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Abstract. Fixpoint logics have recently been drawing attention as com-
mon foundations for automated program verification. We formalize fold/
unfold transformations for fixpoint logic formulas and show how they
can be used to enhance a recent fixpoint-logic approach to automated
program verification, including automated verification of relational and
temporal properties. We have implemented the transformations in a tool
and confirmed its effectiveness through experiments.

1 Introduction

A wide range of program properties can be verified by reducing to satisfiabil-
ity /validity in a fixpoint logic [3-6,18,20,22,23, 29, 35]. In this paper, we build
on top of MuArith, a first-order logic with least/greatest fixpoint operators and
integer arithmetic, recently proposed by Kobayashi et al. [22]. It offers a powerful
tool to handle the full class of modal p-calculus properties of while-programs (im-
perative programs with loops but without general recursion). In contrast, earlier
studies on temporal program verification require different methods for each sub-
class of the modal p-calculus properties, such as LTL [12,16,28], CTL [2,3,13,34],
and CTL* [11]. The recent program verifier based on MuArith [22] is effective
in practice, i.e., by exploiting general-purpose solvers for Satisfiability Modulo
Theories (SMT) and Constrained Horn Clauses (CHC), it can outperform tools
designed specifically for CTL verification of C programs [13].

Despite these promising results, the generality of the fixpoint logic approach
come at a cost. Since fixpoint logic formulas obtained by reduction from various
verification problems often involve nested fixpoint operators, it could be chal-
lenging to check the validity of these formulas automatically. To enhance the
capability of fixpoint logic provers, in this paper, we propose novel fold/unfold
transformations and prove their correctness. These transformations are generally
used to simplify relational verification, and in particular, to reduce the num-
ber of recurrences used in the program (or a set of programs) under analysis.
Originally proposed for logic programming [8, 19, 32], they have been recently
adopted for determining the satisfiability of CHC [15,26] and allow discovery of
relational invariants for a pair of loopy (or recursive) programs, as opposed to
invariants within each individual program. Our transformations can be regarded
as extensions of such transformations for a fixpoint logic, where quantifiers and
arbitrarily nested least/greatest fixpoint operators are allowed.
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We also present a procedure that seeks a way to apply the proposed fold/
unfold transformations efficiently. Besides non-determinism in the choice of which
fixpoint formulas to unfold, our “fold” operation replaces a formula ¢ with P

(where P is the predicate defined by P = ¢) and requires various reasoning to
convert the current goal formula to a form E[¢], where the form of E can be more
complex than in the case of fold/unfold transformations for logic programming
or CHC.

We have implemented the transformations and integrated them with the
program verifier Mu2CHC [22] based on MuArith. We considered a number of
examples of MuArith formulas which include formulas obtained from program
verification problems for checking relational and temporal properties. Our new
transformations allowed Mu2CHC to solve these formulas, which would not be
doable otherwise.

To sum up, our contributions are: (i) a formalization of fold/unfold transfor-
mations for a fixpoint logic and proofs of their soundness, (ii) demonstration of
the usefulness of the proposed transformations for verification of relational and
temporal properties of programs, and (iii) a concrete procedure for automated
transformation and its implementation and experiments.

The rest of this paper is structured as follows. Section 2 reviews the defini-
tion of the first-order fixpoint logic MuArith [22], and reductions from program
verification problems to validity checking in MuArith. Section 3 formalizes our
transformations and proves their correctness. Section 4 shows applications of
our transformations to verification of relational and temporal properties of re-
cursive programs. Section 5 reports an implementation and experimental results.
Section 6 discusses related work and Section 7 concludes the paper.

2 First-Order Fixpoint Logic MuArith

We review the first-order fixpoint logic MuArith [22] in this section. MuArith is a
variation of Mu-Arithmetic studied by Lubarsky [25] and Bradfield [7], obtained
by replacing natural numbers with integers.

2.1 Syntax
The set of (propositional) formulas, ranged over by ¢, is defined in the following
grammar.
¢ (formulas) == a; > as | P®(ay,...,ax) |
P1V 2 |1 A2 | Vap | 3a.p
P®) (k-ary predicates) = X®) | X(z1,...,z1).¢ |
pX® () | v X E (2, k)0
a (arithmetic expressions) :=n | x| a1 + ag | a1 — as

The metavariable ¢ represents a proposition, and P denotes a predicate on
(a tuple of) integers. We write T for 0 > 0 and L for 0 > 1. In examples,
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we may also use other relational symbols such as > and =. The meta-variable
z denotes an integer, and the meta-variable X(¥) denotes a k-ary first-order
predicate variable. We write ar(X (k)) for the arity of the predicate variable
X®) je., k; we often omit the superscript (k) and just write X for a predicate
variable. The predicate X ®) (z1,...,zx). (resp. vX®) (x1,. .., 21).00) denotes
the least (resp. greatest) predicate X such that X (x1,...,x) equals .

Ezample 1. Let pX(z).(x = 0V X(x — 1)) denote the least predicate X, such
that X(z) =z =0vX(z—-1)=2=0Ve—-1=0VX(z—-2)=- - ie,
A(z).x > 0. In contrast, vX (z).(x =0V X (x — 1)) denotes A(z).T. O

We write FV(¢p) for the set of free (predicate and integer) variables in
©; Vo, Iz, nX® v X*) and Az are binders. We sometimes write Z for a se-
quence of variables z1,...,zr. We often write ¢ and X for the De Morgan
dual of a formula ¢ and a predicate variable X, respectively. For example,
puX(@)x=0VX(x—1) = vX(z)x # 0 A X(x — 1). Here, X is a predicate
variable, so the righthand side is a-equivalent to vX (z).z # 0 A X (z — 1). The
overline for X is used to indicate that it corresponds to the dual of X in the
original formula pX (z).z =0V X(x — 1).

2.2 Semantics

In this subsection, we define the formal semantics of formulas. Let Z be the set
of integers, and B = {Tg, Lp}, with Lg Cg Tg. Let D}, be the set 7k — B of
functions (where Z* denotes the set of tuples consisting of k integers). We define
the partial order Cj on Dy by:

fCrgeVny,...,ng €Z.f(n1,...,nk) Cg g(na,...,ng).

Note that (Dy, Cg) is a complete lattice, with Axy. - Axg. L and Az - - A\ag. Tw
as the least and greatest elements. We write L and Tj for Azy. - Azg.Lg and

Ax1.- - Axp.Tg, respectively. We also write M) (resp., I_I(k)) for the greatest

lower (resp., least upper) bound with respect to Cg. We often omit k& and B and

just write T, L, C,M, L, etc.. We often identify B and Dy = Z° — B. We write

D, — Dy for the set of monotonic functions from Dy to Dy.

We write Env for the set of functions that map each integer variable to an
integer, and each k-ary predicate variable to an element of Dy. For a formula ¢
(resp., a predicate P and an expression a) and an environment p € Env such that
FV(p) C dom(Env) (resp., FV(P) C dom(Env) and FV(a) C dom(Env)),
Fig. 1 defines the semantics [-]p of ¢ (resp., P and a), where for a mono-
tonic function F' € Dy, — Dy, LFP®(F) = |_|(k){f €Dy | f 3k F(f)} and
GFPW (F) = |_|(k){f €Dy | f Cr F(f)}. When ¢ and P are closed (i.e., do not
contain free variables), we just write [¢] and [P] for [¢]@ and [P]0 respectively.
By abuse of notation, we often write ¢ J ¢ if [p]p 3 [¢]p for any (valid) environ-
ment p such that FV(o)UFV (¢) C dom(p), and ¢ = if [¢]p = []p; similarly
for predicates. For example, 3z.(z > zAz>y)=(x>y+1) d(z >y +2).
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T if [a1]p > [az
lar = az]p = {J- if %M%Z < HZ
[P(as, ... ar)lp = [Plp([ailp, ..., [ar]p)
[X]p = p(X)
[e1 V e2]p = [pilp U [w2]p
[e1 A p2]p = [p1lp T[]
Vz.¢lp = | nezlelp{z — n}

Br¢lp = | |nezlelp{z — n}
Mz, ..., zk).0]p = A(n1,...,nk) € Zk.[[cp]]p{xl N, ., T > Mg )
[uX® (@1, wn)lp =
LFP® (\f € DiA(na,...,np).Jelp{X — fz1 > na, ... x5 — ng})
[vX® (@1,...,z1).0]p =
GFP® (\f € DpA(na, ..., ne).[e]p{X — fiz1 — n1,... 2z, — ni})
[n]p=n
[x]p = p()
lar + az]p = [ar]p + [az]p
lar — az]p = [a1]p — [az]p

Fig. 1. The semantics of formulas.

Ezample 2. Recall formula pX (x).x =0V X(z — 1) from Example 1. We have
[uX(z).x =0V X(z—1)]0 = LFPY(F), with F = Af € Dy.dn € Z.(n =
0)U f(n—1). Since for any m, F™(Azx € Z.1) = An € Z.0 <n < m—1, we have
LFPW(F) = An € Z.0 < n (here, < denotes the semantic relation on integers).
In contrast, [vX (z).z =0V X (z — 1)]0 = GFPY(F) = \n € Z.T. 0

2.3 Program Verification as Validity Checking of MuArith Formulas

Various verification problems for first-order recursive programs can be reduced to
validity of MuArith formulas. We refer the reader to [22] for a general reduction
schema from temporal properties to MuArith formulas. However, as shown in
this subsection, some formulas require additional handling that motivates the
need for new transformations to be presented in Section 3.

Consider the following functional program (written in the syntax of OCaml)
that multiplies two numbers.

let rec mult(x, y) = if y=0 then 0 else x + mult(x,y-1)

Then, the ternary relation Mult(x,y,r) that expresses “mult(z,y) terminates
and returns r” is expressed as the following MuArith formula:

uMult(z,y,7).(y =0Ar=0)VIs.(y ZOAr =x+ s AN Mult(z,y — 1,3)).
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This lets us express a partial correctness property “if P(x,y) holds and mult(z,y)
terminates and returns r, then Q(z, y,r) holds” by: Vz, y, r.P(x, y) A Mult(z,y,r)
= Q(z,y,r). It can further be rewritten to the following MuArith formula:

Y,y rP(e,y) V Mult(z,y,r) v Q(z,y,7), (1)

where P and Mult are respectively De Morgan duals of P and Mult; Mult can
be expressed by:

vMult(z,y,r).(y #O0Vr#0)AVs.(y =0Vr #z+sV Mult(x,y —1,s)).

The total correctness “if P(x,y), then mult(x,y) terminates and returns r,
such that Q(z,y,r)” can be expressed by: Va,y.P(z,y) = Ir.Mult(z,y,r) A
Q(z,y,r), which is equivalent to the MuArith formula:

Va,y.P(x,y) V (Fr.-Mult(z,y,7) A Q(z,y,7))

As a special case, the termination property “if y > 0 then mult(z,y) terminates”
can be expressed by:

Ve, y.y < 0V Ir.Mult(x,y,r). (2)

We can also express relational properties of programs such as the equivalence
of two programs. Let us consider another implementation of multiplication:

let mult2(x,y) =
let rec multacc(x,y,a) = if y=0 then a else multacc(x,y-1,x+a)
in multacc(x,y,0)

Then predicate Multacc(zx,y,a,r) which represents “multacc(z,y,a) terminates
and returns r” can be expressed by:

uMultace(z,y,a,7).(y =0A7r=a)V (y # 0 A Multacc(z,y — 1,z + a,r)).

Thus, the equivalence of mult and mult?2 can be expressed by: Va, y, r. Mult(z,y, 1)
< Multacc(x,y,0,7), which can be expressed by the conjunction of the MuArith
formulas:

Ve, y, r.Mult(z,y,r) V Multace(x, y,0,7) (3)
YV, y, r.Mult(z,y,r) V Multace(x, y,0,7) (4)

where Multacc is the De Morgan dual of Multacc, defined analogously to Mult.

Motivation. Kobayashi et al. [22] presented a method for proving the validity of
MuArith formulas. It can prove formula (1) valid: since there are neither y nor 3,
it is reducible to the problem of satisfiability of CHC [4]. However, the method
is not powerful enough on formulas (2) and (3) for termination and program
equivalence, respectively. It first tries to eliminate existential quantifiers and u-
formulas, so that the resulting formula can be reduced to the satisfiability of
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CHC. But it fails when the witness of an existential quantifier (i.e., r such that
Jr.¢) is not bounded by a linear expression, e.g., the witness for 3r is a non-linear
expression x X y in the case of (2). This is unfortunate, as methods specialized
on proving program termination, e.g. [18], can easily prove the termination of
program mult. Thus, in order to exploit the advantage of the uniform approach
to program verification based on MuArith, we need to strengthen the method
for proving MuArith formulas.

2.4 Auxiliary Definitions

We introduce additional definitions on formulas, which will be used later in
our formalization of fold /unfold-like transformations. A (k, £)-context (or, just a
context) is an expression obtained from an f-ary predicate by replacing a k-ary
predicate variable with [] (in other words, a context is a predicate that may con-
tain [] as a special predicate variable). For a context C' and a predicate P (that
does not contain free occurrences of variables bound in C'), we write C[P)] for the

predicate obtained by replacing [] with P. For example, C 2 Az, y).3z[|(z, z,y)
is a (3, 2)-context, and C[A(z,y, z).(x >y Ay > 2)] is Az, y).3z.(A(z,y, 2).(z >
y Ay > z))(x, z,y), which is equivalent to \(z,y).3z.x > 2 Az > y.

For a function FF € Dy — Dy, we say that F' is continuous if it pre-
serves the least upper bound, ie., F([|;csf) = [es F(f) for any (possi-
bly infinite) set S C Dy. Similarly, we say that F' is co-continuous if it pre-
serves the greatest lower bound, i.e., F([];cs f) = [1;cs £ (f). For example,
A.fANg € Dy — Dy and A\f.f A g is both continuous and co-continuous for
any ¢ € Dg. In contrast, Af.3z.f(z) € D; — Dy is continuous but not co-
continuous;* A\f.Vz.f(z) € D; — Dy is co-continuous but not continuous. We
say that a context C' is continuous if its semantics, i.e., Af.[C[X]|{X — f} is;
analogously for co-continuity.

The following lemma (which follows immediately from the definition) pro-
vides a syntactic condition that is sufficient for the co-continuity of a context.

Lemma 1. Let C be a (k,f)-context. If C' can be generated by the following
syntaz, then C is co-continuous.®

C:=1]]Mz1,...,25).C| Clar,...,ax) | CAp | o ANC|CV |V C|Vz.C

Remark 1. The syntax and semantics of MuArith was defined based on hierar-
chical fixpoint equations (HES) in [22]. The above semantics is equivalent to that
of [22], modulo the standard conversions between fixpoint formulas and HES.

Y 1In fact, let F = A\f3z.f(x) € D1 — Do and S = {\z.x > n | n € Z}. Then
F(f)=Tforany f € S, but F([];cs f) = F(Az.l) = L.

5 Here, for the sake of simplicity, we mix the syntax of contexts that yield predicates
and propositions.
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3 Fold/Unfold-Like Transformations

In this section, we present new fold/unfold-like transformations for MuArith,
to enhance the power of MuArith validity checkers. We first informally review
fold/unfold transformations for logic programming and explain what kind of
transformation we wish to apply to MuArith formulas in Section 3.1. We then
prove theorems that justify such transformations in Sections 3.2 and 3.3.

3.1 Overview of Transformations for MuArith

Revisiting Fold/Unfold Transformations for Logic Programming The
original concept [32] is presented in the following example, where each recurrence
is represented by a CHC (i.e., an implication involving uninterpreted predicates
Even and Odd).

Even(z) «x =0 Even(x) < x > 0, Bven(z — 2)
Odd(z) <z =1 Odd(z) < = > 0,0dd(z — 2)

We wish to prove that | < Fven(x), Odd(z). Many of the existing CHC solvers,
such as HoICE [9] and Z3 [24], fail to prove it as they do not handle the divisibility
constraints well. After defining a new predicate FvenOdd as EvenOdd(x) <
FEven(z), Odd(z) and unfolding Fven, we obtain the following new CHCs.

EvenOdd(z) < x =0, Odd(x) EvenOdd(z) < x > 0, Even(z — 2), Odd(z)

By unfolding Odd(z) in the first CHC, its body becomes inconsistent. By un-
folding Odd(z) in the second CHC, we obtain the following new CHCs.

EvenOdd(x) < x > 0, Bven(z —2),z =1
EvenOdd(z) <= x > 0, Even(z — 2), Odd(z — 2)

By unfolding Fven(x —2), the body of the first CHC becomes inconsistent. Now,
the part “Odd(x — 2), Even(x — 2)” in the second CHC matches the definition
of FvenOdd, so we can “fold” it and obtain the following new CHC.

Fven0dd(z) < x > 0, FvenOdd(z — 2)

The least solution for FvenOdd is Ax.l, hence we have now obtained 1 <
FEven(z), Odd(z) without synthesizing interpretations of Even and Odd over the
divisibility constraints.

Transformations for MuArith. The above example can be reformulated in
MuArith. Predicates Fven and Odd are expressed as follows.

uEven(z).x =0V (x > 0 A Even(z — 2)) (5)
pOdd(z).x =1V (x> 0A Odd(z — 2)) (6)
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We wish to prove that Fven(z)A Odd(x) is inconsistent, i.e. Va.Even(xz)V Odd(x)
is valid where Even and Odd are:

vEven(x).x #0A (x <0V Even(x — 2)) (7)
vOdd(z).x #1A (x <0V Odd(z — 2)) (8)
Now, let Y (z) 2 Even(x) V Odd(x), which can be rewritten as follows.

Y ()

(x Z0A(x <0V Even(z —2))V(x#£1A(x <0V Odd(z — 2)))
(x <O0Vax#1V Even(z —2))) A(z <0V Even(x —2) vV Odd(z — 2))
=x <0V Even(x —2)V Odd(x —2) =2 <0VY(zx—2)

Based on this, we wish to replace Y with vY (z).x < 0V Y(z — 2); then the
validity of Vz.Y (z) would follow immediately. As we will see later in Section 3.3,
this transformation is indeed sound.

Intuitively, the above transformation works as follows. Given a formula C[X],
which contains a fixpoint formula X defined by the equation X = D[X], intro-
duce a new predicate Y, such that Y = C[X]. Then, unfold X to D[X] and
obtain Y = C[D[X]]. Then, rewrite C[D[X]] to a formula of the form E[C[X]].
By “folding” C[X], we obtain Y = E[Y], which serves as a new definition clause
for Y. We wish to apply this kind of transformation not only to v-only formulas
like above, but also to formulas involving p and quantifiers, as discussed below.

Recall formula (2) from Section 2.3. Let X (z,y) 2 Ir. Mult(x,y,r). Then,

X(z,y)=FIr((y=0Ar=0)VI3s.(y Z0ANT =2+ s A Mult(z,y — 1, 5)))
=y=0V(y#0AIs.Mult(z,y — 1,5))
=y=0V(y#0AX(z,y—1)).

As justified later in Section 3.2, we can then replace X with uX (z,y).y = 0V (y #
0N X(xz,y—1)). We are then left with formula Vz,y.y < 0V X(z,y), which can
then be proved valid by Mu2CHC [22], the existing MuArith validity checker.

Let us also recall a generalized version of formula (3):

Va,y,a,r.Mult(z,y,r) V Multace(x, y,a,r + a),

which contains p and v. Let Y (z,y, a, ) = Mult(x,y,r)V Multacc(x,y, a,r + a).
Then, we have:

Y(z,y,a,7) = (yA0Vr£0)AVs.(y=0Vr#£z+sV Mult(z,y —1,s)))
Viy=0Ar+a=a)V (y#0A Multacc(z,y — 1, 4+ a,r + a))
=(y=0=>r#0Vr4+a=a)
ANy # 0= (Mult(x,y — 1,r — x) V Multacc(x,y — 1,2 + a,r + a)))
=y#0=>Y(x,y— 1,z 4+a,r—x)

As justified in Section 3.3, we can replace Y with vY (z,y,a,7).(y = 0VY (x,y —
1,2+ a,r — x)), giving us Vz,y, a,r.Y (z,y, a,r) immediately.
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Although the above transformations are sound, the soundness of fold /unfold
transformations for MuArith is delicate in general. For example, consider formula
Jz.x >y A X(z,y), where:

Xél/X(x,y).xZy+1/\X(way+1)~

It is obviously false since there exists no x that satisfiesz > yAx >y+ 1Az >
Y+2A---=Vn>0ax>y+n. Let Y(y) 2 >y A X(z,y). Then,

Y(y)=Fa(z>yAz>y+1AX(z,y+1))
=Ja(z>y+1AX(z,y+1)) =Y (y+1).

Based on this, one may be tempted to replace Y with vY (y).Y(y +1) = A\y.T,
but that is obviously wrong.

In the next two subsections, we present theorems that justify all the trans-
formations above except the last (invalid) one.

3.2 Transformations for pu-Formulas

In this subsection, we prove a theorem that enables the replacement of a pred-
icate of the form C[uX.D[X]] with one of the form pY.E[Y] and applies it to
justify the transformation for Jr.Mult(x,y,r) discussed in the previous subsec-
tion. The corresponding transformation for v-formulas is discussed in the next
subsection. The theorem is stated as follows.

Theorem 1. Let C,D and E be (k,£), (k, k), and (¢, £)-contexts respectively. If
C[D[X]] Z¢ E[C[X]] holds for any k-ary predicate X, then we have:

CluX (1, ..., zk). DX (21, ..., 2)] De pY (y1,-- -, ye)-E[Y] (Y1, -, ye)-

The theorem follows easily from the definition of the semantics of the least
fixpoint operator.

Proof. Suppose C[D[X]] 3 E[C[X]]. Then, we have
CluX (3).DIX](3)] = CID[X (). DIX)E)] 3 FICX (7). DIX]E)].

Since pY (y).E[Y](y) is the least predicate Y such that ¥ I E[Y], we have
ClpX (z).D[X|(z)] 3 nY (¥).E[Y](y) as required. O

To see how the theorem above enables fold /unfold-like transformations, sup-
pose that we wish to prove a formula of the form Y = C[uX (Z).D[X](Z)]. Tt
suffices to prove C[D[uX (Z).D[X](Z)]], obtained by unfolding X . If the assump-
tion C[D[X]] 2 E[C[X]] holds, we can change the goal to E[C[uX (z).D[X](Z)]].
Thus, by the theorem, it suffices to prove pY (3).E[Y](y), which is obtained by
“folding” C[uX.D[X](Z)] to Y. Note that the theorem guarantees only that
the transformation provides an underapproxzimation of the original predicate. A
stronger condition is required for the equivalence; see Corollary 1 given later.
Note also that finding an appropriate context E may not be easy in general; we
discuss how to mechanically find E in Section 5.
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Ezample 3. Recall again formula (2) from Section 2.3. Let us define C, D, and
E by:

C 2 Ma,y)3r[(.y,7)
B2 Xa,y)y =0V (y #0A [,y — 1))
D2 Mz, y,r)(y=0Ar=0)VIs.(y£0Ar=ac+sA[](z,y —1,9)).

Then, for any ternary predicate X, we have:

CIDIX])] = AMz,y).Ir(y=0Ar=0)VIs.(y ZO0Ar=a+sAX(z,y —1,9))
=ANx,y)y=0VIrs(yZO0Ar=x+sANX(z,y—1,5))
=Az,y)y=0V(y#0ATs.X(x,y —1,s)) = E[C[X]].

By Theorem 1, we have C[D[Mult]] 3 uY (z,y).y =0V (y #0AY (x,y)). Thus,
the goal Vz,y.y < 0V 3r.Mult(z,y,r) has been reduced to:

Va,yy <OV (uY(z,y)y =0V (y #0AY(z,9)))(2,y),
which can be proved valid by Mu2CHC. ad

3.3 Fold/Unfold for v-Formulas

We now prove a theorem that allows us to replace a predicate of the form
ClvX.D[X]] with one of the form vY.E[Y]. It is similar to Theorem 1, but
requires more conditions. Recall Lemma 1, which provides a sufficient syntactic
condition for the co-continuity.

Theorem 2. Let C,D and E be (k,?), (k,k), and (¢,£)-contexts respectively.
Suppose that the following conditions hold: (i) C[T™] 3, T (ii) C[D[X]] 2,
E[C[X]], and (iii) C is co-continuous. Then ClvX (x1,...,z,).D[X](x1,...,21)]
J VY(ylv SRR y@)E[Y](yla s ayf)'

Proof. For F € Dy — Dy, f € Dy and an ordinal v, we define F7(T®)) in-
ductively by: FO(T®) = T7®)  pr+1(TE) = F(FY(T®)), and FY(TH®) =
My FY(TM) if 5 is a limit ordinal. By abuse of notation, we write DY[T ()]
for [D](T®)) if D is a (k,k)-context. Since there exists an ordinal ~ such
that vX.D[X] = D?[T®] and vY.E[Y] = EY[T®)], it suffices to show that
CIDY[TW]] 3, EY[T®] holds for any ordinal v, by transfinite induction on 1.
The base case where 7 = 0 follows immediately from the first condition. If ~ is
a successor ordinal v/ + 1, then

CID[T]] 2 E[C[DY[T]]] 2 E[EY[T]] = E"[T).

Here, we have used the induction hypothesis in the second inequality. If « is a
limit ordinal, then we have:

CIDYT]] = C[My<r (DY [T]] = Myrcy CIDY[T]] 2 Moy BY[T] = E7[T].

Here we have used the co-continuity in the second inequality. We have thus
proved C[DY[T®]] T, EY[T®] holds for any ordinal . We, therefore, have
ClvX(z).D[X](Z)] 2 vY (y).E[Y](y) as required. O
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Ezample 4. Recall the formula Vx,y,a,r.Mult(z,y,r) V Multacc(z,y,a,r + a)
discussed in Section 3.1. Let us define C, D, E by:

ce Az, y,a,7).[(z,y,r) V Multace(z, y, a,r + a)
DE Ny, ). ((y £0Vr£0)AVs.(y=0Vr#a+sV[)(z,y—1,5))
EZ Az, y,a,m).y=0V[](z,y — 1, +a,r — x)

They satisfy all the three conditions of Theorem 2. In particular, for any ternary
predicate X, we have

CIDIX]] = Mz, y,a,7).((y # 0V r # 0)A
Vs.(y=0Vr#az+sVX(z,y—1,9)))V Multacc(x,y,a,r+ a)
MMz, y,a,7).((y 0V r £0)A
Vs.(y=0Vr#£z+sVX(z,y—1,9)))
Viy=0Ar+a=a)V(y#0A Multacc(x,y — 1,2 + a,r + a))
= Mz,y,a,7)y=0V X(z,y — 1,7 —x)V
Multacc(z,y — 1,z + a,r + a))
E[C[X]],

based on the corresponding transformations shown in Section 3.1. We have thus
Va,y,a,r.Mult(z,y,r) V Multacc(z,y,a,r + a) I Ve,y,a,r.(VY (z,y,a,7).y =
OVY(z,y— 1,2+ a,r — x))(z,y,a,r), and the righthand side can be proved to
be valid by Mu2CHC. O

Note that Theorems 1 and 2 guarantee the soundness of the replacement
of ClaX(x1,...,2x).D[X](z1,...,2r)] with vY (y1,...,ye).-E[X](y1, ..., ye) (for
a € {p,v}), but not completeness: the validity of ClaX (z1,...,z;).D[X](z1, ...,
xr)] does not necessarily imply that of vY (y1,...,4¢).E[X](y1,- - -, ye). Actually,
by combining Theorem 1 and the dual version of Theorem 2, we obtain the fol-
lowing corollary, which guarantees completeness under a stronger condition.

Corollary 1. Let C,D and E be (k, ), (k,k), and (¢,£)-contexts respectively.
Suppose that the following conditions hold: (i) C[L¥)] T, L®) (ii) C[D[X]] =
E[C[X]], and (iit) C is continuous. Then C[puX (z1,...,zk).D[X]|(z1,...,25)] =¢
wY (Y1, u0)-E[Y(y1, - -5 90)-

4 Further Examples

In this section, we give more examples to demonstrate the utility of our trans-
formations for relational/temporal property verification of recursive programs.
4.1 Relational Reasoning on Recursive Programs

Below we discuss an example which is beyond the reach for state-of-the-art CHC
solvers (see e.g., [33], the end of Section 5).
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Ezample 5. Consider the goal Va, y, z, r.(Mult(x + vy, z,7) = s, t. Mult(x, z, ) A
Mult(y, z,t) Ar = s +t), which is equivalent to:

Va,y, z,r.(Mult(x +y, z,7) V 3s, t.(Mult(x, z, 8) A Mult(y, z,t) A = s+ t)),

where Mult and Mult are as given in Section 2.3. The following contexts C, D,
and FE satisfy the following three conditions of Theorem 2.

c2 Mz, y, z,7).[J(x + y,z,7) V Is, t.(Mult(z, z, 8) AN Mult(y, z,t) AT = s+ 1)
D2 Mz, z,).(z20Vr£0)A(z=0V [[(xz,z — 1,7 — x))
B2 ANz, y,2,m) (2 =0V (2 £0A [[(z,y,2 — 1,7 — 2z — y))).

By Theorem 2, we have C[Mult] J vY (z,y,z,r).E[Y|(z,y,z,7) = Nz, y, z,7).T.
We have thus proved that Vz,y, z, r.C[Mult](z,y, z,r) (i.e., V&, y, z,r.(Mult(x +
Y, z,7) = s, t. Mult(x, z,8) A Mult(y, z,t) Ar = s+ 1)) is valid. O

4.2 Proving Temporal Properties

Here we give an example of proving a liveness property of a recursive program by
using our transformation. The example is a variation of the example discussed
in [22], but it cannot be handled by their method for proving MuArith formulas.

Ezample 6. Consider the following OCaml program:

let rec sum n = if n=0 then O else n+sum(n-1)

let rec loop x = if x=0 then () else loop (x-1)

let rec repeat n = let x = sum n in loop x; repeat(n+l)
let main() = repeat O

Suppose that we wish to prove that the function repeat is called infinitely often.
The reduction from linear-time temporal property verification to MuArith yields
the problem of determining the validity of Repeat(0), where:

Repeat =

= vRepeat(n).
2

(Fz.Sum(n,x)) A (Ya.Sum(n, z)V Loop(x)) A Repeat(n+1)
Sum m=0Az=0)V(n#0AIr.Sum(n—1,r)Ax=n+r)

Loop 2 puLoop(x).x =0V (x # 0 A Loop(x — 1)).

uSum(n, x).

Here, Sum is the De Morgan dual of Sum. The validity of this formula cannot
be proved by Mu2CHC due to the existential quantifier. Note that Mu2CHC replaces
each existential quantifier 3x.¢p with a bounded quantifier 3z < a.p, and @ must
be a linear expression. In the example above, x is not linearly bounded by n. To
remove the existential quantifier, let

c2 An.3zx.[](n, )

E2Xmn=0V(n#£0A[](n—1))
DEXn2).(n=0Az=0)V(z£O0ATI[|(n—1,r) Az =n—+r).
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Algorithm 1: Fold/unfold for disjunction

Input: Formula @ of the form X (f(z,y))V Y (g9(z,y)), where X and Y are
predicates defined by ax,ay € {u,v}.

Output: A formula ¢’ such that & 3 &'.

a <+ if v e {ax,ay} then v else y;

A\ ¢; < cnf (unfold(P));

for each v; do

if 1; has the form X (s1) V Y (s2) V45, f(t1,t2) = s1 and g(t1,t2) = s2
then

Vi < Z(tr,t2) V i

return aZ(z,y). \ ¢i;

W N =

o w

Since C[D[X]] 2 E[C[X]] holds, we can apply Theorem 1 to underapproximate
Jz.Sum(n, x) by pX(n).n =0V (n # 0A X (n—1)). Therefore, the goal has been
reduced to Repeat’(0) where

Repeat’ 2 vRepeat'(n).X (n) A (Vo.Sum(n,z) V Loop(x)) A Repeat’(n + 1)
X2 uX(n)n=0V(n#0AX(n—1)),

which can be proved valid by Mu2CHC automatically. ad

5 Algorithm and Evaluation

In this section, we first present an algorithm for our transformation and then
outline its implementation and report on experimental results.

5.1 Algorithm

Theorems 1 and 2 given in Section 3 state sufficient conditions for our fold /unfold
transformation to be sound. In this subsection, we discuss how to systematically
apply the theorems and how to find a context E.

To make it easy to find E, we restrict input formulas of our transforma-
tions to those of the form X (f(x,y)) VY (g9(x,y)), X(f(z,y)) AY(9(z,y)), and
Jy. X (f(x,y)), where X and Y are predicates defined by fixpoint operators, and
f(z,y) and g(z,y) denote (possibly sequences of) terms that may contain free
variables x and y. For the sake of simplicity, we assume here that the definitions
for X and Y are independent; X cannot be obtained by unfolding Y, and vice
versa. Transformations for more complex formulas like the one in Example 5 can
be achieved by repeatedly applying the transformations for smaller contexts.

The transformation algorithm for disjunctive formulas is shown in Algo-
rithm 1. It takes as input a formula & = X(f(x,y)) V Y(g9(z,y)) and out-
puts an underapproximation @ of @. It can take [](f(z,v)) V Y(g(z,y)) or
X(f(z,y)) V [|(g(z,y)) as the context C' and apply Theorem 2 if X or Y is
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Algorithm 2: Fold/unfold for 3

Input: Formula & of the form 3y.X(f(x,y)), where X is a predicate defined
by p or v.
Output: A formula ¢’ such that & 3 &'.
\/ ¥ < dnf(normalizes(unfold(®)));
for each v; do
if 1; has the form (32.X(s)) A v;, and f(tz,y) = [t=/2]s,
where FV (t;) C {z},FV(¢.) C {z,y} then
Vi = Z(ta) Vi
return pZ(z).\/ ¥s;

W N =

(S

defined by v, and Theorem 1 otherwise (line 1). On line 2, the algorithm un-
folds X and Y° and then normalizes the resulting formula to a conjunctive
normal form (CNF), where quantified formulas are treated as atomic. It then
applies the “fold” transformation to each conjunct ;. To this end, for each
1; that contains X (s1) V Y (sz2), the algorithm finds terms ¢; and t3 such that
X(s1) VY (s2) = X(f(t1,t2)) VY (g(t1,t2)); this is achieved by solving the uni-
fication constraints s1 = f(2/,y’) and s = g(2’,y’) modulo arithmetic theories,
where ' and 3y’ are treated as variables but z and y are treated as constants.
Finally, the algorithm replaces X (s1) V Y (s2) with Z(¢1,t3), where Z(z,y) is a
new predicate that corresponds to X (f(z,y)) VY (g(z,y)).

We omit the transformation algorithm for conjunctive formulas since it is
similar to the case above, except that the new predicate Z is bound by u (note
that condition (i) of Theorem 2 may not be satisfied), and that it converts the
unfolded formula to a disjunctive normal form (DNF), instead of CNF.

The algorithm for existential formulas is shown in Algorithm 2. It unfolds X,
normalizes existential quantifiers, and obtains a DNF. In the normalization of
existential quantifiers, it moves existential quantifiers inwards (by using, e.g., the
law 3x.(¢1 V 2) = (Fz.401) V (Fz.1)2)) and eliminates them as much as possible
(by using, e.g., the equality-based quantifier elimination). For each disjunct 1);
of the form (3z.X (s)) A, it finds ¢, and ¢, such that f(t,,y) = [t./z]s (again,
by performing unification modulo arithmetic theories), and replaces the disjunct
with Z(t;) A 1. Here, Z(t,) corresponds to Jy.X(f(ts,y)), and ¢, serves as a
witness for X (f(tz,y)) = 32.X(s).

5.2 Implementation and Experiments

We have implemented the transformation in a tool called MuFolder based on the
algorithms discussed above, on top of the AdtInd theorem prover [37], using its
routines for pattern-matching, normalization, and simplification. For the impli-
cation checks, MUnfold uses the Z3 SMT solver [27]. MuFolder can be tested at
https://www.kb.is.s.u-tokyo.ac.jp/~koba/mu/.

5 If none of 1;’s are changed in the loop on lines 3-5, we may backtrack and unfold X
and Y more than once.
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Table 1. Experiments.

# input formula ¢ output formula &’

1 Ewven(z)V Odd(z + 1) vZ(z).x =0V Z(x — 2)

2 Even(z) VvV Odd(z) vZ(z).(x 0V Even(xz — 1)) AN Z(z — 1)

3 Even(z)V Odd(z + 1) vZ(z)x =0V Z(xz — 2)

4 Mult(x +y, z,7) V Is.Mult(z, z, s) vZ(z,y,z,1)z=0V Z(z,y,z — 1,r — (z + y))

5 Mult(z +y,z,7)V s, sa. vZ(z,y,z,7)z2=0V Z(z,y,z — 1,7 — (z + y))
Mult(z, z, s1) A Mult(y, z,s2) Ar = s1 + s2

6 Mult(2z + 3y, z,r) V Is1, sa. vZ(x,y,z,1r).z =0V
Mult(z, z,81) A Mult(y,z,82) ANr =281 +3s2 2 0N Z(z,y,2 — 1,7 — (2z + 3y))

7 Mult(z,y,r)V Mult(z,y,r) vZ(z,y,m)y=0Vy#0AZ(z,y — 1,7 — x)

8 Mult(z,y,r)V MultAcc(z,y,a,r + a) vZ(z,y,a,r).y =0V

y#OANZ(z,y— 1,z +a,r —x)

9 Ir.Mult(z,y,r) pnZ(x,y)y=0Vy#0AZ(z,y—1)

10 Plus(z + y,z,r) V 3s.Plus(z, z, s) vZ(z,y,z,7).z2 =0V Z(z,y,z — 1,r — 1)

11 Plus(4z — 3y, z,7) V Js1, s2. vZ(z,y,z,1)z2=0V Z(z,y,z— 1,r — 1)
Plus(z, z, s1) A Plus(y, z,82) Ar = 4s1 — 3s2

12 Ir.Sum(z,r) pZ(x)xc=0Ve #0ANZ(xz—1)

We have evaluated MuFolder on several benchmarks outlined in Table 1.
These benchmarks include formulas obtained from the relational and temporal
verification properties; some of which have been taken from the benchmark set
for Unno et al.’s induction-based CHC solver [33] and modified to include both
w and v. We have confirmed that all the benchmark problems can be solved in
our approach within a few seconds. To our knowledge, except the formulas 7, 8
(for which the method of [33] can be used) and 10,11 (for which Mu2CHC works),
Mu2CHC (without our transformation) or the existing CHC solvers cannot directly
prove the validity of the formulas. Note that formula 12 comes from Example 6.
The combination of the transformation with Mu2CHC enables fully automated
verification of Example 6.

6 Related Work

As already mentioned, fold /unfold transformations have been originally proposed
for logic programming [32], and later extended for CHC (a.k.a. constraint logic
programs) [1,17]. Those transformations have originally been proposed to speed
up program execution, but recently, Mordvinov and Fedyukovich [26] and De
Angelis et al. [15] shown that related transformations are also useful in the con-
text of verification based on CHC solving. Those transformations correspond to
the transformation for the v-only fragment of MuArith.” Our transformation can
thus be considered an extension of fold/unfold-like transformations to MuArith,
which allows alternations of least/greatest fixpoints. Sato [31] studied an exten-
sion of fold/unfold transformations for a first-order logic, where negations and
quantifiers are allowed in clause bodies; thus, some mixtures of least/greatest fix-
points are allowed. The correctness of his transformation is, however, based on a
three-valued logic, hence different from MuArith. The correctness of most of the

7 This is because, although the semantics of each predicate is interpreted as the least
fixpoint, the predicates occur in negative positions in goal clauses.
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transformations mentioned above is guaranteed by some syntactic conditions,
while our transformation is based on semantic conditions.

Unno et al. [33] proposed a method for automatically solving CHC prob-
lems by using induction. Their method is based on a tailor-made proof system;
hence it is difficult to integrate the method with other CHC or MuArith solvers
(in fact, that disadvantage motivated the above-mentioned work of De Ange-
lis et al. [15]). Their method slightly goes beyond the CHC satisfiability (or
the v-only fragment of MuArith) but cannot deal with complex combinations
of least/greatest fixpoints and quantifiers (like Va,y, z, r.(Mult(z + y, z,7) =
s, t. Mult(x, z,s) A Mult(y, z,t) AT = s + t), discussed in Section 4).

As mentioned in Section 1, fixpoint logic-based approaches to program veri-
fication (including CHC-based ones) have been drawing attention. Kobayashi et
al. [22,23,35] have shown that temporal property verification of (higher-order)
programs can be reduced to the validity checking of (higher-order) fixpoint logic
formulas. They proposed a concrete method for checking validity of first-order
fixpoint formulas and implemented a validity checking tool Mu2CHC. As discussed
already, our transformations can be used to improve the capability of Mu2CHC.
Another thread of work on a fixpoint logic-based approach to system verifica-
tion is that of Parameterized Boolean Equation Systems (PBES) [21]. Actually,
MuArith may be considered an instance of PBES, where data are restricted to
integers. Groote, Willemse, and others [10, 14,21, 30, 36] studied applications of
PBES to verification of infinite state systems, and devised various techniques for
solving PBES. To our knowledge, however, they have not studied fold/unfold
transformations for PBES.

7 Conclusions

We have formalized fold/unfold-like transformations for a fixpoint logic, and
shown that they are useful for verification of relational/temporal properties of
recursive programs. We have implemented the transformations, and shown their
effectiveness through experiments.
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supported in part by the University of Tokyo-Princeton Strategic Partnership
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