
Formalized Proofs of the Infinity and Normal
Form Predicates in the First-Order Theory of

Rewriting?

Alexander Lochmann and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{alexander.lochmann,aart.middeldorp}@uibk.ac.at

Abstract. We present a formalized proof of the regularity of the infinity
predicate on ground terms. This predicate plays an important role in the
first-order theory of rewriting because it allows to express the termination
property. The paper also contains a formalized proof of a direct tree
automaton construction of the normal form predicate, due to Comon.

Keywords: Formalization · First-order theory of rewriting · Tree au-
tomata

1 Introduction

Term rewriting [1,18] is an abstract model of computation which underlies much
of declarative programming and automated theorem proving. The foundation of
rewriting is equational logic. Equations are used from left to right to direct the
search for proofs. Fundamental properties like confluence (which ensures that
different computation paths produce the same result) and termination (all com-
putation paths produce a result) are undecidable in general. For terminating
systems, one is interested in estimating the resources needed to evaluate expres-
sions (space and time complexity). Much progress has been made in establishing
sufficient and automatable criteria for confluence, termination, complexity, and
other properties of rewrite systems. These criteria have been implemented in
highly optimized automatic tools that compete on a yearly basis [12, 13]. These
competitions, together with the recent advances in SAT [4] and SMT [2] solving,
have on the one hand led to specialized techniques that are especially suitable for
automation. On the other hand, software bugs observed in the tools gave rise to
the more recent activity of certification of the output of termination, complexity,
and confluence tools. This is done by formalizing the underlying methods in an
interactive proof assistant like Coq [3] or Isabelle [15], and using the code gen-
eration facilities of these proof assistants to obtain trustworthy programs that
can certify the output of the tools.

In this paper we are concerned with the formalization of methods that are
used in FORT [16,17], a tool that implements the first-order theory of rewriting

? This research is supported by FWF (Austrian Science Fund) project P30301.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 178–194, 2020.
https://doi.org/10.1007/978-3-030-45237-7 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_11&domain=pdf
http://orcid.org/0000-0002-6145-3893
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-030-45237-7_11

Formalized Proofs of the Infinity and Normal Form Predicates 179

for the decidable class of left-linear, right-ground rewrite systems. FORT can be
used to decide properties of a given rewrite system and to synthesize rewrite
systems that satisfy arbitrary properties expressible in the first-order theory of
rewriting. The decision procedure is based on tree automata techniques and goes
back to a paper by Dauchet and Tison [7]. In a recent paper [10] the authors
formalized results concerning ground tree transducers and RRn automata for a
fragment of the first-order theory that allows to express confluence, resulting in
a formalized confluence prover for left-linear, right-ground rewrite systems. In
this paper we cover the infinity predicate that is crucial for expressing the termi-
nation property in the first-order theory of rewriting and an efficient automaton
construction of the normal form predicate that is employed in FORT. The former
goes back to a technical report by Dauchet and Tison [8] and the latter is based
on a paper by Comon [5]. The normal form predicate has other applications as
well (e.g. [9,14]). A proof of the construction of [8] is given in [16], but this proof
contains a serious mistake that we report at the end of Section 3.

Our formalizations are based on IsaFoR [19],1 an Isabelle/HOL library con-
taining numerous abstract results and concrete techniques from the rewriting
literature. Our own development can be found at

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/

Most definitions, theorems, and lemmata in this paper directly correspond to
the formalization. These are indicated by the � symbol, which links to a HTML
presentation in the PDF version of the paper.

In the next section we recall basic definitions, notation, and results concerning
term rewriting and tree automata that we need in the sequel. In Section 3 we
present our first main result, a formalized correctness proof of the regularity
of the infinity predicate for regular relations. The tree automaton constructed
in the correctness proof is not directly executable due to the definition of Q∞
which plays an important role in the construction of the tree automaton. In
Section 4 we present our second main result, an equivalent definition of Q∞ that
is constructive. Our third result, a formalized correctness proof of an efficient
tree automata construction of the normal form predicate for left-linear rewrite
systems, is the topic of Section 5. We conclude in Section 6 with some statistics
of our formalizations as well as a list of tasks that remain to be done for a
certified version of FORT.

When we write “formalized” we always mean ”formalized in Isabelle/HOL.”

2 Preliminaries

Familiarity with term rewriting [1] and tree automata [6] is useful, but we briefly
recall important definitions and notation that we use in the remainder.

We assume a given signature F and a set of variables V. Function symbols
in F are equipped with a fixed arity. Function symbols of arity zero are called

1 http://cl-informatik.uibk.ac.at/isafor/

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF/
http://cl-informatik.uibk.ac.at/isafor/

180 A. Lochmann and A. Middeldorp

constants. The set of terms built from F and V is denoted by T (F ,V) and
inductively defined: A term is either a variable x ∈ V or f(t1, . . . , tn) for a
function symbol f of arity n and terms t1, . . . , tn ∈ T (F ,V). The set of variables
occurring in a term t is denoted by Var(t). A term t with Var(t) = ∅ is called
ground. We write T (F) for the set of ground terms. Positions are strings of
positive integers which are used to address subterms. The empty string is called
root position and denoted by ε. The set of positions in a term t is denoted by
Pos(t) and the subterm of t at position p ∈ Pos(t) by t|p. We write s C t if s
is a proper subterm of t, i.e., s = t|p with p 6= ε. We write t[u]p for the result
of replacing the subterm of t at position p with the term u. The root symbol of
a term t is denoted by root(t) and t(p) denotes root(t|p). We write p < q if p
is a proper prefix of q. A context C is a term with a hole �. Here � /∈ F is a
special constant. We write C[t] for the result of replacing the hole in C by t. A
substitution σ is a mapping from variables to terms. We write tσ for the result
of applying σ to the term t.

A term rewrite system (TRS for short) R consists of rewrite rules ` → r
between terms ` and r over the same signature F such that Var(r) ⊆ Var(`).
The rewrite relation →R is defined on terms as follows: s →R t if there exist
a position p ∈ Pos(s), a rewrite rule ` → r ∈ R, and a substitution σ such
that s|p = `σ and t = s[rσ]p. The reflexive transitive closure of →R is denoted
by →∗R. A redex is a substitution instance of a left-hand side of a rewrite rule.
Terms that contain a redex as subterm are called reducible. A normal form is a
term without redexes. We write NF(R) for the set of ground normal forms of R.
In this paper we consider finite TRSs over finite signatures. The TRSs handled
by FORT are left-linear (no duplicate variables in left-hand sides of rewrite rules)
and right-ground (no variables in right-hand sides of rewrite rules).

We now recall some basic notions related to tree automata. A tree automaton
is a quadruple A = (F , Q,Qf , ∆) consisting of a finite signature F , a finite set Q
of states, disjoint from F , a subset Qf ⊆ Q of final states, and a set of transition
rules ∆. Every transition rule has one of the following two shapes:

– f(p1, . . . , pn)→ q with f ∈ F and p1, . . . , pn, q ∈ Q, or
– p→ q with p, q ∈ Q.

Transition rules of the second shape are called epsilon transitions. We write ∆ε

for the set of epsilon transitions. Furthermore, ∆¬ε = ∆ \∆ε. Transition rules
can be viewed as rewrite rules between ground terms in T (F ∪Q). The induced
rewrite relation is denoted by →∆ or →A. A ground term t ∈ T (F) is accepted
by A if t→∗∆ q for some q ∈ Qf . The set of all accepted terms is denoted by L(A)
and a set L of ground terms is regular if L = L(A) for some tree automaton A.

Let A = (F , Q,Qf , ∆) be a tree automaton. A state q ∈ Q is reachable if
t →∗∆ q for some term t ∈ T (F). We say that q is productive if C[q] →∗∆ qf
for some ground context C and final state qf ∈ Qf . The automaton A is trim
if all states are both reachable and productive. Any tree automaton can be
transformed into an equivalent trim automaton. This result has been formalized
in IsaFoR by Felgenhauer and Thiemann [11].

Formalized Proofs of the Infinity and Normal Form Predicates 181

Below we present a formalized proof of a version of the pumping lemma that
we need later.

Lemma 1. Let A = (F , Q,Qf , ∆) be a tree automaton and t →∗∆ q with t ∈
T (F) and q ∈ Q. If height(t) > |Q| then there exist contexts C1 and C2 6= �,
a term u, and a state p such that t = C1[C2[u]], u →∗∆ p, C2[p] →∗∆ p, and
C1[p]→∗∆ q.

Proof. From the assumptions t→∗∆ q and height(t) > |Q| we obtain a sequence
(t1, . . . , tn+1, q1, . . . , qn+1, D1, . . . , Dn) consisting of ground terms, states, and
non-empty contexts with n > |Q| such that

– ti →∗∆ qi for all i 6 n+ 1,

– Di[ti] = ti+1 and Di[qi]→∗∆ qi+1 for all i 6 n, and

– qn+1 = q and tn+1 = t

by a straightforward induction proof on t. Because n > |Q| there exist indices
1 6 i < j 6 n such that qi = qj . We construct the contexts C1 = Dn[. . . [Dj] . . .]
and C2 = Dj−1[. . . [Di] . . .]. Note that C2 6= � as i < j. We obtain C2[qi]→∗∆ qj
and C1[qj]→∗∆ qn+1 by induction on the difference j − i. By letting p = qi = qj
and u = ti we obtain the desired result. �

We conclude this preliminary section with a brief account of RR2 relations,
which are binary relations on ground terms over a signature F whose encoding
as sets of ground terms over the extended signature F (2) = (F ∪ {⊥})2 with a
fresh constant ⊥ /∈ F is regular. The arity of a symbol fg ∈ F (2) is the maximum
of the arities of f and g. The encoding of two terms t, u ∈ T (F) is the unique
term 〈t, u〉 ∈ T (F (2)) such that Pos(〈t, u〉) = Pos(t)∪Pos(u) and 〈t, u〉(p) = fg
where

f =

{
t(p) if p ∈ Pos(t)

⊥ otherwise
g =

{
u(p) if p ∈ Pos(u)

⊥ otherwise

for all positions p ∈ Pos(t) ∪ Pos(u). We illustrate this on a concrete example.
For the ground terms t = f(g(a), f(b, a)) and u = f(a, g(g(b))) we obtain 〈t, u〉 =
ff(ga(a⊥), fg(bg(⊥b), a⊥)). A tree automaton operating on terms in T (F (2)) is
called an RR2 automaton. The two projection operations effectively transform
RR2 relations on T (F) to regular subsets of T (F).

3 Infinity Predicate

The following formula in the first-order theory of rewriting expresses the termi-
nation property:2

∀ t FIN→+(t) ∧ ¬∃u (u→+ u)

2 The formula characterizes termination of all rewrite systems R with the property
that the induced rewrite relation →R is finitely branching.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Tree_Automata_Pumping.html#lem:pigeonhole_tree_automata

182 A. Lochmann and A. Middeldorp

The predicate FIN→+ holds for t ∈ T (F) if there are only finitely many terms
u ∈ T (F) such that t →+ u. We consider its complement as it leads to smaller
automata:

¬∃ t (INF→+(t) ∨ t→+ t)

with INF→+ = {t ∈ T (F) | t→+
R u for infinitely many terms u ∈ T (F)}.

Definition 1. Let ◦ be an arbitrary binary relation on T (F). We write INF◦
for the set {t ∈ T (F) | (t, u) ∈ ◦ for infinitely many terms u ∈ T (F)}.

In [8] the construction of a tree automaton that accepts FIN◦ for an arbi-
trary RR2 relation ◦3 is given. In [16, Appendix A] a correctness proof of the
construction is presented, which contains a serious mistake (reported at the end
of this section). In this section we give a rigorous and formalized proof of the
regularity of INF◦ for arbitrary RR2 relations ◦.

Theorem 1. The set INF◦ is regular for every RR2 relation ◦ ⊆ T (F)×T (F).

The following definition originates from [8].

Definition 2. Given a tree automaton A = (F (2), Q,Qf , ∆), the set Q∞ ⊆ Q
consists of all states q ∈ Q such that 〈⊥, t〉 →∗∆ q for infinitely many terms
t ∈ T (F).

Example 1. Consider the binary relation

◦ = {(f(a, gn(b)), gm(f(a, b))) | n = 2 and m > 1 or n > 3 and m = 1}

The encoding of ◦ is accepted by the RR2 automaton A = (F (2), Q,Qf , ∆) with
F = {a, b, f, g}, Q = {0, . . . , 11}, Qf = {0}, and ∆ consisting of the following
transition rules:

fg(1, 2)→ 0 ⊥f(3, 4)→ 5 g⊥(6)→ 2 b⊥ → 7

fg(8, 9)→ 0 ⊥g(5)→ 5 g⊥(7)→ 6 b⊥ → 11

af(3, 4)→ 1 ⊥a→ 3 g⊥(10)→ 9 ag(5)→ 1

af(3, 4)→ 8 ⊥b→ 4 g⊥(11)→ 10 g⊥(11)→ 11

For instance,

〈f(a, g(g(b))), g(f(a, b))〉 = fg(af(⊥a,⊥b), g⊥(g⊥(b⊥)))

→∗∆ fg(af(3, 4), g⊥(g⊥(7)))→∗∆ fg(1, g⊥(6))→∆ fg(1, 2)→∆ 0

but 〈f(a, g(b), f(a, b))〉 = ff(aa, gb(b⊥)) is not accepted.

We have Q∞ = {5}. State 5 is reached by 〈⊥, gn(f(a, b))〉 for all n > 0.

3 The relation→+
R is an RR2 relation for left-linear, right-ground TRSs R. Other uses

of FIN (INF) can be found in [16].

Formalized Proofs of the Infinity and Normal Form Predicates 183

Definition 3. � Given a tree automaton A = (F (2), Q,Qf , ∆), we define the
tree automaton A∞ = (F (2), Q ∪ Q̄, Q̄f , ∆ ∪ ∆̄). Here Q̄ is a copy of Q where
every state is dashed: q̄ ∈ Q̄ if and only if q ∈ Q. For every transition rule
fg(q1, . . . , qn)→ q ∈ ∆ we have the following transition rules in ∆̄:

fg(q1, . . . , qn)→ q̄ if q ∈ Q∞ and f = ⊥ (1)

fg(q1, . . . , qi−1, q̄i, qi+1, . . . , qn)→ q̄ for all 1 6 i 6 n (2)

Moreover, for every ε-transition p→ q ∈ ∆ we add

p̄→ q̄ (3)

to ∆̄. We write ∆′ for ∆ ∪ ∆̄.

Dashed states are created by rules of shape (1) and propagated by rules of
shapes (2) and (3). The above construction differs from the one in [8]; instead
of (1) the latter contains fg(q1, . . . , qn)→ q̄ if qi ∈ Q∞ for some i > arity(f). In
an implementation, rather than adding all dashed states and all transition rules
of shape (2), the necessary rules would be computed by propagating the dashes
created by (1) in order to avoid the appearance of unreachable dashed states.
When A∞ is used in isolation, a single bit suffices to record that a dashed state
occurred during a computation.

Example 2. For the tree automaton A from Example 1 we obtain A∞ by adding
the following transition rules (the missing rules of shape (2) involve unreachable
states):

⊥f(3, 4)→ 5̄ ⊥g(5)→ 5̄ ⊥g(5̄)→ 5̄ ag(5̄)→ 1̄ fg(1̄, 2)→ 0̄

The unique final state of A∞ is 0̄. We have 〈f(a, g(g(b))), g(f(a, b))〉 ∈ L(A∞)
but there is no term u such that 〈f(a, g(b)), u〉 ∈ L(A∞).

The following preliminary lemma is proved by a straightforward induction
argument.

Lemma 2. If t →∗A p then t →∗A∞
p. If C[p] →∗A q then C[p] →∗A∞

q and
C[p̄]→∗A∞

q̄. � �

Theorem 2. Suppose ◦ is accepted by the RR2 automaton A. If t ∈ INF◦ then
〈t, u〉 ∈ L(A∞) for some term u ∈ T (F).

Proof. From t ∈ INF◦ and ◦ = L(A) we obtain 〈t, u〉 ∈ L(A) for infinitely many
terms u ∈ T (F). Since the signature is finite, there are only finitely many ground
terms of any given height. Moreover, height(〈t, u〉) = max (height(t), height(u)).
Hence there must exist a term u ∈ T (F) with 〈t, u〉 ∈ L(A) such that

height(t) + |Q|+ 1 < height(u)

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#def:Inf_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inl_A_res_Inf_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_reach_to_dash_reach

184 A. Lochmann and A. Middeldorp

This is only possible if there are positions p and q such that p /∈ Pos(t), pq ∈
Pos(u), and |Q| < |q|. From Pos(〈t, u〉) = Pos(t) ∪ Pos(u) we obtain 〈t, u〉|p =
〈⊥, u|p〉. Since 〈t, u〉 ∈ L(A) there exist states r ∈ Q and q ∈ Qf such that

〈t, u〉 = 〈t, u〉[〈⊥, u|p〉]p →∗A 〈t, u〉[r]p →∗A qf

where we assume without loss of generality that the last step in the subsequence
〈⊥, u|p〉 →∗A r uses a non-epsilon transition rule.

From |Q| < |q| and pq ∈ Pos(u) we infer |Q| < height(〈⊥, u|p〉). Hence we
can use the pumping lemma (Lemma 1) to conclude the existence of infinitely
many terms v ∈ T (F) such that 〈⊥, v〉 →∗A r. Hence r ∈ Q∞ by Definition 2.
Since the last step 〈⊥, u|p〉 →∗A r uses a non-epsilon transition rule, we obtain
〈⊥, u|p〉 →∗A∞

r̄ using Lemma 2 and a final application of a rule of shape (1). Also
using Lemma 2 we obtain 〈t, u〉[r̄]p →∗A∞

q̄f as 〈t, u〉[r]p →∗A qf . We conclude
〈t, u〉 ∈ L(A∞) as desired. �

For the reverse direction of Theorem 3 we need two auxiliary results. The
first result is proved by a straightforward induction argument. Here the mapping
ϕ : T (F (2) ∪Q ∪ Q̄)→ T (F (2) ∪Q) erases all dashes from states.

Lemma 3. If t ∈ T (F (2) ∪Q ∪ Q̄) and t→∗A∞
p then ϕ(t)→∗A ϕ(p). �

With a little bit more effort, we obtain the second auxiliary result. The key
step in the proof is identifying the rule of shape (1) that is used to create the
first dashed state.

Lemma 4. If t ∈ T (F (2)) and t →∗A∞
p̄ then there exist a state q ∈ Q∞, a

context C, and a term s such that C[s] = t, root(s) = ⊥f for some f ∈ F ,
s→∗A∞

q̄, and C[q̄]→∗A∞
p̄. �

Theorem 3. Suppose ◦ is accepted by the RR2 automaton A. If 〈t, u〉 ∈ L(A∞)
for some term u ∈ T (F) then t ∈ INF◦.

Proof. From 〈t, u〉 ∈ L(A∞) we obtain a final state q̄f ∈ Q̄ with 〈t, u〉 →∗A∞
q̄f .

Using Lemma 4, we obtain a context C, a term s with root(s) = ⊥f for some
f ∈ F , and a state q ∈ Q∞ such that C[s] = 〈t, u〉, s→∗A∞

q̄, and C[q̄]→∗A∞
q̄f .

Let p be the position of the hole in C. From C[s] = 〈t, u〉 and root(s) = ⊥f ,
we infer p ∈ Pos(u) \ Pos(t). Since q ∈ Q∞ the set {v ∈ T (F) | 〈⊥, v〉 →∗A q}
is infinite. Hence the set S = {u[v]p ∈ T (F) | 〈⊥, v〉 →∗A q} is infinite, too. Let
u[w]p ∈ S. So 〈⊥, w〉 →∗A q. Since C is ground and C[q̄] →∗A∞

q̄f , we obtain
C[q]→∗A qf from Lemma 3. We have C[w] = 〈t, u[w]p〉 as p ∈ Pos(u) \Pos(t). It
follows that 〈t, u[w]p〉 ∈ L(A) and thus there are infinitely many terms u such
that 〈t, u〉 ∈ L(A). Since ◦ = L(A) we conclude the desired t ∈ INF◦. �

The final step to conclude that the infinity predicate is indeed regular is now
easy.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_to_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_dash_reach_to_reach
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:CInr_Inf_automata_to_q_state
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_to_Inf

Formalized Proofs of the Infinity and Normal Form Predicates 185

Proof (of Theorem 1). Combining Theorem 2 and Theorem 3 yields the following
equivalence:

t ∈ INF◦ ⇐⇒ 〈t, u〉 ∈ L(A∞) for some term u

Hence a tree automaton that accepts INF◦ is obtained by subjecting A∞ to a
projection operation (on the first argument). ut

Projection on RRn automata has been formalized in Isabelle/HOL as part
of [10]. �

The mistake in the proof given in the appendix of [16] is quoted below and
corresponds to the proof of Theorem 2:

The set U = {u ∈ T (F) | (t, u) ∈ ◦} is infinite. Since the signature F is
finite, infinitely many terms u in U have a height greater than t. Hence
there exists a position p /∈ Pos(t) such that the set U ′ = {u ∈ U | p ∈
Pos(u)} is infinite. For every u ∈ U ′ we have 〈t, u〉|p = 〈⊥, u|p〉. Since
〈t, u〉 is accepted by A and Q is finite, there must exist a state q′ such
that 〈⊥, u|p〉 →∗A q′ for infinitely many terms u ∈ U ′. Therefore q′ ∈ Q∞.

The following example refutes the above reasoning, which is the key step in the
proof in [16]. It was found in attempt to formalize the proof.

Example 3. Let t = f(a, b) and consider the infinite set U = {f(f(a, b), gn(b)) |
n > 1}. The automaton

A = ({f, g, a, b}(2), {q1, . . . , q6}, q6, ∆)

with ∆ consisting of the transition rules

ff(q4, q5)→ q6 ⊥a→ q2 bg(q1)→ q5 ⊥b→ q1

af(q2, q3)→ q4 ⊥b→ q3 ⊥g(q1)→ q1

accepts the relation ◦ = {t} × U . Consider the position p = 11. We have p /∈
Pos(t) and p ∈ Pos(u) for all terms u ∈ U . Hence U ′ = U . Moreover, 〈t, u〉|p =
〈⊥, a〉 = ⊥a for all terms u ∈ U ′. The only state reachable from ⊥a is q2 and
clearly q2 /∈ Q∞.

4 Executable Infinity Predicate

Owing to the definition of Q∞, the automaton A∞ defined in Definition 3 is
not executable. In this section we give an equivalent but executable definition of
Q∞, which we name Qe∞:

Qe∞ = {q | p p and p q for some state p ∈ Q} �

Here the relation is defined using the inference rules in Figure 1. Before
proving that the two definitions are equivalent, we illustrate the definition of
Qe∞ by revisiting Example 1.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RRn_Automata.html#lem:drop_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#def:Q_inf_e

186 A. Lochmann and A. Middeldorp

⊥f(p1, . . . , pn)→∆ p

p1 p · · · pn p

p q q →∆ r

p r

p q q r

p r

Fig. 1. Inference rules for computing Qe
∞.

Example 4. We obtain 3 5 and 4 5 by applying the first inference rule to
the transition rule ⊥f(3, 4)→ 5. Similarly, ⊥g(5)→ 5 gives rise to 5 5. Since
A has no epsilon transitions, no further inferences can be made. It follows that
Qe∞ = {5}.

We call a term in T ({⊥} × F) right-only. A term in T (({⊥} × F) ∪ {�})
with exactly one occurrence of the hole � is a right-only context.

Definition 4. We denote the composition of →∆¬ε
and →∗∆ε

by �∆.

The proof of the next lemma is straightforward. Note that the relations →∗∆
and�∗∆ do not coincide on mixed terms, involving function symbols and states.

Lemma 5. Let C be a ground context. We have C[p]→∗∆ q if and only if p→∗∆
p′ and C[p′]�∗∆ q for some state p′. �

Lemma 6. Q∞ ⊆ Qe∞

Proof. We start by proving the following claim:

if C[p]�∗∆ q and C is a non-empty right-only context then p q (∗)

We use induction on the structure of C. If C = � there is nothing to show.
Suppose C = ⊥f(t1, . . . , C

′, . . . , tn) where C ′ is the i-th subterm of C. The
sequence C[p] �∗∆ q can be rearranged as C[p] = ⊥f(t1, . . . , C

′[p], . . . , tn) �∗∆
⊥f(q1, . . . , qn) →∆ q′ →∗∆ q. We obtain qi q′ and subsequently qi q by
using the inference rules in Figure 1. If C ′ = � then p = qi and if C ′ 6= �
then the induction hypothesis yields p qi and thus p q by transitivity. This
concludes the proof of (∗). �

Assume q ∈ Q∞, so there exist infinitely many terms t such that 〈⊥, t〉 →∗∆ q.
Since the signature is finite, there exist terms of arbitrary height. Thus there
exists an arbitrary but fixed term t such that the height of t is greater than the
number of states of Q. Write t = f(t1, . . . , tn). Since the height of t is greater
than the number of the states in Q, there exist a subterm s of t, a state p, and
contexts C1 and C2 6= � such that

1. 〈⊥, t〉 = C1[C2[〈⊥, s〉]],
2. 〈⊥, s〉 →∗∆ p,

3. C2[p]→∗∆ p, and

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Tree_Automata_Utils.html#lem:ta_res_to_ta_strict
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:ta_res_Q_inf

Formalized Proofs of the Infinity and Normal Form Predicates 187

4. C1[p]→∗∆ q.

From Lemma 5 we obtain a state q′ such that p→∗∆ q′ and C2[q′]�∗∆ p. Hence
q′ p by (∗). We obtain q′ q′ from q′ p in connection with the inference
rule for epsilon transitions. We perform a case analysis of the context C1.

– If C1 = � then p →∗∆ q and thus q′ q follows from q′ p in connection
with the inference rule for epsilon transitions. Hence q ∈ Qe∞.

– If C1 6= � then Lemma 5 yields a state q′′ such that p′ →∗∆ q′′ and C1[q′′]�∗∆
q. Hence q′′ q by (∗). We also have C2[q′] �∗∆ q′′ and thus q′ q′′ by
(∗). We obtain q′ q from the transitivity rule. Hence also in this case we
obtain q ∈ Qe∞. �

For the following lemma, we need the fact that A can be assumed to be trim,
so every state is productive and reachable. We may do so because Theorem 1
talks about regular relations, and any automaton that accepts the same language
as A will witness the fact that the given relation ◦ is regular.

Lemma 7. Qe∞ ⊆ Q∞, provided that A is trim.

Proof. In connection with the fact that A accepts ◦ ⊆ T (F) × T (F), trimness
of A entails that any run t →∗∆ q is embedded into an accepting run C[t] →∗∆
C[q] →∗∆ qf ∈ Qf . So C[t] = 〈u, v〉 for some (u, v) ∈ ◦, and hence t must be a
well-formed term. Moreover, if root(t) = ⊥f for some f ∈ F then t = 〈⊥, u〉 for
some term u ∈ T (F). We now show the converse of claim (∗) in the proof of
Lemma 6 for the relation →∗∆:

if p q then C[p]→∗∆ q for some ground right-only context C 6= � (∗∗)

We prove the claim by induction on the derivation of p q. First suppose
p q is derived from the transition rule ⊥f(p1, . . . , pi, . . . , pn) → q in ∆
with pi = p. Because all states are reachable by well-formed terms, there ex-
ist terms t1, . . . , tn ∈ T (F) such that 〈⊥, t〉 →∗∆ pi for all 1 6 i 6 n. Let
C1 = ⊥f(〈⊥, t1〉, . . . ,�, . . . , 〈⊥, tn〉) where the hole is the i-th argument. We
have C1[p] →∗∆ ⊥f(p1, . . . , pi, . . . , pn) →∆ q. Next suppose p q is derived
from p q′ and q′ →∆ q. The induction hypothesis yields a ground right-only
context C 6= � such that C[p] →∗∆ q′. Hence also C[p] →∗∆ q. Finally, sup-
pose p q is derived from p r and r q. The induction hypothesis yields
non-empty ground right-only contexts C1 and C2 such that C1[p] →∗∆ r and
C2[r] →∗∆ q. Hence C[p] →∗∆ q for the context C = C2[C1]. This concludes the
proof of (∗∗). �

Now let q ∈ Qe∞. So there exists a state p such that p p and p q.
Using (∗∗), we obtain non-empty ground right-only contexts C1 and C2 such
that C1[p] →∗∆ p and C2[p] →∗∆ q. Since all states are reachable, there exists
a ground term t ∈ T (F (2)) such that t →∗∆ p. Hence C2[t] →∗∆ q and, by the
observation made at the beginning of the proof, C2[t] is a well-formed term.
Since C2 is right-only, it follows that t = 〈⊥, u〉 for some term u ∈ T (F). Now
consider the infinitely many terms tn = C2[Cn1 [t]] for n > 0. We have tn →∗∆ q
and tn is right-only by construction. Hence q ∈ Q∞. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_impl_Q_inf_exec
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_reach_state_rule
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_exec_impl_Q_inf

188 A. Lochmann and A. Middeldorp

Corollary 1. Qe∞ = Q∞, provided that A is trim. ut

5 Normal Form Predicate

The normal form predicate NF can be defined in the first-order theory of rewrit-
ing as

NF(t) ⇐⇒ ¬∃u (t→ u)

and this gives rise to the following procedure:

1. An RR2 automaton is constructed that accepts the encoding of the rewrite
relation →.

2. The RR2 automaton of step 1 is projected into a tree automaton that accepts
the set of reducible ground terms.

3. Complementation is applied to the automaton of step 2 to obtain a tree
automaton that accepts the set of ground normal forms.

Since projection may transform a deterministic tree automaton into a non-
deterministic one, this is inefficient. In this section we provide a direct con-
struction of a tree automaton that accepts the set of ground normal forms of a
left-linear TRS, which goes back to Comon [5], and present a formalized correct-
ness proof. Throughout this section R is assumed to be left-linear.

We start with defining some preliminary concepts.

Definition 5. Given a signature F , we write F⊥ for the extension of F with a
fresh constant symbol ⊥. Given t ∈ T (F ,V), t⊥ denotes the result of replacing
all variables in t by ⊥:

x⊥ = ⊥ f(t1, . . . , tn)⊥ = f(t⊥1 , . . . , t
⊥
n) �

We define the partial order 6 on T (F⊥) as the least congruence that satisfies
⊥ 6 t for all terms t ∈ T (F⊥):

⊥ 6 t
t1 6 u1 · · · tn 6 un

f(t1, . . . , tn) 6 f(u1, . . . , un) �

The partial map ↑ : T (F⊥)× T (F⊥)→ T (F⊥) is defined as follows:

⊥ ↑ t = t ↑ ⊥ = t f(t1, . . . , tn) ↑ f(u1, . . . , un) = f(t1 ↑ u1, . . . , tn ↑ un) �

It is not difficult to show that t ↑ u is the least upper bound of comparable
terms t and u.

Definition 6. � Let R be a TRS over a signature F . We write T⊥ for the set
{t⊥ | t C ` for some `→ r ∈ R} ∪ {⊥}. The set T↑ is obtained by closing T⊥

under ↑.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:term_to_bot_term
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#ind:bless_eq
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:merge_terms
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:states

Formalized Proofs of the Infinity and Normal Form Predicates 189

Example 5. Consider the TRS R consisting of following rules:

h(f(g(a), x, y))→ g(a) g(f(x, h(x), y)))→ x h(f(x, y, h(a)))→ h(x)

We start by collecting the subterms of the left-hand sides:

T⊥ = {⊥, a, g(a), h(⊥), h(a), f(g(a),⊥,⊥), f(⊥, h(⊥),⊥), f(⊥,⊥, h(a))}

Closing T⊥ under ↑ adds the following terms:

f(g(a),⊥,⊥) ↑ f(⊥, h(⊥),⊥) = f(g(a), h(⊥),⊥)

f(⊥,⊥, h(a)) ↑ f(⊥, h(⊥),⊥) = f(⊥, h(⊥), h(a))

f(g(a), h(⊥),⊥) ↑ f(⊥, h(⊥), h(a)) = f(g(a), h(⊥), h(a))

Lemma 8. The set T↑ is finite.

Proof. If t ↑ u is defined then Pos(t ↑ u) = Pos(t) ∪ Pos(u). It follows that the
positions of terms in T↑ \ T⊥ are positions of terms in T⊥. Since T⊥ is finite,
there are only finitely many such positions. Hence the finiteness of T↑ follows
from the finiteness of F . ut

Although the above proof is simple enough, we formalized the proof below
which is based on a concrete algorithm to compute T↑. Actually, the algorithm
presented below is based on a general saturation procedure, which is of indepen-
dent interest.

Definition 7. Let f : U ×U → U be a (possibly partial) function and let S be a
finite subset of U . The closure Cf (S) is the least extension of S with the property
that f(a, b) ∈ Cf (S) whenever a, b ∈ Cf (S) and f(a, b) is defined.

The following lemma provides a sufficient condition for closures to exist. The
proof gives a concrete algorithm to compute the closure.

Lemma 9. If f is a total, associative, commutative, and idempotent function
then Cf (S) exists and is finite.

Proof. A straightforward induction proof reveals that for every a ∈ Cf (S) there
exist elements a1, . . . , an ∈ S such that a = f(a1, f(a2, . . . f(an−1, an) . . .)).
Select an arbitrary element b ∈ S. If b is among a1, . . . , an then, using the
properties of f , we obtain a ∈ {f(b, c) | c ∈ Cf (S \ {b})}. If b is not among
a1, . . . , an then a ∈ Cf (S \ {b}). Hence

Cf (S) = Cf (S \ {b}) ∪ {b} ∪ {f(b, c) | c ∈ Cf (S \ {b})}

for every b ∈ S. Since S is finite, this gives rise to an iterative algorithm to
compute Cf (S), which is given in Listing 5. In each iteration only finitely many
elements are added. Hence Cf (S) is finite. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:finite_S_finite_closure

190 A. Lochmann and A. Middeldorp

saturate(S):
I ← ∅
for all x ∈ S do

I ← {x} ∪ I ∪ {f(x, y) | y ∈ I}
return I

Listing 1. Iterative closure algorithm.

Since our function ↑ is partial, we need to lift it to a total function that
preserves associativity and commutativity. In our abstract setting this entails
finding a binary predicate P on U such that f(a, b) is defined if P (a, b) holds.
In addition, the following properties need to be fulfilled:

– P is reflexive and symmetric,

– if P (a, f(b, c)) and P (b, c) hold then P (a, b) and P (f(a, b), c) hold as well,
for all a, b, c ∈ U .

For the details we refer to the formalization. � � � �

Definition 8. � The tree automaton ANF(R) = (F , Q,Qf , ∆) is defined as
follows: Q = Qf = T↑ and ∆ consists of all transition rules

f(p1, . . . , pn)→ q �

such that f(p1, . . . , pn) is no redex and q is the maximal element of Q satisfying
q 6 f(p1, . . . , pn).4

Example 6. For the TRS R of Example 5, the tree automaton ANF(R) consists
of the following transition rules:

a→ 1 g(p)→

{
2 if p = 1

0 if p /∈ {1, 6, 9, 10}
h(p)→

{
4 if p = 1

3 if p /∈ {1, 8, 10}

f(p, q, r)→



5 if p = 2, q /∈ {3, 4}
6 if p 6= 2, q ∈ {3, 4}, r 6= 4

7 if q /∈ {3, 4}, r = 4

8 if p = 2, q ∈ {3, 4}, r 6= 4

9 if p 6= 2, q ∈ {3, 4}, r = 4

10 if p = 2, q ∈ {3, 4}, r = 4

0 otherwise

Here we use the following abbrevations:

0 = ⊥ 3 = h(⊥) 6 = f(⊥, h(⊥),⊥) 8 = f(g(a), h(⊥),⊥)

1 = a 4 = h(a) 7 = f(⊥,⊥, h(a)) 9 = f(⊥, h(⊥), h(a))

2 = g(a) 5 = f(g(a),⊥,⊥) 10 = f(g(a), h(⊥), h(a))
4 Since states are terms from T∞ here, Definition 5 applies.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#loc:closure_under_pred_fun
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#def:total_f
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:pclosure_subset_tclosure
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:def_impl_tclosure_subset_pclosure
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:nf_ta
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:nf_rules

Formalized Proofs of the Infinity and Normal Form Predicates 191

As can be seen from the above example, the tree automaton ANF(R) is not
completely defined. Unlike the construction in [5], we do not have an additional
state that is reached by all reducible ground terms.

Before proving that ANF(R) accepts the ground normal forms of R, we first
show that ANF(R) is well-defined, which amounts to showing that for every
f(p1, . . . , pn) with f ∈ F and p1, . . . , pn ∈ T↑ the set of states q such that
q 6 f(p1, . . . , pn) has a maximum element with respect to the partial order 6.

Lemma 10. For every term t ∈ T↑ the set {s ∈ T↑ | s 6 t} has a unique
maximal element.

Proof. Let S = {s ∈ T↑ | s 6 t}. Because ⊥ 6 t and ⊥ ∈ T↑, S 6= ∅. If s1, s2 ∈ T
then s1 6 t and s2 6 t and thus s1 ↑ s2 is defined and satisfies s1 ↑ s2 6 t. Since
T↑ is closed under ↑, s1 ↑ s2 ∈ T↑ and thus s1 ↑ s2 ∈ P . Consequently, S has a
unique maximal element. ut

The next lemma is a trivial consequence of the fact that ANF(R) has no
epsilon transitions.

Lemma 11. The tree automaton ANF(R) is deterministic. �

Lemma 12. If t ∈ T (F) with t →∗∆ q and s⊥ 6 t⊥ for a proper subterm s of
some left-hand side of R then s⊥ 6 q.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). We have t →∗∆
f(q1, . . . , qn) →∆ q. We procede by case analysis on s. If s is a variable then
s⊥ = ⊥ and, as ⊥ is minimal in 6, we obtain s⊥ 6 q. Otherwise we must have
root(s) = f from the assumption s⊥ 6 t⊥. So we may write s = f(s1, . . . , sn).
The induction hypothesis yields s⊥i 6 qi for all 1 6 i 6 n. Hence s⊥ =
f(s⊥1 , . . . , s

⊥
n) 6 f(q1, . . . , qn). Additionally we have s⊥ ∈ Q by Definition 8

as s is a proper subterm of a left-hand side of R. Since f(q1, . . . , qn) → q is a
transition rule, we obtain f(s1, . . . , sn)⊥ 6 q from the maximality of q. �

Using the previous result we can prove that no redex of R reaches a state in
ANF(R).

Lemma 13. If t ∈ T (F) is a redex then t→∗∆ q for no state q ∈ T↑.

Proof. We have `⊥ 6 t for some left-hand side ` of R. For a proof by contradic-
tion, assume t→∗∆ q. Write t = f(t1, . . . , tn). We have t→∗∆ f(q1, . . . , qn)→∆ q
and obtain `⊥ 6 f(q1, . . . , qn) by a case analysis on ` and Lemma 12. Therefore
the transition rule f(q1, . . . , qn)→∆ q cannot exist by Definition 8. �

Lemma 14. If t→∗∆ q and t ∈ T (F) then q 6 t.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). We have t →∗∆
f(q1, . . . , qn)→∗∆ q. The induction hypothesis yields qi 6 ti for all 1 6 i 6 n and
thus also f(q1, . . . , qn) 6 f(t1, . . . , tn). We have q 6 f(q1, . . . , qn) by Definition 8
and thus q 6 t by the transitivity of 6. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:nf_ta_det
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:subt_less_eq_res_less_eq
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_sound1
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:term_instance_of_reach_state

192 A. Lochmann and A. Middeldorp

Lemma 15. If t ∈ NF(R) then t→∗∆ q for some state q ∈ T↑.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). Since t1, . . . , tn ∈
NF(R) we obtain f(t1, . . . , tn)→∗∆ f(q1, . . . , qn) from the induction hypothesis.
Suppose f(q1, . . . , qn) is a redex, so l⊥ 6 f(q1, . . . , qn) for some left-hand side ` of
R. From Lemma 14 we obtain qi 6 ti for all 1 6 i 6 n and thus f(q1, . . . , qn) 6
f(t1, . . . , tn). Hence `⊥ 6 f(t1, . . . , tn). This however contradicts the assumption
that t is a normal form. (Here we need left-linearity of R.) Therefore f(q1, . . . , qn)
is no redex and thus, using Lemma 10, there exists a transition f(q1, . . . , qn)→ q
in ∆ and thus t→∗∆ q. �

Theorem 4. If R is a left-linear TRS then L(ANF(R)) = NF(R).

Proof. Let t ∈ T (F). If t ∈ NF(R) then t →∗∆ q for some state q ∈ T↑ by
Lemma 15. Since all states in T↑ are final, t ∈ L(ANF(R)). �

Next assume t /∈ NF(R). Hence t = C[s] for some redex s. According to
Lemma 13 s does not reach a state in ANF(R). Hence also t cannot reach a state
and thus t /∈ L(ANF(R)). �

6 Conclusion and Future Work

In this paper we presented formalized correctness proofs of the regularity of
the infinity and normal form predicates in the first-order theory of rewriting.
For the former we also provided an executable version, which is important for
checking certificates that will be provided in a future version of FORT. Our
results are an important step towards the ultimate goal of proving the correctness
of the decisions reported by FORT, but much work remains to be done. We are
developing a certification language which reflects the high-level proof steps in the
decision procedure for the full first-order theory of rewriting. This language will
be independent of FORT. In particular, details of the intermediate tree automata
computed by FORT will not be part of certificates. This keeps the certificates
small and avoids having to implement a verified (and expensive) equivalence
check on tree automata. We will provide executable Isabelle code for each of
the constructs in the certification language, and so this involves replaying the
automata constructions in Isabelle.

We conclude the paper by providing some details of the size of our formal-
ization in Table 1.

Acknowledgments. We thank Bertram Felgenhauer and T. V. H. Prathamash for
contributions in the early stages of this work. The comments by the reviewers
helped to improve the presentation of the paper.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_sound2
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_lang_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_lang_sound
https://doi.org/10.1017/CBO9781139172752

Formalized Proofs of the Infinity and Normal Form Predicates 193

Table 1. Formalization data.

theory lines facts defs

Saturation.thy 233 22 3
Tree Automata Pumping.thy 371 40 2

NF.thy 404 40 7
RR2 Infinite.thy 603 48 5

RR2 Infinite Impl.thy 240 14 2

total 1851 164 19

2. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 years
of SMT-COMP. Journal of Automated Reasoning 50(3), 243–277 (2013).
https://doi.org/10.1007/s10817-012-9246-5

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5

4. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

5. Comon, H.: Sequentiality, monadic second-order logic and tree au-
tomata. Information and Computation 157(1-2), 25–51 (2000).
https://doi.org/10.1006/inco.1999.2838

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008), http:
//tata.gforge.inria.fr/

7. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proc. 5th IEEE Symposium on Logic in Computer Science. pp. 242–248 (1990).
https://doi.org/10.1109/LICS.1990.113750

8. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable (ex-
tended version). Tech. Rep. I.T. 197, LIFL (1990)

9. Endrullis, J., Zantema, H.: Proving non-termination by finite automata. In:
Fernández, M. (ed.) Proc. 26th International Conference on Rewriting Techniques
and Applications. Leibniz International Proceedings in Informatics, vol. 36, pp.
160–168 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.257

10. Felgenhauer, B., Middeldorp, A., Prathamesh, T.V.H., Rapp, F.: A verified ground
confluence tool for linear variable-separated rewrite systems in Isabelle/HOL.
In: Mahboubi, A., Myreen, M.O. (eds.) Proc. 8th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. pp. 132–143 (2019).
https://doi.org/10.1145/3293880.3294098

11. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis
with state-compatible automata. Information and Computation 253(3), 467–483
(2017). https://doi.org/10.1016/j.ic.2016.06.011

12. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination
and complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (eds.) Proc. 25th International Conference on Tools and Algorithms for the

https://doi.org/10.1007/s10817-012-9246-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1006/inco.1999.2838
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1016/j.ic.2016.06.011

194 A. Lochmann and A. Middeldorp

Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
11429, pp. 156–166 (2019). https://doi.org/10.1007/978-3-030-17502-3 10

13. Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Proc. 25th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Lecture Notes in Computer Science, vol. 11429, pp. 25–40 (2019).
https://doi.org/10.1007/978-3-030-17502-3 2

14. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewrit-
ing systems. Information and Computation 178(2), 499–514 (2002).
https://doi.org/10.1006/inco.2002.3157

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

16. Rapp, F., Middeldorp, A.: Automating the first-order theory of left-linear right-
ground term rewrite systems. In: Kesner, D., Pientka, B. (eds.) Proc. 1st In-
ternational Conference on Formal Structures for Computation and Deduction.
Leibniz International Proceedings in Informatics, vol. 52, pp. 36:1–36:12 (2016).
https://doi.org/10.4230/LIPIcs.FSCD.2016.36

17. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) Proc. 9th International Joint Conference on Automated Reasoning. LNAI,
vol. 10900, pp. 81–88 (2018). https://doi.org/10.1007/978-3-319-94205-6 6

18. Terese (ed.): Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

19. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International
Conference on Theorem Proving in Higher Order Logics. Lecture Notes in Com-
puter Science, vol. 5674, pp. 452–468 (2009). https://doi.org/10.1007/978-3-642-
03359-9 31

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_2
https://doi.org/10.1006/inco.2002.3157
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
http://creativecommons.org/licenses/by/4.0/

	Formalized Proofs of the Infinity and Normal Form Predicates in the First-Order Theory of Rewriting
	1 Introduction
	2 Preliminaries
	3 Infinity Predicate
	4 Executable Infinity Predicate
	5 Normal Form Predicate
	6 Conclusion and Future Work
	References

