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Abstract. We study identification in the limit using polynomial time
and data for models of ω-automata. On the negative side we show that
non-deterministic ω-automata (of types Büchi, coBüchi, Parity or Muller)
can not be polynomially learned in the limit. On the positive side we
show that the ω-language classes IB, IC, IP, and IM that are defined
by deterministic Büchi, coBüchi, parity, and Muller acceptors that are
isomorphic to their right-congruence automata (that is, the right congru-
ences of languages in these classes are fully informative) are identifiable
in the limit using polynomial time and data. We further show that for
these classes a characteristic sample can be constructed in polynomial
time.
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1 Introduction

With the growing success of machine learning in efficiently solving a wide spec-
trum of problems, we are witnessing an increased use of machine learning tech-
niques in formal methods for system design. One thread in recent literature
uses general purpose machine learning techniques for obtaining more efficient
verification/synthesis algorithms. Another thread, following the automata theo-
retic approach to verification [33,21] works on developing grammatical inference
algorithms for verification and synthesis purposes. Grammatical inference (aka
automata learning) refers to the problem of automatically inferring from exam-
ples a finite representation (e.g. an automaton, a grammar, or a formula) for
an unknown language. The term model learning [31] was coined for the task of
learning an automaton model for an unknown system. A large body of works
has developed learning techniques for different automata types (e.g. I/O au-
tomata [1], register automata [20], symbolic automata [14], ω-automata [7], and
program automata [25]) and has shown its usability in a diverse range of tasks.3

In grammatical inference, the learning algorithm does not learn a language,
but rather a finite representation of it. Complexity of learning algorithms may

? This research was supported by grant 2016239 from the United States – Israel Bi-
national Science Foundation (BSF).

3 E.g., tasks such as black-box checking [28], specification mining [2], assume-guarantee
reasoning [13], regular model checking [18], learning verification fixed-points [32],
learning interfaces [27], analyzing botnet protocols [12] or smart card readers [10],
finding security bugs [10], error localization [11], and code refactoring [26,29].
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vary greatly by switching representations. For instance, if one wishes to learn
regular languages, she may consider representations using deterministic finite au-
tomata (DFAs), non-deterministic finite automata (NFAs), regular expressions,
linear grammars etc. Since the translation results between two such formalisms
are not necessarily polynomial, a polynomial learnability result for one repre-
sentation does not necessarily imply a polynomial learnability result for another
representation. Let C be a class of representations C with a size measure size(C)
(e.g. for DFAs the size measure can be the number of states in the minimal
automaton). We extend size(·) to the languages recognized by representations in
C by defining size(L) to be the minimum of size(C) over all C representing L. In
this paper we restrict attention to automata representations, namely, acceptors.

There are various learning paradigms considered in the grammatical inference
literature, roughly classified into passive and active. We mention here the two
central ones. In passive learning the model of learning from finite data refers to
the following problem: given a finite sample T ⊆ Σ∗×{0, 1} of labeled words, a
learning algorithm A should return an acceptor C that agrees with the sample
T . That is, for every (w, l) ∈ T the following holds: w ∈ JCK iff l = 1 (where
JCK is the language accepted by C). The class C is identifiable in the limit using
polynomial time and data if and only if there exists a polynomial time algorithm
A that takes as input a labeled sample T and outputs an acceptor C ∈ C that
is consistent with T , and A also satisfies the following condition. If L is any
language recognized by an automaton from class C, then there exists a labeled
sample TL consistent with L of length bounded by a polynomial in size(L), and
for any labeled sample T consistent with L such that TL ⊆ T , on input T the
algorithm A produces an acceptor C that recognizes L. In this case, TL is termed
a characteristic sample for the algorithm A. In some cases (e.g., DFAs) there
is also a polynomial time algorithm to compute a characteristic sample for A,
given an acceptor C ∈ C.

In active learning the model of query learning [5] assumes the learner commu-
nicates with an oracle (sometimes called teacher) that can answer certain types
of queries about the language. The most common type of queries are member-
ship queries (is w ∈ L where L is the unknown language) and equivalence queries
(is JAK = L where A is the current hypothesis for an acceptor recognizing L).
Equivalence queries are typically assumed to return a counterexample, i.e. a
word in JAK \ L or in L \ JAK.

With regard to ω-automata (automata on infinite words) most of the works
consider query learning. The representations learned so far include: (L)$ [15], a
non-polynomial reduction to finite words; families of DFAs (FDFA) [7,8,6,22];
strongly unambiguous Büchi automata (SUBA) [3]; and deterministic weak par-
ity automata (DWPA) [23]. Among these only the latter is learnable in polyno-
mial time using membership queries and proper equivalence queries.

One of the main obstacles in obtaining a polynomial learning algorithm for
ω-regular languages is that they do not in general have a Myhill-Nerode char-
acterization; that is, there is no theorem correlating the states of a minimal
automaton of some of the common automata types (Büchi, Parity, Muller, etc.)
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to the equivalence classes of the right congruence of the language. The right con-
gruence relation for an ω-language L relates two finite words x and y iff there
is no infinite suffix z differentiating them, that is x ∼L y (for x, y ∈ Σ∗) iff
∀z ∈ Σω. xz ∈ L ⇐⇒ yz ∈ L. In our quest for finding a polynomial query
learning algorithm for a subclass of the ω-regular languages, we have studied
subclasses of languages for which such a relation holds [4], and termed them
fully informative. We use IB, IC, IP, IM to denote the classes of languages that
are fully informative of type Büchi, coBüchi, Parity and Muller, respectively. A
language L is said to be fully informative of type X for X ∈ {B,C,P,M} if there
exists a deterministic automaton of type X which is isomorphic to the automaton
derived from ∼L. While a lot of properties about these classes are now known,
in particular that they span the entire hierarchy of ω-regular properties [34], a
polynomial learning algorithm for them has not been found yet.

In this paper we show that the classes IB, IC, IP, IM can be identified in the
limit using polynomial time and data. We further show that there is a polynomial
time algorithm to compute a characteristic sample given an acceptor C ∈ IX. A
corollary of this result is that the class of languages accepted by DWPAs (which
as mentioned above is polynomially learnable in the query learning setting) also
has a polynomial size characteristic sample. On the negative side, we show that
the classes NBA, NCA, NPA, NMA of non-deterministic Büchi, coBüchi, Parity
and Muller automata, resp., cannot be identified in the limit using polynomial
data.

2 Preliminaries

Automata and Acceptors An automaton is a tuple A = 〈Σ,Q, qι, δ〉 consisting of
a finite totally ordered alphabet Σ of symbols, a finite set Q of states, an initial
state qι ∈ Q, and a transition function δ : Q×Σ → 2Q. A run of an automaton
on a finite word v = a1a2 . . . an is a sequence of states q0, q1, . . . , qn such that
q0 = qι, and for each i ≥ 0, qi+1 ∈ δ(qi, ai+1). A run on an infinite word is
defined similarly and results in an infinite sequence of states. We say that A is
deterministic if |δ(q, a)| ≤ 1 and complete if |δ(q, a)| ≥ 1, for every q ∈ Q and
a ∈ Σ. We extend δ to domain Q × Σ∗ in the usual manner, and abbreviate
δ(q, σ) = {q′} as δ(q, σ) = q′.

By augmenting an automaton with an acceptance condition α, obtaining a
tuple 〈Σ,Q, qι, δ, α〉, we get an acceptor, a machine that accepts some words and
rejects others. An acceptor accepts a word if at least one of the runs on that word
is accepting. For finite words the acceptance condition is a set F ⊆ Q and a run
on a word v is accepting if it ends in an accepting state, i.e., if δ(qι, v) contains
an element of F . For infinite words, there are various acceptance conditions in
the literature; we consider four: Büchi, coBüchi, parity, and Muller. The Büchi
and coBüchi acceptance conditions are also a set F ⊆ Q. A run of a Büchi
automaton is accepting if it visits F infinitely often. A run of a coBüchi is
accepting if it visits F only finitely many times. A parity acceptance condition
is a map κ : Q → N assigning each state a natural number termed a color (or
priority). A run is accepting if the minimum color visited infinitely often is odd.
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A Muller acceptance condition is a set of sets of states α = {F1, F2, . . . , Fk} for
some k ∈ N and Fi ⊆ Q for i ∈ [1..k]. A run of a Muller automaton is accepting if
the set S of states visited infinitely often in the run is a member of α. We use JAK
to denote the set of words accepted by a given acceptor A. We use NBA, NPA,
NMA, NCA for non-determinstic Büchi, parity, Muller and coBüchi, automata.
We use NBA, NPA, NMA and NCA for the classes of languages they recognize.
The first three recognize the full class of ω-regular languages while the forth only
a subset of it.

Right congruences An equivalence relation ∼ on Σ∗ is a right congruence if
x ∼ y implies xv ∼ yv for every x, y, v ∈ Σ∗. The index of ∼, denoted |∼| is the
number of equivalence classes of ∼. Given a language L ⊆ Σ∗ its canonical right
congruence ∼L is defined as follows: x ∼L y iff ∀z ∈ Σ∗ we have xz ∈ L ⇐⇒
yz ∈ L. For a word v ∈ Σ∗ the notation [v] is used for the equivalence class of
∼ in which v resides.

With a right congruence ∼ of finite index one can naturally associate an
automaton M∼ = 〈Σ,Q, qι, δ〉 as follows: the set of states Q consists of the
equivalence classes of ∼. The initial state qι is the equivalence class [ε]. The
transition function δ is defined by δ([u], a) = [ua]. Similarly, given a complete
deterministic automaton M = 〈Σ,Q, qι, δ〉 we can naturally associate with it a
right congruence as follows: x ∼M y iff M reaches the same state when reading
x or y. The Myhill-Nerode Theorem states that a language L is regular iff ∼L
is of finite index. Moreover, if L is accepted by a DFA A then ∼A refines ∼L.
Finally, the index of ∼L gives the size of the minimal complete DFA for L.

For an ω-language L ⊆ Σω, the right congruence ∼L is defined similarly, by
quantifying over ω-words. That is, x ∼L y iff ∀z ∈ Σω we have xz ∈ L ⇐⇒
yz ∈ L. Given a deterministic automaton M we can define ∼M exactly as for
finite words. However, for ω-regular languages, the relation ∼L does not suffice to
obtain a “Myhill-Nerode” characterization. As an example consider the language
L = (a+ b)∗(bba)ω. We have that ∼L consists of just one equivalence class, since
for any x ∈ Σ∗ and w ∈ Σω we have that xw ∈ L iff w has (bba)ω as a suffix.
But an ω-acceptor recognizing L obviously needs more than a single state.

The classes IB, IC, IP and IM A language L is in IB (resp., IC, IP, IM) if
there exists a deterministic Büchi (resp., coBüchi, parity, Muller) acceptor A
such that L = JAK and there is a 1-to-1 relationship between the states of A
and the equivalence classes of ∼L: if x ∼L y then x and y reach the same state
q in A, and an ω-word z is accepted from q iff xz ∈ L (which holds iff yz ∈ L).
These classes are more expressive than one might conjecture, it was shown in [4]
that in every class of the infinite Wagner hierarchy [34] there are languages in
IM and IP. Moreover, in a small experiment reported in [4], among randomly
generated Muller automata, the vast majority turned out to be in IM.

Examples and samples Since we need finite representations of examples, ω-words
in our case, we work with ultimately periodic words, that is, words of the form
u(v)ω where u ∈ Σ∗ and v ∈ Σ+. It is known that two regular ω-languages are
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equivalent iff they agree on the set of ultimately periodic words, so this choice
is not limiting. The example u(v)ω is concretely represented by the pair (u, v)
of finite strings, and its length is |u|+ |v|. A labeled example is a pair (u(v)ω, l),
where the label l is either 0 or 1. A sample is a finite set of labeled examples
such that no example is assigned two different labels. The length of a sample
is the sum of the lengths of the examples that appear in it. A sample T and a
language L are consistent with each other if and only if for every labeled example
(u(v)ω, l) ∈ T , l = 1 iff u(v)ω ∈ L. A sample and an acceptor are consistent with
each other if and only if the sample and the language recognized by the acceptor
are consistent with each other. The following results give two useful procedures
on examples that are computable in polynomial time.

Claim 1. Given u1, u2 ∈ Σ∗ and v1, v2 ∈ Σ+, if u1(v1)ω 6= u2(v2)ω then they
differ in at least one of the first ` symbols, where ` = max(|u1|, |u2|) + |v1| · |v2|.

Let suffixes(u(v)ω) denote the set of all ω-words that are suffixes of u(v)ω.

Claim 2. The set suffixes(u(v)ω) consists of at most |u|+ |v| different examples:
one of the form u′(v)ω for every nonempty suffix u′ of u, and one of the form
(v2v1)ω for every division of v into a non-empty prefix and suffix as v = v1v2.

Identification in the limit using polynomial time and data We consider the no-
tion of identification in the limit using polynomial time and data. This criterion
of learning was introduced by [16], who showed that regular languages of finite
strings represented by DFAs are learnable in this sense. We follow a more gen-
eral definition given by [19]. The definition has two requirements: (1) a learning
algorithm A that runs in polynomial time on a set of labeled examples and
produces a hypothesis consistent with the examples, and (2) that for every lan-
guage L in the class, there exists a set TL of labeled examples of size polynomial
in a measure of size of L such that on any set of labeled examples containing
TL, the algorithm A outputs a hypothesis correct for L. Condition (1) ensures
polynomial time, while condition (2) ensures polynomial data. The latter is not
a worst-case measure; there could be arbitrarily large finite samples for which
A outputs an incorrect hypothesis. However, de la Higuera shows that identifi-
ability in the limit with polynomial time and data is closely related to a model
of a learner and a helpful teacher introduced by [17].

3 Negative Results

We start with negative results. We show that when the representation at hand
is non-deterministic, polynomial identification is not feasible.

Theorem 3. The class NBA cannot be identified in the limit using polynomial
data.

Proof. The proof follows the idea given in the negative result for learning in the
limit NFAs from polynomial data [19]. For any integer M ≥ 2, let p1, . . . , pm be
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Fig. 1: The NBA BM for M = 5.

the set of all primes less than or equal to M . For each such M , consider the NBA
BM over a two letter alphabet Σ = {a, b} with p1+p2+ . . .+pm+2 states, where
state 0 has a-transitions to state (p, 1) for each p ∈ {p1, p2, . . . , pm}. State (p, i)
has an a-transition to state (p, i⊕p 1) where ⊕p is addition modulo p. All states
except the states (p, 0) have a b-transition to state b. The state b has a self-loop
on b. The only accepting state is b. The NBA BM for M = 5 is given in Fig. 1.

The NBA BM accepts the set of all words of the form akbω such that k is
not a positive multiple of ` = p1 · p2 · · · pm. Note that the size of the shortest
ultimately periodic word in a∗bω \ JBM K is ` + 1, and thus, to distinguish the
language JBM K from the language a∗bω, a word of at least this size must be
provided. Since the number of primes not greater than M is Θ(M/ logM) and
since each prime is of size at least 2 the data must be of size at least 2Θ(M/ logM)

while the number of states of BM is O(M2).

Since NBAs are a special case of non-deterministic parity automata (NPA)
and non-deterministic Muller automata (NMA) it follows that these models too
cannot be identified in the limit using polynomial data. Note that indeed the
NBA in the proof of Theorem 3 can be regarded as an NPA by setting the color
of state b to 1 and the color of all other states to 0. Likewise it can be regarded
as an NMA by defining the accepting set as {{b}}.

Corollary 1. The classes NPA and NMA cannot be identified in the limit using
polynomial data.

While NBAs are not a special case of non-deterministic coBüchi automata
(NCA) it can be shown that NCA as well cannot be identified in the limit from
polynomial data, which is in some sense surprising, since NCAs are not more
expressive than DCAs, their deterministic counterpart, and accept a very small
subclass of the regular ω-languages.

Theorem 4. The class NCA cannot be identified in the limit using polynomial
data.
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Proof. The proof is almost identical to that of Theorem 3. The only difference is
that it considers the automaton CM that takes exactly the same form as BM from
that proof but switching accepting and non-accepting states. Since CM clearly
accepts the same language as that of BM , with the same number of states, the
proof continues exactly the same.

4 Outline for the positive results

The rest of the paper is devoted to the positive results. To show that a class is
identified in the limit using polynomial time and data there are two steps: (i)
constructing a sample of words TL of size polynomial in the given acceptorM for
the language L at hand, the so called, characteristic sample, and (ii) providing a
learning algorithm that for every given sample T returns an acceptor consistent
with that sample, and in addition for any sample T that subsumes TL returns
an acceptor that exactly recognizes L.

Since the construction of the characteristic sample is simpler we start with
that. We show that the classes IB, IC, IP and IM have characteristic samples
of size polynomial in the number of states of the acceptor, and that the char-
acteristic sample can be constructed in polynomial time. The definition of an
acceptor is composed of two steps: (a) the definition of the automaton and (b)
the definition of the acceptance condition. Some words are put in the sample
to help retrieving the automaton and some to help retrieving the acceptance
condition. We view the characteristic sample as a union of two parts TAut (for
retrieving the automaton) and TAcc (for retrieving the acceptance condition).
The learning algorithm first constructs the automaton, then retrieves the accep-
tance condition.

In Section 5 we discuss the construction of TAut which is common to all the
classes we consider, as they all are isomorphic to the automaton of the right
congruence. In Section 6 we show how an algorithm can retrieve the automaton
using the labeled words in TAut. In Section 7 we discuss the construction of
TAcc that regards the acceptance condition of the DPA. This part is the most
involved one. We first associate with a DPA a canonical forest of its strongly
connected components. From this canonical forest we build the TAcc part of the
characteristic sample. In Section 8 we show a learning algorithm that can retrieve
in polynomial time the acceptance condition of the DPA, from labeled examples
in TAcc. This implies that IP (as well as its special cases IB and IC) can be
learned in the limit from polynomial time and data. In Section 9 we show that
the class IM can also be learned in the limit from polynomial time and data.

5 The characteristic sample for the automaton

In this section we show how to construct the TAut part of the sample. We first
show that any two states that are distinguishable in the automaton, are distin-
guishable by words of length polynomial in the number of states.



332 D. Angluin et al.

5.1 Polynomial construction of short distinguishing words

Let M be an acceptor in one of the classes IB, IC, IP or IM with states Q over
alphabet Σ. If M is in one of the first three classes we use max{|Σ|, |Q|} for
its size measure. If M ∈ IM we use max{|Σ|, |Q|,m} for its size measure where
m is the number of sets in the acceptance condition α. We say that states q1
and q2 of M are distinguishable if there exists a word z ∈ Σω that is accepted
from one but not the other (and that z is a distinguishing word). First we show
that any two distinguishable states of M are distinguishable by an ultimately
periodic word of size polynomial in M. Then we show how to use these words
to construct the TAut part of the characteristic sample.

Proposition 5. If two states of a DMA, DPA, DBA or DCA of n states are
distinguishable, then they are distinguishable by an ultimately periodic ω-word of
length bounded by n2 + n4.

Proof. We prove that for a DMA M of n states, if two distinct states q1 and
q2 are distinguishable, then they are distinguishable by an ultimately periodic
ω-word of length bounded by n2+n4. Since any DPA, DBA or DCA is equivalent
to an isomorphic DMA, the above result holds also for DPAs, DBAs and DCAs.

Because q1 and q2 are distinguishable, there exists an ultimately periodic
ω-word x(y)ω that is accepted from exactly one of the two states. For each
nonnegative integer k and i = 1, 2, let qi(k) be the state visited after k symbols
of x(y)ω have been read, starting with state qi. Also, let Ci be the set of states
visited infinitely often by the sequence qi(k), which determines the acceptance
or rejection of x(y)ω from qi. The sequence of pairs (q1(k), q2(k)) for k = 0, 1, . . .
takes on at most n2 different values. Let C be the set of pairs visited infinitely
often by this sequence. The two projections π1(C) and π2(C) are C1 and C2.

Let ` be the minimum value for which (q1(k), q2(k)) visits only pairs in C
for all k ≥ `. Let x′ be the prefix of x(y)ω consisting of ` symbols. By removing
symbols between repeated pairs (q1(k), q2(k)) from x′ we obtain a string u of
length at most n2 that reaches the pair (q1(`), q2(`)) from (q1(0), q2(0)). Let m
be the minimum value for which (q1(k), q2(k)) for ` ≤ k ≤ m visits all the pairs
of C and returns to (q1(`), q2(`)), and let y′ be the string from symbol ` to m−1
of x(y)ω. Distinguishing a subsequence of pairs that visits each element of C
once, we can remove from y′ sequences of symbols between repeated pairs that
do not include a distinguished pair between them. Thus we obtain a string v
of length at most |C|n2, that starts at (q1(`), q2(`)), visits all the distinguished
pairs and returns to the starting pair. Since |C| ≤ n2, the length of u(v)ω is at
most n2 + n4. Also, since the set of states visited infinitely often on input u(v)ω

from qi is Ci we have that u(v)ω is accepted from exactly one of q1 and q2.

For DPAs as well as DMAs there is a polynomial time algorithm to determine
whether two states are distinguishable and to find a distinguishing ω-word u(v)ω

if they are. This result relies on a polynomial time algorithm to test the equiv-
alence of two DPAs or two DMAs and return an example u(v)ω on which they
differ if not [9]. Since DBA and DCA are special cases of a DPA, a polynomial
construction of a distinguishing word applies to them as well.
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5.2 Constructing the characteristic sample for the automaton

We now show how to construct the TAut part of the characteristic sample, given
an acceptor M in one of the classes IM, IP, IB or IC. Let n be the number of
states ofM. We may assume that every state ofM is reachable from the initial
state qι. The algorithm constructs a set S of n access strings by breadth-first
search in the transition graph of M such that S is prefix-closed and contains
exactly one lexicographically least string of shortest possible length reaching
each state of M from the initial state. Using Proposition 5, the algorithm may
also construct a set E of at most n2 distinguishing experiments that contains for
each pair q1 and q2 of distinct states of M, an ω-word u(v)ω of length at most
n2 + n4 that is accepted from exactly one of the states q1 and q2.

Part one of the sample, TAut, consists of all the examples in (S ·E)∪(S ·Σ ·E),
labeled to be consistent withM. There are at most (1+ |Σ|)n3 labeled examples
in TAut, each of length bounded by a polynomial in n. This information is enough
to allow the polynomial time learning algorithm to reconstruct a transition graph
isomorphic to that of M.

Proposition 6. Let M′ be any deterministic automaton that is consistent with
the sample TAut. Then M′ has at least n states and if M′ has exactly n states
then M′ and M have isomorphic transition graphs.

Proof. The states of M′ reached from the initial state by the access strings in
S must all be distinct, because for any pair of different strings s1, s2 ∈ S, there
exists a word u(v)ω ∈ E such that s1 · u(v)ω and s2 · u(v)ω have different labels
in TAut. Thus M′ must have at least n distinct states.

Assume that M′ has exactly n states. Given the state q of M′ reached by
some s ∈ S and a symbol σ ∈ Σ, the labeled examples s · σ · u(v)ω in TAut for
all u(v)ω ∈ E uniquely determine which string s′ ∈ S corresponds to the state
reached in M′ from q on input symbol σ. Thus the transition graph of M′ is
isomorphic to the transition graph of M.

6 Learning the automaton

Let L denote the language to be learned, and M denote an acceptor of n states
that is isomorphic to its right congruence automaton and recognizes L. Let the
input sample of labeled examples be T . We now describe a learning algorithm
A that makes use of the information in the given sample T to construct an
automaton. If T subsumes TAut the returned automaton will be isomorphic to
the acceptor M.

From the sample T , the algorithm constructs as follows a set E of strings
that serve as experiments used to distinguish states. For each labeled example
(u(v)ω, l) in T , all of the elements of suffixes(u(v)ω) are placed in E. Thus if the
sample T includes TAut, then for any pair of states of M the set E includes an
experiment that distinguishes them.

Starting with the empty string ε, the algorithm attempts to build up a prefix-
closed set S of finite strings that reach different states ofM from the initial state.
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Initially, S1 = {ε}. After Sk has been constructed, the algorithm attempts to
determine, for each s ∈ Sk and each symbol σ ∈ Σ in the ordering defined on Σ,
whether s ·σ reaches the same state as some string already in Sk or a new state.
If for each string s′ in Sk, there exists some u(v)ω ∈ E such that the sample
T has different labels for s · σ · u(v)ω and s′ · u(v)ω, then this is evidence that
s · σ reaches a new state, and Sk+1 is set to Sk ∪ {s · σ}. If no such pair s and
σ is found, then the final set S is Sk. Because M has only n states, this case
is reached with k ≤ n. If the sample T subsumes TAut then this process will
discover exactly the strings reaching all n states of M used in the construction
of TAut; otherwise, it may terminate early.

In the second phase, the algorithm uses the strings in S as names for states
and constructs a transition function δ′ using S and E. For each s ∈ S and σ ∈ Σ,
we know that there is at least one s′ ∈ S such that there is no u(v)ω ∈ E for
which s · σ · u(v)ω and s′ · u(v)ω have different labels in T (possibly because one
or more of these examples are not in T at all.) The algorithm selects one such
s′ and defines δ′(s, σ) = s′. If the strings in S actually reach all the states of
M and the choice of s′ is unique in each case, then δ′ will be isomorphic to the
transition function of M. This will be the case if the sample T includes TAut
because then among the elements of E will be experiments that distinguish any
pair of states of M; otherwise, δ′ may not be correct.

7 Characteristic sample for a DPA

The construction of TAcc, the part of the characteristic sample used for retrieving
the accepting condition of a DPA, builds on the construction of a forest of SCCs
associated with a given DPA, which we term the canonical forest. Its properties
and its construction are described next.

7.1 Constructing the canonical forest of a DPA

We start with some definition and simple claims.Let P = (Σ,Q, qι, δ, κ) be
a deterministic parity acceptor (DPA). A set of states C ⊆ Q is a strongly
connected component (SCC) if and only if C is nonempty and for every q1, q2 ∈ C,
there exists a nonempty string v ∈ Σ+ such that δ(q1, v) = q2 and for all u � v,
δ(q1, u) ∈ C. Note that an SCC need not be maximal, and that a singleton {q}
is an SCC if and only if the state q has a self-loop, that is, δ(q, σ) = q for some
σ ∈ Σ. For any ω-word w, the set C of states visited infinitely often in the run
of P on input w is an SCC of P.

Claim 7. If C1 and C2 are SCCs of P and C1 ∩ C2 6= ∅, then C1 ∪ C2 is also
an SCC of P.

If P is a DPA and R ⊆ Q is any set of states, define SCCs(R) to be the set
of all C such that C ⊆ R and C is an SCC of P. Also define maxSCCs(R) to
be the maximal elements of SCCs(R) with respect to the subset ordering.
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Claim 8. If P is a DPA and R ⊆ Q is any set of states, then the elements of
maxSCCs(R) are pairwise disjoint, and every set C ∈ SCCs(R) is a subset of
exactly one element of maxSCCs(R).

If P is a DPA, we extend its coloring function κ to any nonempty set R of
states by κ(R) = min{κ(q) | q ∈ R}. We define the parity of R to be 1 if κ(R) is
odd, and 0 otherwise. For an ω-word w, if the SCC C is the set of states visited
infinitely often in the run of P on w, then w is accepted by P iff the parity of
C is 1. Note that the union of two sets of parity b is also of parity b. For any
set of states R ⊆ Q, we define minStates(R) to be the set of states q ∈ R such
that κ(q) = κ(R), that is, the states of R that are assigned the minimum color
among all states of R.

The Canonical Forest Using these definitions we can show that there exists
a forest associated with a DPA that has the following interesting properties. We
provide an example for a canonical forest for a given DPA at the end of the
current subsection.

Theorem 9. Let P = (Σ,Q, q0, δ, κ) be a DPA. There exists a canonical forest
F ∗(P) that is unique up to isomorphism and has the following properties.

1. There are at most |Q| nodes in F ∗(P), each one a distinct SCC of P.
2. The root nodes of F ∗(P) are the elements of maxSCCs(Q).
3. The children of a node C of parity b are the maximal SCCs C ′ ⊆ C of parity

1− b.
4. The children of a node C are pairwise disjoint and their union is a proper

subset of C.
5. For any SCC D of P, there is a unique node C in F ∗(P) such that D ⊆ C

and D is not a subset of any of the children of C, and C and D have the
same parity.

Proof. The root nodes of F ∗(P) are the elements of maxSCCs(Q) and are SCCs
that are pairwise disjoint, by Claim 8. Let C be one of them, and assume its
parity is b. Let T be the set of SCCs that are subsets of C and of parity 1 − b.
If T = ∅ then C has no children and is a leaf of F ∗(P). Otherwise, the children
of C are the maximal elements of T with respect to the subset ordering. The
children of C must be pairwise disjoint because if they share a state, then their
union is an SCC contained in C of parity 1 − b and is a proper superset of at
least one of them, violating maximality. No child of C can contain an element
of minStates(C) because otherwise the parity of the child would be b. Thus
the union of the children of C must be a proper subset of C. These conditions
imply that there are at most |Q| nodes in the forest, and that it is unique up to
isomorphism.

Let D be any SCC of P. Then D ∈ SCCs(Q), so by Claim 8, because the
roots of F ∗(P) are the elements of maxSCCs(Q), there is a unique root node C0

such that D ⊆ C0. Suppose the parity of C0 is b. If D is not a subset of any
of the children of C0, then it cannot have parity 1 − b, so the choice C = C0
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satisfies the required condition. If, however, D is a subset of some child C1 of
C0, then because the children of C0 are pairwise disjoint, C1 is the only child
of C0 that contains D. Again, if D is not a subset of any of the children of C1

then D and C1 must have the same parity, and the choice C = C1 satisfies the
condition. Otherwise, we continue down the tree rooted at C0 until a node C is
found that satisfies the condition. Note that if we arrive at a leaf Ck, then D is
not a subset of any of the children of Ck (there are none) and D must have the
same parity as Ck because otherwise Ck would have at least one child.

The Canonical Coloring The canonical forest F ∗(P) allows us to define a
canonical coloring κ∗ for P, as follows. The states in (Q \

⋃
maxSCCs(Q)) are

not contained in any SCC of P and do not affect the acceptance or rejection
of any ω-word. For definiteness, we assign them κ∗(q) = 0. For each node C of
F ∗(P), we define ∆(C) to be the set of states of C that are not contained in the
union of the children of C. For a root node C of parity b, we define κ∗(q) = b for
all q ∈ ∆(C). Let C be an arbitrary node of F ∗(P). If the states of ∆(C) have
been assigned color k by κ∗ and D is a child of C, then the states of ∆(D) are
assigned color k + 1 by κ∗. We observe that if q1 ∈ ∆(C) and q2 is in a child of
C, then κ∗(q1) < κ∗(q2), and κ∗(q1) is of the same parity as C.

Theorem 10. Let P = (Σ,Q, q0, δ, κ) be a DPA, and P ′ be P with the canonical
coloring κ∗ for P in place of κ. Then P and P ′ recognize the same ω-language.

Proof. Let w be an ω-word and let D be the SCC consisting of the states visited
infinitely often in the run of P (and also of P ′) on input w. Let C be the unique
node of F ∗(P) such that D is a subset of C and is not a subset of any of the
children of C. Thus D contains at least one q ∈ ∆(C). In P the parity of D is
the same as the parity of C, which is the same as the parity of κ∗(q), which is
equal to the parity of D in P ′. Thus either both P and P ′ accept w or both
reject w.

Computing the Canonical Forest We now show that, given a DPA P =
(Σ,Q, q0, δ, κ), we can compute the canonical forest of P in polynomial time.
We first define a (possibly non-canonical) forest Fκ(P) using the given coloring
κ. The root nodes are the elements of maxSCCs(Q), the set of all maximal SCCs
of P. Once we have defined a node C of the forest, the children are the elements
of the set maxSCCs(C \ minStates(C)), that is, the maximal SCCs contained
in C with the set of states of minimum color removed. If this set is empty, the
node has no children and is a leaf. Note that in contrast to the case of the
canonical forest, in Fκ(P) the children of a node are not constrained to be of
parity opposite to that of the parent.

By construction each node in the forest Fκ(P) is an SCC of P. If D is a
descendant of C in the forest, then D is a proper subset of C, and κ(C) < κ(D).
Because the roots are pairwise disjoint and the children of any node are pairwise
disjoint, the sets minStates(C) for nodes C in the forest are pairwise disjoint and
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Fig. 2: (a) Transition graph of DPA P with states colored by κ. (b) Non-canonical forest Fκ(P),
with parities of nodes. (c) Canonical forest F∗(P), with parities of nodes. (d) Transition graph of P
with the canonical coloring κ∗.

nonempty, so there are at most |Q| nodes. Because a linear time algorithm for
computing strongly connected components can be used to compute the children
of a node, the forest Fκ(P) may be computed in polynomial time in the size of
the given DPA P.

To obtain the canonical forest F ∗(P) from the possibly non-canonical forest
Fκ(P), we may repeatedly merge pairs of adjacent nodes of the same parity until
every pair of adjacent nodes are of different parity. That is, if C is a node of
parity b and D is a child of C of parity b, then D ⊆ C, and we merge D into C
by deleting D and making all the children of D direct children of C. Repeating
this operation until there are no parent/child pairs of equal parity yields the
canonical forest F ∗(P). This computation can be done in polynomial time.

Note that to obtain a canonical forest for a given DBA (resp., DCA) we can
simply first color states in F by 1 (resp. 0) and in Q \F by 2 (resp., 1) and then
compute the canonical forest for the resulting DPA. In both cases the canonical
forest will be of depth at most two, since in DBA an accepting SCC cannot be
subsumed by a rejecting SCC (and vice versa in DCA).

An Example Figure 2(a) shows the transition graph of an example DPA P with
states a through m, labeled by the colors assigned by κ. There is a directed edge
from state q1 to state q2 if there exists a symbol σ ∈ Σ such that δ(q1, σ) = q2.



338 D. Angluin et al.

Figure 2(b) shows the non-canonical SCC forest Fκ(P) of P, with the nodes
labeled by their parities. Figure 2(c) shows the canonical SCC forest F ∗(P) of
P, with the nodes labeled by their parities. Figure 2(d) shows the transition
graph of P re-colored using the canonical coloring κ∗.

7.2 Constructing the characteristic sample for a DPA

We can now construct TAcc, the second part of the characteristic sample for a
DPA P. The sample TAcc consists of one example u(v)ω for each node C of the
canonical forest F ∗(P), where u is a string that reaches a state q in C from the
initial state q0, and v is a nonempty string that, starting from q, visits every
state of C and no state outside of C and returns to q. The length of the example
u(v)ω can be taken to be bounded by n + n2. The example u(v)ω is labeled 1
if it is accepted by P and otherwise is labeled 0. Then TAcc contains at most
n labeled examples, each of length polynomial in n. The final characteristic
sample for L = JPK is TL = TAut ∪ TAcc. The sample TL contains O(|Σ|n3)
labeled examples, each of length at most O(n4), which is polynomial in size(L).

8 The learning algorithm for a DPA

We can now describe the learning algorithm A that makes use of the informa-
tion in TL. Similar to Gold’s construction, the algorithm optimistically assumes
that the sample includes a characteristic sample, and if that assumption fails to
produce an acceptor consistent with the sample, the algorithm defaults to pro-
ducing a table-lookup acceptor to ensure that its hypothesis is consistent with
the sample. The algorithm we describe is sufficient to establish the theoretical
results, but for practical applications much more effort should be expended to
find good heuristic choices to avoid defaulting too easily.

Let L denote the language to be learned, and P denote a DPA of n states
that is isomorphic to its right congruence automaton and recognizes L. The
first and second phases of the algorithm are as described in Section 6: in the
first phase the algorithm builds the set S of states of the automaton, and in the
second step it builds the transition relation δ′. In the third phase, the acceptance
(namely the coloring) is determined. In this phase, the algorithm may default to
returning the table-lookup DPA for T . We first explain the construction of the
table-lookup DPA then describe the third phase.
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0 0
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b
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a b
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Fig. 3: Table-lookup DPA for T =
{(a(b)ω, 1), ((ab)ω, 1), (ab(baa)ω, 0)}.

A table-lookup DPA A table-lookup DPA
for a given sample T is constructed by find-
ing the shortest prefix of each example u(v)ω

in T that distinguishes it from all other ex-
amples in T and placing these prefixes in a
trie-like structure. At each leaf of the trie is
a structure accepting (or rejecting, depending
on the label of the example) the appropriate
suffix of the unique example that arrives at that leaf. By Claim 1, this DPA
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can be constructed in time polynomial in the length of the sample T . Note that
this construction is easily modified to give a DBA, DCA or DMA instead of a
DPA. As an example, for the sample T = {(a(b)ω, 1), ((ab)ω, 1), (ab(baa)ω, 0)},
the corresponding prefixes are abbb, aba, and abba, and the table-lookup DPA
for T is shown in Figure 3, with states labeled by colors 0 and 1.

Determining the coloring In the third phase, the algorithm attempts to
define a coloring of the states in S. The algorithm constructs the set Z of all
subsets C of S such that for some labeled example (u(v)ω, l) in T , the subset C is
the set of elements of S that are visited infinitely often in the run on input u(v)ω

starting at ε using the transition function δ′. If in this process two examples with
different labels are found to yield the same set C, the learning algorithm defaults
to the table-lookup DPA for T . Otherwise, each set C in Z is associated with
the label of the example(s) that yield C. The set Z is partially ordered by the
subset relation. The learning algorithm then attempts to construct a forest F ′

with nodes that are elements of Z, corresponding to the canonical forest of P.
Initially, F ′ contains as roots all the maximal elements of Z. If these are not
pairwise disjoint, it defaults to the table-lookup DPA for T . Otherwise, for each
unprocessed element C in F ′, it computes the set of all D ∈ Z such that D ⊆ C,
D has the opposite label to C, and D is maximal with these properties, and
makes D a child of C. When all the children of a node C have been determined,
the algorithm checks two conditions: (1) that the children of C are pairwise
disjoint, and (2) there is at least one s ∈ C that is not in any child of C. If either
of these conditions fail, then it defaults to the table-lookup DPA for T . If both
conditions are satisfied, then the node C is marked as processed. When there
are no more unprocessed nodes, the construction of F ′ is complete. Note that
F ′ can have at most n nodes, because S has at most n elements.

When the construction of F ′ completes, for each node C in F ′ let ∆(C)
denote the elements of C that do not appear in any of its children. Then the
learning algorithm assigns colors to the elements of S starting from the roots
of F ′, as follows. If C is a root with label l, then κ′(s) = l for all s ∈ ∆(C). If
the elements of ∆(C) have been assigned color k and D is a child of C, then
κ′(s) = k + 1 for all s ∈ ∆(D). When this process is complete, any uncolored
strings s are assigned κ′(s) = 0. If the resulting DPA P ′ is consistent with the
sample T , the learning algorithm outputs P ′ and halts. If the sample T includes
both TAut (to specify the automaton) and TAcc (to specify the coloring), then
F ′ will be isomorphic to the canonical forest F ∗(P) and κ′ will correspond to
the canonical coloring κ∗, and P ′ will recognize the target language L.

If the process described above does not result in a DPA that is consistent
with the sample T , then the algorithm defaults to constructing the table-lookup
DPA for T .

The learning algorithm also works for the classes IB and IC: In the case of
IB and IC we need to define a set F rather than a coloring κ. After constructing
the forest, the set F is determined to contain the states in the root nodes that
are not in the leaves. Thus we have the following.
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Theorem 11. The classes IB, IC and IP are identifiable in the limit using poly-
nomial time and data. Moreover, characteristic samples can be computed in poly-
nomial time.

A corollary of Theorem 11 is that the class of languages recognized by der-
ministic weak parity acceptors (DWPA) which was shown to be polynomially
learnable using membership and equivalence queries in [24] is identified in the
limit using polynomial time and data. This class (which is equivalent to the in-
tersection of classes DBA ∩ DCA) was shown to be a subset of IM in [30], and
to be a subset of IP in [4].

Corollary 2. The class DWPA is identifiable in the limit using polynomial time
and data. Moreover, characteristic samples can be computed in polynomial time.

9 The sample TAcc and the learning algorithm for a DMA

The above results can be extended to the class IM. Recall that we define the
size measure for a DMA to be max{|Σ|, |Q|,m}, where m is the number of sets
in the acceptance condition. For the characteristic sample TL, TAut remains the
same, but TAcc contains for each accepting set C, an example u(v)ω for which
C is the set of states visited infinitely often. In the learning algorithm, the
construction of the transition function remains the same. Instead of attempting
to construct a coloring function, the learning algorithm finds for each labeled
example (u(v)ω, 1) ∈ T , the set C of states s that are visited infinitely often
on input u(v)ω starting from ε and using the transition function δ′, and adds
C to the acceptance condition. If the construction does not result in a DMA
consistent with T , then it defaults to producing a table-lookup DMA for T .
Because in addition, as stated in Section 5.1, a characteristic samples can be
computed in polynomial time, we have the following.

Theorem 12. The class IM is identifiable in the limit using polynomial time
and data. Moreover, a characteristic sample can be computed in polynomial time.

10 Discussion

We have shown that the non-deterministic classes of ω-automata NBA, NPA,
NMA and NCA cannot be identified in the limit using polynomial data. A nega-
tive result regarding query learning of the first three classes was recently obtained
in [3]. That result makes a plausible assumption of cryptographic hardness, which
is not required here. On the positive side we have shown that the classes IB, IC,
IP and IM can be identified in the limit using polynomial time and data. And
moreover, a characteristic sample can be constructed in polynomial time. The
construction builds on the definition of a canonical forest for a DPA which may
be of use in other contexts as well. The question whether the deterministic classes
DBA, DPA, DMA and DCA can be polynomially learned in the limit remains
open.
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