CO
Incorrect Action Incorrect Action (e.g., λ-expression) IA

Classifying Bug Fixes Once bug fixes were identified, the authors studied the
code changes to determine the category of bug fixes and whether the category
relates to streams. Fortunately, we found that many commits reference bug
reports or provide more details about the fix. Such information proved highly
valuable in understanding the fixes. When in doubt, we also sent emails to
developers for clarification purposes as git commits include email addresses.

6.2 Results

Quantitative Column kws of tab. 2 is the number of commits where occurrences
of keywords were found and correspond to possible stream bug fixes. Column exe
depicts the number of commits manually examined. From these 719 commits, we
found 61 stream client code bug fixes. This is depicted in column total of tab. 4.
Finding these bugs and understanding their relevance required a significant
amount of manual labor that may not be feasible in more larger-scale, automated
studies. Nevertheless, as streams become more popular (they were only introduced
in 2014), we expect the usage and number of bugs related to streams to grow.

From the manual changes, we devised a set of common problem categories.
Fixes were then grouped into these categories as shown in fig. 2 and tab. 4. A
category legend appears in tab. 3, where column name is the “short” name of
the bug category and is used in fig. 2. Column description is the categories
extended name and column acronym is used in tab. 4.

Fig. 2 presents a hierarchical categorization of the 61 stream-related bug fixes.
Bugs are represented by their category name (column name in tab. 3) and their
bug counts. Categories with no count are abstract, i.e., those grouping categories.

Bugs are separated into two top-level categories, namely, bugs specifically
related to stream API usage (stream-specific) and those tangentially related,
i.e., bugs appearing in stream contexts but not specifically having to do with
streams (generic). Generic bugs were further categorized into related to exception
handling (EH), bounds checking (BC), poor performance (PP), and “other.”
Generic exception handling bugs (6) include those where, e.g., λ-expressions
passed to stream operations threw exceptions that were not handled properly.
Generic bounds checking bugs (2) included those where λ-expressions missed
traversal boundary checks, and generic performance bugs (2) were those involving,
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Fig. 2. Studied stream bugs and patches (hierarchical).

e.g., local variables holding stream computation results. The “other” category (3)
is aligned with a similar one used by Tian and Ray [50] and involved syntactic
corrections, e.g., incorrect types, and refactorings. Generally, “other” bugs can
either be stream-specific or generic.

Stream-specific bugs are further divided into several categories corresponding
to whether they involved intermediate operations (IO), terminal operations
(TO), the stream source (SS), concurrency (CI), and performance and exception
handling bugs specific to streams. IO-specific bugs (2) are related to intermediate
operations other than filter operations (FO, 7) and map operations (MO, 6), e.g.,
distinct(). IO bugs are additionally partitioned into those involving incorrect
operation sequencing (OS, 2), e.g., map() before filter(), data ordering (DO, 2),
e.g., operating on a stream that should have been sorted, and performance bugs
appearing in intermediate operations other than map() and filter() (1).

Terminal operations are split into two categories, namely, reduction oper-
ations (RO), e.g., collect(), reduce(), and side-effect producing operations,
e.g., forEach(), iterator(). RO-specific bugs (3) were those related to scalar
reductions, e.g., anyMatch(), allMatch(). RO-specific bugs related to collector
operations (CO, 3), on the other hand, involve non-scalar reductions, e.g., a
collector malfunction. RO-specific data ordering bugs (DO, 2) correspond to
ordering of data related to scalar reductions, e.g., using findAny() instead of
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Table 4. Studied stream bugs and patches (nonhierarchical).

subject BC CI CO DO EH FO IA IO MO OS PP RO SS Other Total

binnavi 1 1
blueocean-plugin 1 1
bootique 1 1
che 1 1 1 1 4
cryptomator 1 2 1 2 6
dari 2 2
eclipse.jdt.core 1 1
eclipse.jdt.ui 1 1
error-prone 2 1 1 3 1 1 2 1 12
guava 1 1
JacpFX 1 1 2 4
jdp 1 1
jetty 1 2 1 3 7
jOOQ 1 1
selenium 2 1 2 5 1 2 2 1 1 17
threeten-extra 1 1

Total 2 1 3 4 7 7 2 2 6 2 9 3 3 10 61

findFirst(). RO-specific incorrect actions (IA, 1) is where there is a problematic
λ in a scalar reduction, e.g., an incorrect predicate in noneMatch(). Side-effect
producing operation bugs also include incorrect actions (IA, 1), e.g., a problematic
λ in forEach(). Such operations can also exhibit poor performance (PO, 1).

Some bug categories are crosscutting, appearing under multiple categories.
An example is performance. For this reason, tab. 4 portrays a nonhierarchical
view of fig. 2, which is also broken down by subject, including a column for each
bug category regardless of its parent category (acronyms correspond to tab. 3).

Finding 7 : Bugs, e.g., performance, crosscut concerns, affecting multiple
categories, both specifically and tangentially, associated with streams.

Performance issues dominate the functional (excluding “other”) bugs depicted
in tab. 4, making up the categories “Performance/API misuse” and “Performance,”
accounting for 14.75% (9/61) of the bugs found. While some of these fixes were
more cleaning-based (e.g., superfluous operations), others affected central parts
of the system and were found during performance regression testing [56].

Finding 8 : Although streams feature performance improving parallelism,
developers tend to struggle with using streams efficiently.

Despite widespread performance issues, concurrency issues (CI), on the other
hand, were not prevalent (1.64%). The one concurrency bug was where a stream
operation involved non-atomic variable access, which resulted in improper ini-
tialization [34]. Given that such a variable is accessed in a stream operation,
however, it does indicate a possible side-effect and a need to consider refactoring
such accesses to remove side-effects. This would make streams more amenable to
efficient parallelization and perhaps promote more usage of parallel streams.

Finding 9 : Concurrency issues were the least common streams bugs. How-
ever, concurrent variable access can cause thread contention, motivating
future refactoring approaches that may promote more parallel streams.

The subjects selenium and error-prone had the most stream bugs with 27.87%
and 19.67%, respectively. We hypothesize that this is due to the relatively large
size of these projects, as well as their high usage of streams. Specifically, they fell
into the top ten in terms of KLOC and stream method calls in tab. 2 and fig. 1,

https://github.com/SeleniumHQ/selenium
https://github.com/google/error-prone
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respectively, with ∼400 combined KLOC and 1,414 combined calls. Naturally,
projects that use streams more are likely to have more bugs involving streams.

Qualitative We highlight several of the most common bug categories with
examples, summarize common fixes, and propose preliminary best practices (BP)
and anti-patterns (AP). Due to space limitations, only a single example of each
BP/AP is shown; a complete set is available in our dataset [25]. Although some
APs may seem applicable beyond streams, e.g., avoiding superfluous operations,
we conjecture that streams are more prone to such patterns, e.g., due to the ease
in which operations can be chained and the deferred execution they offer.

SS→PP Performance issues dominated the number of stream bugs found and also
crosscut multiple categories. Consider the following performance regression [56]:

Project: jetty
Commit ID: 70311fe98787ffb8a74ad296c9dd2ba9ac431c9c

Log: Issue #3681

1 - List<HttpField> cookies = preserveCookies ? _fields.stream().filter(f ->
2 - f.getHeader() == HttpHeader.SET_COOKIE).collect(Collectors.toList()) : null;
3 + List<HttpField> cookies = preserveCookies?_fields.getFields(HttpHeader.SET_COOKIE):null;

The stream field is replaced with getFields(), which performs an iterative traver-
sal, effectively replacing streams with iteration. The developer found that using
iteration was faster than using streams [57] and wanted more “JIT-friendly” code.
The developer further admitted that using streams can make code more easy to
read but can also be associated with “allocation/complexity cost [55].”

BP1 : Use performance regression testing to verify that streams in critical
code paths perform efficiently.

In the following, a pair of superfluous operations are removed:

Project: JacpFX
Commit ID: 4f0d62d3a0987e47a4cbdf8e056bdf89713e6aac

Log: fixed class scanning

1 final Stream<String> componentIds = CommonUtil
2 .getStringStreamFromArray(annotation.perspectives());
3 final Stream<Injectable> perspectiveHandlerList =
4 - componentIds.parallel().sequential().map(this::mapToInjectable);
5 + componentIds.map(this::mapToInjectable);

getStringStreaFromArray() returns a sequential stream, which is then converted
to parallel and then to sequential. The superfluous operations are then removed.

AP1 : Avoid superfluous intermediate operations.

Fix: Generally, fixes for performance problems varied widely. They ranged
from replacing stream code with iterative code, as seen above, to removing
operations, to changing the stream source representations. Depending on context,
the bugs’ effect can be either innocuous and cause server performance degradation.

SS→TO→RO→CO The stream API provides several ready-made Collectors
for convenience. However, the API does not guarantee a specific non-scalar used
during the reduction. On one hand, this is convenient as developers may not need
a specific collection type; on the other hand, however, developers must be careful
to ensure that the specific subclass returned by the API meets their needs.

In the following, the developer does not realize, until an incorrect program
output, that the Map returned by Collectors.toMap() does not support nulls:

https://github.com/eclipse/jetty.project
http://github.com/eclipse/jetty.project/commit/70311fe98787ffb8a74ad296c9dd2ba9ac431c9c
https://github.com/JacpFX/JacpFX
http://github.com/JacpFX/JacpFX/commit/4f0d62d3a0987e47a4cbdf8e056bdf89713e6aac
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Project: selenium
Commit ID: 91eb004d230d8d78ec97180e66bcc7055b16130f

Log: Fix wrapping of maps with null values. Fixes #3380

1 if (result instanceof Map) {
2 - return ((Map<String, Object>) result).entrySet().stream().collect(Collectors.toMap(
3 - e -> e.getKey(), e -> wrapResult(e.getValue())));
4 + return ((Map<String, Object>) result).entrySet().stream().collect(HashMap::new,
5 + (m, e) -> m.put(e.getKey(), e.getValue()), Map::putAll);

The ready-made collector (line 2) is replaced with a direct call to collect() with
a particular Map implementation specified (line 4), i.e., HashMap.

BP2 : Use collectors only if client code is agnostic to particular container
implementations. Otherwise, use the direct form of collect().

Fix: Collector-related bugs are typically corrected by not using a Collector

(as above), changing the Collector used, or altering the Collector arguments.
They often adversely affect program behavior but are also caught by unit tests.

SS→IO In the ensuing commit, distinct() is called on a concatenated stream
to ensure that no duplicates are created as a result of the concatenation:

Project: selenium
Commit ID: eb7d9bf9cea19b8bc1759c4de1eb495829489cbe

Log: Fix tests failing because of ProtocolHandshake

1 - return Stream.concat(fromOss, fromW3c);
2 + return Stream.concat(fromOss, fromW3c).distinct();

BP3 : Ensure concatenated streams have distinct elements.
Fix : SS→IO bugs tend to be fixed by adding additional operations.

SS→IO→Other Developers “bridged” back to an imperative-style performed an
operation, then switched back to streams to continue a more functional-style:

Project: jetty
Commit ID: 91e9e7b76a08b776be21560d7ba20f9bfd943f04

Log: Issue #984 Improve module listing

1 - List<String> ordered = _modules.stream()
2 - .map(m->{return m.getName();}).collect(Collectors.toList());
3 - Collections.sort(ordered);
4 - ordered.stream().map(n->{return get(n);}).forEach(module->
5 + _modules.stream().filter(m->...).sorted().forEach(module->

Each module is mapped to its name and collected into a list. Then, ordered

is sorted via a non-stream Collections API. Another stream is then derived
from ordered to perform further operations. However, on line 5, the bridge to
a collection and subsequent sort operation is removed, and the computation
remains within the stream API. It is now more amenable to parallelization.

AP2 : Avoid “bridging” between stream API and legacy collection APIs.

Using a long λ-expression in a single map() operation may make stream code
less “functional,” more difficult to read [29], and less amenable to parallelism.
Consider the abbreviated commit below that returns the occupied drive letters
on Windows systems by collecting the first uppercase character of the path:

Project: cryptomator
Commit ID: b691e374eb2dad0284e13927e7c3fc1fdccae9bf

Log: fixes #74

1 - return rootDirs.stream().map(path -> path.toString().toUpperCase()
2 - .charAt(0)).collect(toSet());
3 + return rootDirs.stream().map(Path::toString).map(CharUtils::toChar)
4 + .map(Character::toUpperCase).collect(toSet());

The λ-expression has been replaced with method references, however, there
are more subtle yet import changes. Firstly, as CharUtils.toChar() returns the

https://github.com/SeleniumHQ/selenium
http://github.com/seleniumhq/selenium/commit/91eb004d230d8d78ec97180e66bcc7055b16130f
https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium/commit/eb7d9bf9cea19b8bc1759c4de1eb495829489cbe
https://github.com/eclipse/jetty.project
https://github.com/eclipse/jetty.project/commit/91e9e7b76a08b776be21560d7ba20f9bfd943f04
https://github.com/cryptomator/cryptomator
http://github.com/cryptomator/cryptomator/commit/b691e374eb2dad0284e13927e7c3fc1fdccae9bf
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first character of a String, there is a small performance improvement as the
entire string is no longer turned to uppercase but rather only the first character.
Also, the new version is written in more of a functional-style by replacing the
single λ-expression passed to map() with multiple map() operations. How data is
transformed in the pipeline is easily visible, and future data transformations can
be easily integrated by simply adding operations.

AP3 : Avoid too many operations within a single map() operation.

Fix : “Other” non-type correcting fixes, e.g., refactorings, included introduc-
ing streams, sometimes from formerly iterative code (3), replacing map() with
mapToInt() [20], and dividing “larger” operations into smaller ones.

7 Threats to Validity

Subjects may not be representative. To mitigate this, subjects were chosen
from diverse domains and sizes. They have also been used in previous studies
(e.g., [20,22]). Although java-design-patterns is artificial, it is a reference im-
plementation similar to that of JHotDraw, which has been studied extensively
(e.g., [31]). Also, as streams are relatively new, we expect a larger selection of
subjects as they grow in popularity.

Entry points may not be correct, which could affect how stream attributes are
calculated. Since standard entry points were chosen, these represent a superset
of practically true entry points. Furthermore, there may be custom streams or
collectors outside the standard API that we are not considered. As we aim to
understand stream usage and misuse in the large, we hypothesize that the vast
majority of projects using streams use ones from the standard libraries.

Our study involved many hours of manual validation, which can be subject
to bias. However, we investigated referenced bug reports and other comments
from developers to help us understand changes more fully. We also reached out to
several developers via email correspondence when in doubt. All but one returned
the correspondence. The NLP features of gitcproc may have missed changesets
that were indeed bug fixes. Nevertheless, we were still able to find 61 bugs
that contributed to a rich bug categorization, best practices, and anti-patterns.
Furthermore, gitcproc has been used previously in other studies.

8 Related Work

Previous studies [29,32,36,46,51] have focused specifically on λ-expressions. While
λ-expressions are used as arguments to stream operations, our focus is on stream
operations themselves. Such operations transition streams to different states,
which can be detrimental to parallel performance [24,35]. Also, since streams
can be aliased, we use a tool [24] based on typestate analysis to obtain stream
attributes more reliably than AST-based approaches. We also study bugs related
to stream usage and present developer feedback—fixing bugs related to streams
may not involve changing λ-expressions; bugs can be caused by, e.g., an incorrect
sequence of stream operations. Lastly, although Nielebock et al. [36] consider
λ-expressions in “concurrency contexts,” such contexts do not include streams,
where λ-expressions can easily execute in parallel with minimal syntactical effort.

https://github.com/iluwatar/java-design-patterns


114 R. Khatchadourian et al.

Khatchadourian et al. [24] report on some stream characteristics as part of
their refactoring evaluation but do so on a much smaller-scale, as their focus
was on the refactoring algorithm. The work presented here goes significantly
above in beyond by reporting on a richer set of stream characteristics (e.g.,
execution mode, ordering), with a noteworthy larger and updated corpus. We
also include a comprehensive categorization of stream-related bug fixes, with 719
commits manually analyzed. Preliminary best practices and anti-patterns are
also proposed.

Zhou et al. [60] conduct an empirical study on 210 service quality issues of a
big data platform at Microsoft to understand their common symptoms, causes,
and mitigations. They identify hardware faults, systems, and customer side effects
as major causes of quality issues. There are also empirical studies on data-parallel
programs. Kavulya et al. [19] study failures in MapReduce programs. Jin et al.
[18] study performance slowdowns caused by system side inefficiencies. Xiao
et al. [58] conduct a study on commutativity, nondeterminism, and correctness
of data-parallel programs, revealing that non-commutative reductions lead to
bugs. Though related, our work specifically focuses on stream APIs as a language
feature and programming paradigm, which pose special considerations due to its
shared memory model, i.e., interactions between the operations and local memory.
Bloch [6, Ch. 7] also puts-forth stream best practices and anti-patterns. However,
ours are based on a statistical analysis of real-world software and first-hand
interactions with real-world developers.

Others also study language features. Parnin et al. [43] study the adoption of
Java generics. Dyer et al. [11] build an expansive infrastructure for studying the
use of language features over time. Khatchadourian and Masuhara [22] employ a
proactive approach in empirically assessing new language features and present
a case study on default methods. There are also many studies regarding bug
analysis. For example, Engler et al. [13] present a general approach to inferring
errors in systems code, and Tian and Ray [50] study error handling bugs in C.

9 Conclusion & Future Work

This study advances our understanding of stream usage and bug patterns. We
have surveyed common stream operations, attributes, and bugs specific and
tangentially related to streams. A hierarchical taxonomy of stream bugs was
devised, preliminary best practices and anti-patterns were proposed, and first-
hand developer interactions were detailed. In the future, we will explore stream
creation, use our findings to devise automated error checkers, and explore topics
that interest stream developers. Lastly, we will investigate applicability to other
streaming frameworks and languages.
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