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Abstract. Branching bisimilarity is a behavioural equivalence relation
on labelled transition systems (LTSs) that takes internal actions into
account. It has the traditional advantage that algorithms for branch-
ing bisimilarity are more efficient than ones for other weak behavioural
equivalences, especially weak bisimilarity. With m the number of tran-
sitions and n the number of states, the classic O(mn) algorithm was
recently replaced by an O(m(log |Act | + log n)) algorithm [9], which is
unfortunately rather complex. This paper combines its ideas with the
ideas from Valmari [20], resulting in a simpler O(m log n) algorithm.
Benchmarks show that in practice this algorithm is also faster and of-
ten far more memory efficient than its predecessors, making it the best
option for branching bisimulation minimisation and preprocessing for
calculating other weak equivalences on LTSs.

Keywords: Branching bisimilarity · Algorithm · Labelled transition
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1 Introduction

Branching bisimilarity [8] is an alternative to weak bisimilarity [17]. Both equiva-
lences allow the reduction of labelled transition systems (LTSs) containing tran-
sitions labelled with internal actions, also known as silent, hidden or τ -actions.

One of the distinct advantages of branching bisimilarity is that, from the
outset, an efficient algorithm has been available [10], which can be used to cal-
culate whether two states are equivalent and to calculate a quotient LTS. It has
complexity O(mn) with m the number of transitions and n the number of states.
It is more efficient than classic algorithms for weak bisimilarity, which use tran-
sitive closure (for instance, [16] runs in O

(
n2m log n+mn2.376

)
, where n2.376 is

the time for computing the transitive closure), and algorithms for weak simula-
tion equivalence (strong simulation equivalence can be computed in O(mn) [12],
and for weak simulation equivalence first the transitive closure needs to be com-
puted). The algorithm is also far more efficient than algorithms for trace-based
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equivalence notions, such as (weak) trace equivalence or weak failure equiva-
lence [16].

Branching bisimilarity also enjoys the nice mathematical property that there
exists a canonical quotient with a minimal number of states and transitions
(contrary to, for instance, trace-based equivalences). Additionally, as branching
bisimilarity is coarser than virtually any other behavioural equivalence taking
internal actions into account [7], it is ideal for preprocessing. In order to calcu-
late a desired equivalence, one can first reduce the behaviour modulo branching
bisimilarity, before applying a dedicated algorithm on the often substantially
reduced transition system. In the mCRL2 toolset [5] this is common practice.

In [9,11] an algorithm to calculate stuttering equivalence on Kripke struc-
tures with complexity O(m log n) was proposed. Stuttering equivalence essen-
tially differs from branching bisimilarity in the fact that transitions do not have
labels and as such all transitions can be viewed as internal. In these papers it
was shown that branching bisimilarity can be calculated by translating LTSs to
Kripke structures, encoding the labels of transitions into labelled states follow-
ing [6,19]. This led to an O(m(log |Act |+ log n)) or O(m logm) algorithm for
branching bisimilarity.

Besides the time complexity, the algorithm in [9,11] has two disadvantages.
First, the translation to Kripke structures introduces a new state and a new
transition per action label and target state of a transition, which increases the
memory required to calculate branching bisimilarity. This made it far less mem-
ory efficient than the classical algorithm of [10], and this was perceived as a
substantial practical hindrance. For instance, when reducing systems consisting
of tens of millions of states, such as [2], memory consumption is the bottleneck.
Second, the algorithm in [9,11] is very complex. To illustrate the complexity,
implementing it took approximately half a person-year.

Contributions. We present an algorithm for branching bisimilarity that runs
directly on LTSs in O(m log n) time and that is simpler than the algorithm
of [9,11]. To achieve this we use an idea from Valmari and Lehtinen [20,21]
for strong bisimilarity. The standard Paige–Tarjan algorithm [18], which has
O(m log n) time complexity for strong bisimilarity on Kripke structures, registers
work done in a separate partition of states. Valmari [20] observed that this leads
to complexity O(m logm) on LTSs and proposed to use a partition of transitions,
whose elements he (and we) calls bunches, to register work done. This reduces
the time complexity on LTSs to O(m log n).

Using this idea we design our more straightforward algorithm for branching
bisimilarity on LTSs. Essentially, this makes the maintenance of action labels
particularly straightforward and allows to simplify the handling of new, so-called,
bottom states [10]. It also leads to a novel main invariant, which we formulate as
Invariant 1. It allows us to prove the correctness of the algorithm in a far more
straightforward way than before.

We have proven the correctness and complexity of the algorithm in detail [14]
and demonstrate that it outperforms all preceding algorithms both in time and
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space when the LTSs are sizeable. This is illustrated with more than 30 example
LTSs. This shows that the new algorithm pushes the state-of-the-art in com-
paring and minimising the behaviour of LTSs w.r.t. weak equivalences, either
directly (branching bisimilarity) or using the form of a preprocessing step (for
other weak equivalences).

Despite the fact that this new algorithm is more straightforward than the
previous O(m(log |Act |+ log n)) algorithm [9], the implementation of the algo-
rithm is still not easy. To guard against implementation errors, we extensively
applied random testing, comparing the output with that of other algorithms. The
algorithms and their source code are freely available in the mCRL2 toolset [5].

Overview of the article. In Section 2 we provide the definition of LTSs and
branching bisimilarity. In Section 3 we provide the core algorithm with high-level
data structures, correctness and complexity. The subsequent section presents the
procedure for splitting blocks, which can be presented as an independent pair
of coroutines. Section 5 presents some benchmarks. Proofs and implementation
details are omitted in this paper, and can be found in [14].

2 Branching bisimilarity

In this section we define labelled transition systems and branching bisimilarity.

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a triple A = (S,Act ,−→) where
1. S is a finite set of states. The number of states is denoted by n.
2. Act is a finite set of actions including the internal action τ .
3. −→ ⊆ S × Act × S is a transition relation. The number of transitions is

necessarily finite and denoted by m.

It is common to write t
a−→ t′ for (t, a, t′) ∈ −→. With slight abuse of notation we

write t
a−→ t′ ∈ T instead of (t, a, t′) ∈ T for T ⊆ −→. We also write t

a−→ Z for the
set of transitions {t a−→ t′ | t′ ∈ Z}, and Z

a−→ Z ′ for the set {t a−→ t′ | t ∈ Z, t′ ∈
Z ′}. We call all actions except τ the visible actions. If t

a−→ t′, we say that from
t, the state t′, the action a, and the transition t

a−→ t′ are reachable.

Definition 2 (Branching bisimilarity). Let A = (S,Act ,−→) be an LTS. We
call a relation R ⊆ S × S a branching bisimulation relation iff it is symmetric
and for all s, t ∈ S such that s R t and all transitions s

a−→ s′ we have:
1. a = τ and s′ R t, or
2. there is a sequence t

τ−→ · · · τ−→ t′
a−→ t′′ such that s R t′ and s′ R t′′.

Two states s and t are branching bisimilar, denoted by s ↔b t, iff there is a
branching bisimulation relation R such that s R t.

Note that branching bisimilarity is an equivalence relation. Given an equivalence
relation R, a transition s

a−→ t is called inert iff a = τ and s R t. If t
τ−→ t1

τ−→
· · · τ−→ tn−1

τ−→ tn
a−→ t′ such that t R ti for 1 ≤ i ≤ n, we say that the state tn,

the action a, and the transition tn
a−→ t′ are inertly reachable from t.
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The equivalence classes of branching bisimilarity partition the set of states.

Definition 3 (Partition). For a set X a partition Π of X is a disjoint cover
of X, i.e., Π = {Bi ⊆ X | Bi 6= ∅, 1 ≤ i ≤ k} such that Bi ∩ Bj = ∅ for all
1 ≤ i < j ≤ k and X =

⋃
1≤i≤k Bi.

A partition Π ′ is a refinement of Π iff for every B′ ∈ Π ′ there is some
B ∈ Π such that B′ ⊆ B.

We will often use that a partition Π induces an equivalence relation in the
following way: s ≡Π t iff there is some B ∈ Π containing both s and t.

3 The algorithm

In this section we present the core algorithm. In the next section we deal with
the actual splitting of blocks in the partition. We start off with an abstract
description of this core part.

3.1 High-level description of the algorithm

The algorithm is a partition refinement algorithm. It iteratively refines two par-
titions Πs and Πt. Partition Πs is a partition of states in S that is coarser
than branching bisimilarity. We refer to the elements of Πs as blocks, typically
denoted using B. Partition Πt partitions the non-inert transitions of −→, where
inertness is interpreted with respect to ≡Πs . We refer to the elements of Πt as
bunches, typically denoted using T .

The partition of transitions Πt records the current knowledge about transi-
tions. Transitions are in different bunches iff the algorithm has established that
they cannot simulate each other (i.e., they cannot serve as s

a−→ s′ and t′
a−→ t′′

in Definition 2).
The partition of states Πs records the current knowledge about branching

bisimilarity. Two states are in different blocks iff the algorithm has found a proof
that they are not branching bisimilar (this is formalised in Invariant 3). This
implies that Πs must be such that states with outgoing transitions in different
combinations of bunches are in different blocks (Invariant 1).

Before performing partition refinement, the LTS is preprocessed to contract
τ -strongly connected components (SCCs) into a single state without a τ -loop.
This step is valid as all states in a τ -SCC are branching bisimilar. Conse-
quently, every block has bottom states, i.e., states without outgoing inert τ -
transitions [10].

The core invariant of the algorithm says that if one state in a block can
inertly reach a transition in a bunch, all states in that block can inertly reach a
transition in this bunch. This can be formulated in terms of bottom states:

Invariant 1 (Bunches). Πs is stable under Πt, i.e., if a bunch T ∈ Πt contains
a transition with its source state in a block B ∈ Πs, then every bottom state in
block B has a transition in bunch T .
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The initial partitions Πs andΠt are the coarsest partitions that satisfy Invari-
ant 1. Πt starts with a single bunch consisting of all non-inert transitions. Then,
in Πs we need to separate states with some transition in this bunch from those
without. We define Bvis to be the set of states from which a visible transition is
inertly reachable, and Binvis to be the other states. Then Πs = {Bvis, Binvis}\{∅}.

Transitions in a bunch may have different labels or go to different blocks. In
that case, the bunch can be split as these transitions cannot simulate each other.
If we manage to achieve the situation where all transitions in a bunch have the
same label and go to the same target block, the obtained partition turns out
to be a branching bisimulation. Therefore, we want to split each bunch into so-
called action-block-slices defined below. We also immediately define some other
sets derived from Πt and Πs as we require them in our further exposition. So,
we have:

– The action-block-slices, i.e., the transitions in T with label a ending in B′:
T a−→B′ = {s a−→ s′ ∈ T | s′ ∈ B′}.

– The block-bunch-slices, i.e., the transitions in T starting in B:
TB−→ = {s b−→ s′ ∈ T | s ∈ B}.

– A block-bunch-slice intersected with an action-block-slice:
TB a−→B′ = TB−→ ∩ T a−→B′ = {s a−→ s′ ∈ T | s ∈ B ∧ s′ ∈ B′}.

– The bottom states of B, i.e., the states without outgoing inert transitions:
Bottom(B) = {s ∈ B | ¬∃s′ ∈ B.s τ−→ s′}.

– The states in B with a transition in bunch T : B T−→ = {s | s a−→ s′ ∈ TB−→}.
– The outgoing transitions of block B: B−→ = {s a−→ s′ | s ∈ B, a ∈ Act , s′ ∈ S}.
– The incoming transitions of block B:B←− = {s a−→ s′ | s ∈ S, a ∈ Act , s′ ∈ B}.

The block-bunch-slices and action-block-slices are explicitly maintained as aux-
iliary data structures in the algorithm in order to meet the required performance
bounds. If the partitions Πs or Πt are adapted, all the derived sets above also
change accordingly.

A bunch can be trivial, which means that it only contains one action-block-
slice, or it can contain multiple action-block-slices. In the latter case one action-
block-slice is split off to become a bunch by itself. However, this may invalidate
Invariant 1. Some states in a block may only have transitions in the new bunch
while other states have only transitions in the old bunch. Therefore, blocks have
to be split to satisfy Invariant 1. Splitting blocks can cause bunches to become
non-trivial because action-block-slices fall apart.

This splitting is repeated until all bunches are trivial, and as already stated
above, the obtained partition Πs is the required branching bisimulation. As the
transition system is finite this process of repeated splitting terminates.

3.2 Abstract algorithm

We first present an abstract version of the algorithm in Algorithm 1. Its be-
haviour is as follows. As long as there are non-trivial bunches—i.e, bunches
containing multiple action-block-slices—, these bunches need to be split such
that they ultimately become trivial. The outer loop (Lines 1.2–1.19) takes a
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Algorithm 1 Abstract algorithm for branching bisimulation partitioning

1.1: Contract τ -SCCs; initialize Πs and Πt
1.2: for all non-trivial bunches T ∈ Πt do
1.3: Select an action-block-slice T a−→B′ ⊂ T
1.4: Split T into T a−→B′ and T \ T a−→B′
1.5: for all unstable blocks B ∈ Πs (i.e., ∅ 6= TB a−→B′ 6= TB−→) do
1.6: First make TB a−→B′ a primary splitter; then make TB−→\TB a−→B′ a secondary splitter
1.7: end for
1.8: for all splitters T ′B−→ (in order) do
1.9: Split B into the subblock R that can inertly reach T ′B−→ and the rest U

1.10: if T ′B−→ was a primary splitter (note: T ′B−→ = TB a−→B′ ) then
1.11: Make TU−→ \ TU a−→B′ a non-splitter
1.12: end if
1.13: if there are new non-inert transitions R

τ−→ U then
1.14: Split R into the subblock N that can inertly reach R

τ−→ U and the rest R′

1.15: Make all block-bunch-slices TN−→ of N secondary splitters
1.16: Create a bunch for the new non-inert transitions (N

τ−→ U) ∪ (N
τ−→ R′)

1.17: end if
1.18: end for
1.19: end for
1.20: return Πs

non-trivial bunch T from Πt, and from this it moves an action-block-slice T a−→B′

into its own bunch in Πt (Line 1.4). Hence, bunch T is reduced to T \ T a−→B′ .
The two new bunches T a−→B′ and T \ T a−→B′ can cause instability, violating

Invariant 1. This means there can be blocks with transitions in one new bunch,
but some bottom states only have transitions in the other new bunch. For such
blocks, stability needs to be restored by splitting them.

To restore this stability we investigate all block-bunch-slices in one of the
new bunches, namely T a−→B′ . Blocks that do not have transitions in these block-
bunch-slices are stable with respect to both bunches. To keep track of the blocks
that still need to be split, we partition the block-bunch-slices TB−→ into stable
and unstable block-bunch-slices. A block-bunch-slice is stable if we have ensured
that it is not a splitter for any block. Otherwise it is deemed unstable, and it
needs to be checked whether it is stable, or whether the block B must be split.
The first inner loop (Lines 1.5–1.7) inserts all unstable block-bunch-slices into
the splitter list. Block-bunch-slices of the shape TB a−→B′ in the splitter list are
labelled primary, and other list entries are labelled secondary.

In the second loop (Lines 1.8–1.18), one splitter T ′B−→ from the splitter list is
taken at a time and its source block is split into R (the part that can inertly reach
T ′B−→) and U (the part that cannot inertly reach T ′B−→) to re-establish stability.

If T ′B−→ was a primary splitter of the form TB a−→B′ , then we know that U
must be stable under TU−→ \TU a−→B′ , as every bottom state in B has a transition
in the former block-bunch-slice TB−→, and as the states in U have no transition
in TB a−→B′ , every bottom state in U must have a transition in TB−→ \ TB a−→B′ .
Therefore, at Line 1.11, block-bunch-slice TU−→ \ TU a−→B′ can be removed from
the splitter list. This is the three-way split from [18].

Some inert transitions may have become non-inert, namely the τ -transitions
that go from R to U . There cannot be τ -transitions from U to R. The new non-
inert transitions were not yet part of a bunch in Πt. So, a new bunch R

τ−→ U is
formed for them. All transitions in this new bunch leave R and thus R is the only
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block that may not be stable under this new bunch. To avoid superfluous work,
we split off the unstable part N , i.e. the part that can inertly reach a transition
in R

τ−→ U and contains all new bottom states, at Line 1.14. The original bottom
states of R become the bottom states of R′. There can be transitions N

τ−→ R′

that also become non-inert, and we add these to the new bunch R
τ−→ U . As

observed in [10], blocks containing new bottom states can become unstable under
any bunch. So, stability of N (but not of R′) must be re-established, and all
block-bunch-slices leaving N are put on the splitter list at Line 1.15.

3.3 Correctness

The validity of the algorithm follows from a number of major invariants. The
main invariant, Invariant 1, is valid at Line 1.2. Additionally, the algorithm
satisfies the following three invariants.

Invariant 2 (Bunches are not unnecessarily split). For any pair of non-
inert transitions s

a−→ s′ and t
a−→ t′, if s, t ∈ B and s′, t′ ∈ B′ then s

a−→ s′ ∈ T
and t

a−→ t′ ∈ T for some bunch T ∈ Πt.

Invariant 3 (Preservation of branching bisimilarity). For all states s, t ∈
S, if s↔b t, then there is some block B ∈ Πs such that s, t ∈ B.

Invariant 4 (No inert loops). There is no inert loop in a block, i.e., for every
sequence s1

τ−→ s2
τ−→ · · · τ−→ sn with si ∈ B ∈ Πs, n > 1 it holds that s1 6= sn.

Invariant 2 indicates that two non-inert transitions that (1) start in the same
block, (2) have the same label, and (3) end in the same block, always reside in
the same bunch. Invariant 3 says that branching bisimilar states never end up in
separate blocks. Invariant 4 ensures that all τ -paths in each block are finite. As
a consequence every block has at least one bottom state, and from every state a
bottom state can be inertly reached.

The invariants given above allow us to prove that the algorithm works cor-
rectly. When the algorithm terminates (and this always happens, see Section 3.5),
branching bisimilar states are perfectly grouped in blocks.

Theorem 1. From the Invariants 1, 3 and 4, it follows that after the algorithm
terminates, ≡Πs =↔b.

Because of the space restrictions here, the proofs are omitted. The interested
reader is referred to [14] for the details.

3.4 In-depth description of the algorithm

To show that the algorithm has the desired O(m log n) time complexity, we now
give a more detailed description of the algorithm. The pseudocode of the detailed
algorithm is given in Algorithm 2. This algorithm serves two purposes. First of
all, it clarifies how the data structures are used, and refines many of the steps in
the high-level algorithm. Additionally, time budgets for parts of the algorithm
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Algorithm 2 Detailed algorithm for branching bisimulation partitioning

2.1: Find τ -SCCs and contract each of them to a single state

O(m)
2.2: Bvis := {s ∈ S | s can inertly reach some s′

a−→ s′′}; Binvis := S \ Bvis

2.3: Πs := {Bvis, Binvis} \ {∅}
2.4: Πt := {{s a−→ s′ | a ∈ Act \ {τ}, s, s′ ∈ S} ∪ Bvis

τ−→ Binvis}
2.5: for all non-trivial bunches T ∈ Πt do
2.6: Select a ∈ Act and B′ ∈ Πs with |T a−→B′ | ≤ 1

2 |T |
≤ m iterations

2.7: Πt := (Πt \ {T}) ∪ {T a−→B′ , T \ T a−→B′}

O(|T a−→B′ |)

2.8: for all unstable blocks B ∈ Πs with ∅ ⊂ TB a−→B′ ⊂ TB−→ do
2.9: Append TB a−→B′ as primary to the splitter list

2.10: Append TB−→ \ TB a−→B′ as secondary to the splitter list
2.11: Mark all transitions in TB a−→B′
2.12: For every state ∈ B with both marked outgoing transitions

and outgoing transitions in TB−→ \ TB a−→B′ , mark one such
transition

2.13: end for
2.14: for all splitters T ′B−→ in the splitter list (in order) do
2.15: 〈R,U〉 := split(B, T ′B−→)
2.16: Remove T ′B−→ = T ′R−→ from the splitter list

≤ |T a−→B′ | iterations

2.17: Πs := (Πs \ {B}) ∪ ({R,U} \ {∅})
O(|Marked(T ′B−→)|+
|U−→|+ |U←−|+
|Bottom(N)−→|)

or O(|R−→|+ |R←−|)

2.18: if T ′B−→ was a primary splitter (note: T ′B−→ = TB a−→B′ ) then
2.19: Remove TU−→ \ TU a−→B′ from the splitter list
2.20: end if
2.21: if R

τ−→ U 6= ∅ then
2.22: Create a new bunch containing exactly R

τ−→ U , add
R

τ−→ U = (R
τ−→ U)R−→ to the splitter list, and mark

all its transitions
2.23: 〈N,R′〉 := split(R,R

τ−→ U)
2.24: Remove R

τ−→ U = (R
τ−→ U)N−→ from the splitter list

O(|R τ−→ U |+
|R′−→|+ |R

′
←−|+

|Bottom(N)−→|)
or O(|N−→|+ |N←−|)

2.25: Πs := (Πs \ {R}) ∪ ({N,R′} \ {∅})

O(|Bottom∗(N)−→|)
2.26: Add N

τ−→ R′ to the bunch containing R
τ−→ U

2.27: Insert all TN−→ as secondary into the splitter list

O(|Bottom(N)−→|)
2.28: For each bottom state ∈ N , mark one of its outgoing

transitions in every TN−→ where it has one
2.29: end if
2.30: end for
2.31: end for
2.32: return Πs

are printed in grey at the right-hand side of the pseudocode. We use these time
budgets in Section 3.5 to analyse the overall complexity of the algorithm. We
focus on the most important details in the algorithm.

At Lines 2.6–2.7, a small action-block-slice T a−→B′ is moved into its own bunch,
and T is reduced to T \ T a−→B′ . All blocks that have transitions in the two new
bunches are added to the splitter list in Lines 2.8–2.13. This loop also marks
some transitions (in the time complexity annotations we write Marked(TB−→) for
the marked transitions of block-bunch-slice TB−→). The function of this marking
is similar to that of the counters in [18]: it serves to determine quickly whether a
bottom state has a transition in a secondary splitter TB−→\TB a−→B′ (or slices that
are the result of splitting this slice). In general, a bottom state has transitions
in some splitter block-bunch-slice if and only if it has marked transitions in
this slice. There is one exception: After splitting under a primary splitter TB−→,
bottom states in U are not marked. But as they always have a transition in
TU−→ \ TU a−→B′ , U is already stable in this case (see Line 2.19).

The second loop is refined to Lines 2.14–2.30. In every iteration one splitter
T ′B−→ from the splitter list is considered, and its source block is first split into R
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and U . Formally, the routine split(B, T ) delivers the pair 〈R,U〉 defined by:

R = {s ∈ B | s τ−→ s1
τ−→ · · · τ−→ sn

a−→ s′ where s1, . . . , sn ∈ B, sn
a−→ s′ ∈ T},

U = B \R. (1)

We detail its algorithm and discuss its correctness in Section 4.
In Lines 2.21–2.28, the situation is handled when some inert transitions have

become non-inert. We mark one of the outgoing transitions of every new bottom
state such that we can find the bottom states with a transition in TN−→ in time
proportional to the number of such new bottom states.

We illustrate the algorithm in the following example. Note this also illustrates
some of the details of the split subroutine, which is discussed in detail in Section 4.

Example 1. Consider the situation in Figure 1a. Observe that block B is stable
w.r.t. the bunches T and T ′. We have split off a small bunch T a−→B′ from T , and
as a consequence, B needs to be restabilised. The bunches put on the splitter list
initially are T a−→B′ and T \ T a−→B′ . When putting these bunches on the splitter
list, all transitions in TB a−→B′ are marked, see the m’s in Figure 1b. Also, for
states that have transitions both in T a−→B′ and in T \T a−→B′ , one transition in the
latter bunch is marked, see the m’s in Figure 1b.

We now first split B w.r.t. the primary splitter T a−→B′ into R, the states that
can inertly reach T a−→B′ , and U , the states that cannot. In Figure 1b, the states
known to be destined for R are indicated by , the states known to be destined
for U are indicated by . Initially, all states with a marked outgoing transition
are destined for R, the remaining bottom state of B is destined for U . The split
subroutine proceeds to extend sets R and U in a backwards fashion using two
coroutines, marking a state destined for R if one of its successors is already in R,
and marking a state destined for U if all its successors are in U . Here, the state
in U does not have any incoming inert transitions, so its coroutine immediately
terminates and all other states belong to R. Block B is split into subblocks R
and U , as shown in Figure 1c. Block U is stable w.r.t. both T a−→B′ and T \T a−→B′ .

We still need to split R w.r.t. T \ T a−→B′ , into R1 and U1, say. For this, we
use the marked transitions in T \ T a−→B′ as a starting point to compute all bot-
tom states that can reach a transition in T \ T a−→B′ . This guarantees that the
time we use is proportional to the size of T a−→B′ . Initially, there is one state des-
tined for R1, marked in Figure 1c, and one state destined for U1, marked
in the same figure. We now perform the two coroutines in split simultaneously.
Figure 1d shows the situation after both coroutines have considered one tran-
sition: The U1-coroutine (which calculates the states that cannot inertly reach
T \ T a−→B′) has initialised the counter untested of one state to 2 on Line 3.9`
of Algorithm 3 because two of its outgoing inert transitions have not yet been
considered. The R1-coroutine (which calculates the states that can inertly reach
T \ T a−→B′) has checked the unmarked transition in the splitter TR−→ \ TR a−→B′ .
As the latter coroutine has finished visiting unmarked transitions in the splitter,
the U1-coroutine no longer needs to run the slow test loop at Lines 3.13`–3.17`
of the left column of Algorithm 3. In Figure 1e the situation is shown after two
more steps in the coroutines. Each has visited two extra transitions. There two
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Fig. 1: Illustration of splitting of a small block from T and stabilising block B
with respect to the new bunches T a−→B′ and T \T a−→B′ , as explained in Example 1.
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extra are states destined for R1, marked , and one state is destined for U1 with
0 remaining inert transitions, for which we know immediately that it has no
transition in T \ T a−→B′ , this is marked . Now, the R1-coroutine is terminated,
since it contains more that 1

2 |R| states, and the remaining incoming transitions
of states in U1 are visited. This will not further extend U1. The result of splitting
is shown in Figure 1f. Some inert transitions become non-inert, so a new bunch
with transitions R1

τ−→ U1 is created, and all these transitions are marked m.
We next have to split R1 with respect to this new bunch into the set of

states N1 that can inertly reach a transition in the new bunch, and the set
R′1 that cannot inertly reach this bunch. In this case, all states in R1 have a
marked outgoing transition, hence N1 = R1, and R′1 = ∅. The coroutine that
calculates the set of states that cannot inertly reach a transition in the bunch
will immediately terminate because there are no transitions to be considered.

Observe that R1 (= N1) has a new bottom state, marked ‘nb’. This means
that stability of R1 with respect to any bunch is not guaranteed any more and
needs to be re-established. We therefore consider all bunches in which R1 has an
outgoing transition. We add TR1

a−→B′ , TR1−→ \ TR1
a−→B′ and T ′R1−→ to the splitter

list as secondary splitters, and mark one outgoing transition from each bottom
state in each of these bunches using m. This situation is shown in Figure 1g.

In this case, R1 is stable w.r.t. TR1
a−→B′ and TR1−→ \TR1

a−→B′ , i.e., all states in
R1 can inertly reach a transition in both bunches. In both cases this is observed
immediately after initialisation in split, since the set of states that cannot inertly
reach a transition in these bunches is initially empty, and the corresponding
coroutine terminates immediately.

Therefore, consider splitting R1 with respect to T ′R1−→. This leads to R2, the
set of states that can inertly reach a transition in T ′, and U2, the set of states
that cannot inertly reach a transition in T ′. Note there are no marked transitions
in T ′R1−→, so initially all bottom states of R1 are destined for U2 (marked in
Figure 1h), and there are no states destined for R2. Then we start splitting R1. In
the R2-coroutine, we first add the states with an unmarked transition in T ′R1−→ to
R2 at Line 3.4r (i.e., in the right column of Algorithm 3) and then all predecessors
of the new bottom state need to be considered. When split terminates, there will
be no additional states in U2, and the remaining states end up in R2.

The situation after splitting R1 into R2 and U2 is shown in Figure 1i. One of
the inert transitions (marked m) becomes non-inert. Furthermore, R2 contains a
new bottom state. This is the state with a transition in T ′. As each block must
have a bottom state, a non-bottom state had to become a bottom state.

We need to continue stabilising R2 w.r.t. bunch R2
τ−→ U2, which does not

lead to a new split, and we need to restabilise R2 w.r.t. all bunches in which it
has an outgoing transition. This also does not lead to new splits, so the situation
in Figure 1i after removing the markings is the final result of splitting.

3.5 Time complexity

Throughout this section, let n be the number of states and m the number of
transitions in the LTS. To simplify the complexity notations we assume that
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n ≤ m + 1. This is not a significant restriction, since it is satisfied by any LTS
in which every non-initial state has an incoming transition. We also write in(s)
and out(s) for the sets of incoming and outgoing transitions of state s.

We use the principle “Process the smaller half” [13]: when a set is split into
two parts, we spend time proportional to the size of the smaller subset. This leads
to a logarithmic number of operations assigned to each element. We apply this
principle twice, once to new bunches and once to new subblocks. Additionally,
we spend some time on new bottom states. This is formulated in the following
theorem.

Theorem 2. For the main loop of Algorithm 2 we have:

1. A transition is moved to a new small bunch at most blog2 n
2c + 1 times.

Whenever this happens, constant time is spent on this transition.
2. A state s is moved to a new small subblock at most blog2 nc times. Whenever

this happens, O(|in(s)|+ |out(s)|+ 1) time is spent on state s.
3. A state s becomes a new bottom state at most once. When this happens,

O(|out(s)|+ 1) time is spent on state s.

Summing up these time budgets leads to an overall time complexity of O(m log n).

These runtimes are annotated as time budgets in the main loop of Al-
gorithm 2. Line 2.7 moves the transitions of T a−→B′ to their new bunch, and
Lines 2.6–2.14 take time proportional to the size of this new bunch.

A new subblock is formed at Line 2.17 (and at the same time, some states
in subblock R may become new bottom states). Lines 2.15–2.22 take time pro-
portional to its incoming and outgoing transitions. Similarly, a new subblock
is formed in Line 2.23, and Lines 2.23–2.26 take time proportional to this sub-
block’s transitions.

Finally, new bottom states found in R (and separated into N) allow to spend
time proportional to Bottom(N)−→ at Lines 2.15–2.28. At Line 2.27 we need to
include not only the current new bottom states but also the future ones because
there may be block-bunch-slices that only have transitions from non-bottom
states. When N is split under such a block-bunch-slice, at least one of these
states will become a bottom state.

Time spent per marked transition fits the time bound because only a small
number of transitions is marked: In Lines 2.11 and 2.12, at most two transitions
are marked per transition in the small splitter T a−→B′ . Line 2.22 marks R

τ−→ U ⊆
out(R) ∩ in(U), which is always within the transitions of the smaller subblock.
Line 2.28 marks no more transitions than the new bottom states have.

The initialisation in Lines 2.1–2.5 can be performed in O(m) time, where
the assumption n ≤ m+ 1 is used. Furthermore, we assume that we can access
action labels fast enough to bucket sort the transitions in time O(m), which is
for instance the case if the action labels are consecutively numbered.

To meet the indicated time budgets, our implementation uses a number of
data structures. States are stored in a refinable partition [21], grouped per block,
in such a way that we can visit bottom states without spending time on non-
bottom states. Transitions are stored in four linked refinable partitions, grouped
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per source state, per target state, per bunch, and per block-bunch-slice, in such
a way that we can visit marked transitions without spending time on unmarked
transitions of the block. How these data structures are instrumental for the
complexity can be found in [14].

4 Splitting blocks

The function split(B, T ), presented in Algorithm 3, refines block B into subblocks
R and U , where R contains those states in B that can inertly reach a transition in
T , and U contains the states that cannot, as formally specified in Equation (1).

These two sets are computed by two coroutines executing in lockstep: the two
coroutines start the same number of loop iterations, so that the overhead is at
most proportional to the faster of the two and all work done in both coroutines
can be attributed to the smaller of the two subblocks R and U .

As a precondition, split requires that bottom states of B with an outgo-
ing transition in TB−→ have a marked outgoing transition in TB−→. Formally,
Bottom(B) Marked(TB−→)

−−−−−−−−−→ = Bottom(B) TB−→−−−−→. This allows to compute the initial
sets: All states in B Marked(T )−−−−−−−→, i.e., sources of marked transitions in T , are put in
R. All bottom states that are not initially in R are put in U .

The sets are extended as follows in the coroutines. For R, first the states
in B T\Marked(T )−−−−−−−−−→ are added that were not yet in R. These are all the sources of
unmarked transitions in T . Using backward reachability along inert transitions,
R is extended until no more states can be added.

Algorithm 3 Refinement of a block under a splitter

3.1: function split(block B, block-bunch-slice T )
3.2: R := B Marked(T )

−−−−−−−−→; U := Bottom(B) \ R
3.3: begin coroutines

3.4: Set untested [t] to undefined for all t ∈ B R := R ∪ B T\Marked(T )
−−−−−−−−−−→

O(|Marked(T )|)

3.5: for all s ∈ U while |U | ≤ 1
2 |B| do for all s ∈ R while

O(1) or O(|R−→|)

3.6: for all inert t
τ−→ s do |R| ≤ 1

2 |B| do
3.7: if t ∈ R then Skip t, i.e. goto 3.6` for all inert t

τ−→ s do
O(|U←−|) or
O(|R←−|)

3.8: if untested [t] is undefined then
3.9: untested [t] := |{t τ−→u | u ∈ B}|

3.10: end if
3.11: untested [t] := untested [t]− 1
3.12: if untested [t] > 0 then Skip t
3.13: if B T−−→ 6⊆ R then

O(|U−→|+
|(Bottom(R) \
Bottom(B))−→|)

3.14: for all non-inert t
α−→ u do

3.15: if t
α−→ u ∈ T then Skip t

3.16: end for
3.17: end if
3.18: Add t to U Add t to R

O(|U←−|) or
O(|R←−|)

3.19: end for end for
3.20: end for end for
3.21: if |U | > 1

2 |B| then if |R| > 1
2 |B| then

O(1)
3.22: Abort this coroutine Abort this coroutine
3.23: end if end if
3.24: Abort the other coroutine Abort the other coroutine
3.25: return (B \ U,U) return (R,B \ R)
3.26: end coroutines
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To identify the states in U , observe that a state is in U if all its inert successors
are in U and it does not have a transition in TB−→. To compute U , we let a
counter untested [t] for every non-bottom state t record the number of outgoing
inert transitions to states that are not yet known to be in U . If untested [t] = 0,
this means all inert successors of t are guaranteed to be in U , so, provided t
does not have a transition in TB−→, one can also add t to U . To take care of the
possibility that all inert transitions of t have been visited before all sources of
unmarked transitions in TB−→ are added to R, we check all non-inert transitions
of t to determine whether they are not in TB−→ at Lines 3.13`–3.17`.

The coroutine that finishes first, provided that its number of states does not
exceed 1

2 |B|, has completely computed the smaller subblock resulting from the
refinement, and the other coroutine can be aborted. As soon as the number
of states of a coroutine is known to exceed 1

2 |B|, it is aborted, and the other
coroutine can continue to identify the smaller subblock. In detail, the runtime
complexity of 〈R,U〉 := split(B, T ) is:
– O(|R−→|+ |R←−|), if |R| ≤ |U |, and
– O(|Marked(T )|+ |U−→|+ |U←−|+ |(Bottom(R) \ Bottom(B))−→|), if |U | ≤ |R|.

This complexity is inferred as follows. As we execute the coroutines in lockstep,
it suffices to show that the runtime bound for the smaller subblock is satisfied.

In case |R| ≤ |U |, observe |Marked(T )| ≤ |R−→|, so we get O(|R−→|+ |R←−|)
directly from the R-coroutine. When |U | ≤ |R|, we use time in O(|Marked(T )|)
for Line 3.2, and we use time in O(|U←−|) for everything else except Lines 3.13`–
3.17`. For these latter lines, we distinguish two cases. If it turns out that t has
no transition t

α−→ u ∈ T , it is a U -state, so we attribute the time to O(|U−→|).
Otherwise, it is an R-state that had some inert transitions in B, but they all are
now in R

τ−→ U . So t is a new bottom state, and we attribute the time to the
outgoing transitions of new bottom states: O(|(Bottom(R) \ Bottom(B))−→|).

5 Experimental evaluation

The new algorithm (JGKW20) has been implemented in the mCRL2 toolset [5]
and is available in its 201908.0 release. This toolset also contains implementations
of various other algorithms, such as the O(mn) algorithm by Groote and Vaan-
drager (GV) [10] and the O(m(log |Act | + log n)) algorithm of [9] (GJKW17).
In addition, it offers a sequential implementation of the partition-refinement al-
gorithm using state signatures by Blom and Orzan (BO) [3], which has time
complexity O(n2m). For each state, BO maintains a signature describing which
blocks the state can reach directly via its outgoing transitions.

In this section, we report on the experiments we have conducted to compare
GV, BO, GJKW17 and JGKW20 when applied to practical examples. In the
experiments the given LTSs are minimised w.r.t. branching bisimilarity. The set
of benchmarks consists of all LTSs offered by the VLTS benchmark set3 with
at least 60,000 transitions. Their name ends in “ bn/1000c bm/1000c” and thus

3 http://cadp.inria.fr/resources/vlts.

http://cadp.inria.fr/resources/vlts
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describes their size. Additionally, we consider three cases that have been derived
from models distributed with the mCRL2 toolset:
1. lift6-final: this model is based on an elevator model, extended to six eleva-

tors (n = 6,047,527, m = 26,539,368);
2. dining 14: this is the dining philosophers model with 14 philosophers (n =

18,378,370, m = 164,329,284);
3. 1394-fin3: this is an altered version of the 1394-fin model, extended to three

processes and two data elements (n = 126,713,623, m = 276,426,688).
The software and benchmarks used for the experiments are available online [15].
All experiments have been conducted on individual nodes of the DAS-5 clus-
ter [1]. Each of these nodes was running CentOS Linux 7.4, had an Intel
Xeon E5-2698-v3 2.3GHz CPU, and was equipped with 256 GB RAM. Devel-
opment version 201808.0.c59cfd413f of mCRL2 was used for the experiments.4

Table 1 presents the obtained results. Benchmarks are ordered by their num-
ber of transitions. On each benchmark, we have applied each algorithm ten times,
and report the mean runtime and memory use of these ten runs, rounded to sig-
nificant digits (estimated using [4] for the standard deviation). A trailing decimal
dot indicates that the unit digit is significant. If this dot is missing, there is one
insignificant zero. For all presented data the estimated standard deviation is less
than 20% of the mean. Otherwise we print ‘-’ in Table 1.

The H-symbol after a table entry indicates that the measurement is sig-
nificantly better than the corresponding measurements for the other three algo-
rithms, and the N-symbol indicates that it is significantly worse. Here, the results
are considered significant if, given a hundred tables such as Table 1, one table of
running time (resp. memory) is expected to contain spuriously significant results.

Concerning the runtimes, clearly, GV and BO perform significantly worse
than the other two algorithms, and JGKW20 in many cases performs signifi-
cantly better than the others. In particular, JGKW20 is about 40% faster than
GJKW17, the fastest older algorithm. Concerning memory use, in the majority
of cases GJKW17 uses more memory than the others, while sometimes BO is
the most memory-hungry. JGKW20 is much more competitive, in many cases
even outperforming every other algorithm.

The results show that when applied to practical cases, JGKW20 is generally
the fastest algorithm, and even when other algorithms have similar runtimes, it
uses almost always the least memory. This combination makes JGKW20 cur-
rently the best option for branching bisimulation minimisation of LTSs.

Data Availability Statement and Acknowledgement. The datasets gen-
erated and analysed during the current study are available in the figshare reposi-
tory: https://doi.org/10.6084/m9.figshare.11876688.v1. This work is partly done
during a visit of the first author at Eindhoven University of Technology, and a
visit of the second author at the Institute of Software, Chinese Academy of Sci-
ences. The first author is supported by the National Natural Science Foundation
of China, Grant No. 61761136011.
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