
VeriAbs : Verification by Abstraction and Test Generation

(Competition Contribution)

Mohammad Afzal1, Supratik Chakraborty2 , Avriti Chauhan1, Bharti Chimdyalwar1,
Priyanka Darke1,�, Ashutosh Gupta2, Shrawan Kumar1, Charles Babu M3,

Divyesh Unadkat1,2 , and R Venkatesh1

1 Tata Research Development and Design Center, Pune, India
2 Indian Institute of Technology, Bombay, India
3 Chennai Mathematical Institute, Chennai, India

Abstract. VeriAbs is a strategy selection based reachability verifier for C code. It ana-
lyzes the structure of loops, and intervals of inputs to choose one of the four verification
strategies implemented in VeriAbs. In this paper, we present VeriAbs version 1.4 with
updates in three strategies. We add an array verification technique called full-program
induction, and enhance the existing techniques of loop pruning, k-path interval analysis,
and disjunctive loop summarization. These changes have improved the verification of
programs with arrays, and unstructured loops and unstructured control flows.

1 Verification Approach

VeriAbs is a reachability checker for C code that employs a portfolio of techniques and works
by smartly selecting a sequence of techniques for each problem instance. Specifically, it
performs structural and interval analysis of the input code to determine a sequence of suitable
verification techniques, or a strategy [2]. An earlier version of the tool appeared in [9]. Figure 1
shows the architecture with this year’s enhancements in dashed lines. When the input program
contains unstructured loops, VeriAbs performs fuzz testing in parallel with k-induction. If the
program does not contain unstructured loops but loops manipulating arrays, VeriAbs applies
array abstraction techniques like loop shrinking, loop pruning, and full-program induction [7]
in sequence. If the program contains inputs of very short ranges, VeriAbs applies explicit
state model checking, and loop invariant generation using program behaviour, syntax and
counter-examples in parallel [2]. Otherwise VeriAbs applies k-path interval analysis, loop
abstraction, loop summarization, bounded model checking, and k-induction in the order pre-
sented in the architecture. If any technique successfully (in)validates the encoded properties,
the tool reports the result, generates the witness, and exits. We next explain the enhancements
made to VeriAbs this year.

1.1 Tool Enhancements

Full-Program Induction. VeriAbs applies full-program induction as presented in [7] to pro-
grams manipulating arrays of a symbolic size N given as a parameter. It takes as input

� Jury member, corresponding author : priyanka.darke@tcs.com
c© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 383–387, 2020.
https://doi.org/10.1007/978-3-030-45237-7 25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_25&domain=pdf
http://orcid.org/0000-0002-7527-7675
http://orcid.org/0000-0001-6106-4719
https://doi.org/10.1007/978-3-030-45237-7_25


384 M. Afzal et al.

Fig. 1. Architecture Diagram

a parameterized program represented by PN , annotated with parameterized pre- and post-
conditions represented by ϕ(N) and ψ(N) respectively and checks the validity of the Hoare
triple {ϕ(N)}PN {ψ(N)} for all values of N (>0). We summarize the technique in [7] here.

In the base case, it verifies that the given Hoare triple holds for a fixed number of values
of N (say for N=1). If the check fails, a property violation is reported. It then hypothesizes
that the Hoare triple {ϕ(N−1)}PN−1 {ψ(N−1)} holds for N > 1, where PN−1 is the
program with parameter N − 1. In the induction step, the technique synthesizes a code
fragment ∂PN , called the difference program, such that {ϕ(N)} PN {ψ(N)} is valid iff
{ϕ(N)}PN−1;∂PN {ψ(N)} is valid. The difference program is the computation to be per-
formed after the program PN−1 has executed to get the same state as PN . It then computes a
formula ∂ϕ(N), called the difference pre-condition, such thatϕ(N) is implied by the conjunc-
tion of ϕ(N−1) and ∂ϕ(N), and that ∂ϕ(N) continues to hold after the execution of PN−1.
The induction step now needs to prove the validity of {ψ(N−1)∧∂ϕ(N)}∂PN {ψ(N)}.
It uses weakest pre-condition computation to infer formulas pre(N) over the variables and
arrays whose values were computed by PN−1 and subsequently read in ∂PN . Base case is
checked for pre(N) and it is subsequently used to strengthen the pre- and post-conditions
in the inductive step. The technique, thus, inducts over the entire program via the parameter
N , in place of inducting over individual loops by using specialized predicates as in [6].
Full-program induction does not rely on inductive invariants for each loop in the program.

1 b=0, d=0, c=30;
2 a = *;
3 if (a == 10)
4 c = 30; //Path P1
5 else if (a < 10)
6 b = 3; //Path P2
7 else if (a > 10)
8 d = 31; //Path P3
9 if (c==30 && a==10)

10 d = 31;
11 if(a >= 10)
12 assert(d == 31);

Fig. 2. Example

k-Path Interval Analysis. VeriAbs implements a k-path
interval analysis which is an extension of the standard non-
relational interval domain [2]. It maintains the path-wise data
ranges of variables along a configurable k number of paths at
each program point, thus matching the precision of relational
domains. When the number of paths at the join point exceeds k,
a subset of paths are merged to maintain k paths at the join point.
In previous versions, arbitrary subsets of paths were merged.
For SV-COMP 2020, the join operation identifies variables of
interest (VOIs) with respect to the given property to decide
which paths to merge such that VOIs can retain precise values.

Consider the example shown in Figure 2 with a valid property at line 12 to be analyzed
with k=2 and the VOI d. It can be seen that three paths – P1, P2 and P3 join at line number 9.
The enhanced join operation merges paths P1 and P2 so that the resultant paths are as follows:



VeriAbs: Verification by Abstraction and Test Generation 385

P1+P2: {a=[MIN,10], b=[0,3], c=30, d=0},
P3: {a =[11,MAX], b=0, c=30, d=31}.
This information at the join point helps validate the property. Earlier, the join operation could
merge the path P3 with P1 or P2, leading to an imprecise interval – [0,31] of d at the join
point, resulting in spurious property violation. Our implementation considers variables used
in the encoded property as the VOIs.

Loop Pruning is an array abstraction technique that defines a set of criteria (and a
resulting set of program transformation rules) which if satisfied by loops processing arrays, it
is sufficient to analyze the first few elements instead of the entire array [14]. In this version,
pruning has been extended to programs containing nested loops and multidimensional arrays.
By structural analysis, we identify if elements of the multidimensional array are processed
uniformly in loops. If yes, we compute reduced dimensions of the array (for example,
a[m][m] may be reduced to a[4][4]). We have also refined the pruning criteria to improve
its applicability over multidimensional and dynamically allocated arrays, 56 additional SV-
COMP’20 ReachSafety benchmarks are solved by the current implementation of array
pruning as compared to the previous version.

Disjunctive Loop Summarization. VeriAbs analyses interleavings of unique paths within a
loop to produce its disjunctive summary to find errors and proofs [2]. In the current version,
VeriAbs extends this technique in the following situations: (a) while it earlier restricted affine
transformations to identity matrices, we now allow diagonal matrices with finite monoid [4];
(b) we use the approach of generating flattenings as shown in [4] for loops which are flattable;
(c) we use VeriAbs’ general philosophy of deriving over-approximate summaries using the
techniques in [12], when precise disjunctive summary is not derivable.

2 Software Architecture

VeriAbs is primarily developed in Java and Perl. It implements all program analyses (except
full-program induction) and program transformers in Prism [13], the TCS Research program
analysis framework. It transforms programs processing multidimensional or dynamically
allocated arrays in loops to equivalent programs with symbolically sized 1D arrays. This
transformed program is consumed by VAJRA v1.0 [7], the tool that implements full-program
induction. VAJRA uses LLVM v6.0.0 [15] compiler infrastructure for program transformations
and Z3 SMT solver v4.8.7 [10] for checking the validity of Hoare triples and for computing
weakest pre-conditions. For BMC VeriAbs uses the C Bounded Model Checker (CBMC)
v5.10 [8] with the Glucose Syrup SAT solver v4.0 [3]. For fuzz testing we enhance American
Fuzzy Lop [16] to allow test case mutation within valid data ranges generated by k-path
interval analysis for better path coverage. VeriAbs uses k-induction with continuously refined
invariants as implemented in CPAchecker v1.8 [5] for an improved precision over our existing
light weight implementation of k-induction.

In this version, we additionally derive disjunctive invariants for correctness witnesses
using abstract acceleration and abstract interpretation, and add them to the control flow
automaton generated by CPAchecker. If all implemented techniques fail, we use techniques
implemented in Ultimate Automizer v3204b741 [11] to generate correctness witnesses.

3 Strengths and Weaknesses

The main strengths of VeriAbs are (1) strategy selection that correlates strengths of verification
techniques and input code properties, and (2) a portfolio of sound techniques. Weaknesses:



386 M. Afzal et al.

(1) long strategies – the lengths of strategies executed by VeriAbs in the worst case can be ten
techniques, thus time consuming. Hence, smarter and shorter strategies are needed. (2) Non-
linear expressions in loops – loop abstractions in VeriAbs assign non-deterministic values to
variables modified in such expressions. (3) Multidimensional arrays in loops manipulating non-
contiguous locations – these are limitations of loop shrinking and pruning. These weaknesses
are not limitations of the state-of-the-art, and appropriate techniques if integrated into VeriAbs
can be easily invoked by the strategy selector to enable verification of such programs.

4 Tool Setup and Configuration
The VeriAbs SV-COMP 2020 executable is available for download at https://gitlab.com/
sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip. To install the tool, download the
archive, extract its contents, and then follow the installation instructions in VeriAbs/IN-

STALL.txt. To execute VeriAbs, the user needs to specify the property file of the respective
verification category using the --property-file option and the -64 option for pro-
grams with a 64 bit architecture. The witness is generated in the current working directory as
witness.graphml. A sample command is as follows:
VeriAbs/scripts/veriabs <-64> --property-file ALL.prp example.c

VeriAbs participated in the ReachSafety and the SoftwareSystems-ReachSafety categories
of SV-COMP 2020. The BenchExec wrapper script for the tool is veriabs.py and the
benchmark description file is veriabs.xml.

5 Software Project and Contributors
VeriAbs is maintained by some members of the Foundations of Computing group at TCS Re-
search [1]. They can be contacted at veriabs.tool@tcs.com. We are thankful to the developers
of American Fuzzy Lop, CBMC, CPAchecker, Glucose Syrup, LLVM, UAutomizer and Z3
for allowing us to use the tools within VeriAbs.

References

1. TCS Research. http://www.tcs.com/research/Pages/default.aspx
2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar, S., Venkatesh, R.:

VeriAbs: Verification by Abstraction and Test Generation. In: ASE. pp. 1138–1141 (2019)
3. Audemard, G., Simon, L.: On the glucose sat solver. IJAIT 27(01) (2018)
4. Bardin, A., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking.

In: ATVA. pp. 474–488 (2005)
5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In:

CAV. pp. 622–640 (2015)
6. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs by tiling. In: SAS.

pp. 428–449 (2017)
7. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs with full-program

induction. In: TACAS (2020)
8. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: TACAS (2004)
9. Darke, P., Prabhu, S., Chimdyalwar, B., Chauhan, A., Kumar, S., Basakchowdhury, A., Venkatesh,

R., Datar, A., Medicherla, R.K.: VeriAbs: Verification by Abstraction and Test Generation -
(Competition Contribution). In: TACAS. pp. 457–462 (2018)

10. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS. pp. 337–340 (2008)

https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip
mailto:veriabs.tool@tcs.com
http://www.tcs.com/research/Pages/default.aspx


VeriAbs: Verification by Abstraction and Test Generation 387

11. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz, A., Musa, B.,
Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer and the search for perfect interpolants
- (competition contribution). In: TACAS. pp. 447–451 (2018)

12. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear loops.
SIGPLAN Not. 49(1), 529–540 (2014)

13. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded code base: an
experience. In: ISEC. pp. 99–102 (2011)

14. Kumar, S.: Scaling up Property Checking. https://www.cse.iitb.ac.in/∼as/thesis soft.pdf (2019)
15. Lattner, C.: LLVM and Clang: Next generation compiler technology. In: The BSD Conference

(2008)
16. Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://www.cse.iitb.ac.in/~as/thesis_soft.pdf
http://lcamtuf.coredump.cx/afl/
http://creativecommons.org/licenses/by/4.0/

	VeriAbs : Verification by Abstraction and Test Generation (Competition Contribution)
	1 Verification Approach
	1.1 Tool Enhancements

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References




