
Java Ranger at SV-COMP 2020 (Competition
Contribution)

Vaibhav Sharma1⋆ , Soha Hussein1,2 , Michael W. Whalen1 , Stephen
McCamant1, and Willem Visser3

1 University of Minnesota, Minneapolis, MN, USA
{vaibhav, husse200, mwwhalen, smccaman}@umn.edu

2 Ain Shams University, Cairo, Egypt
soha.hussien@cis.asu.edu.eg

3 Stellenbosch University, Stellenbosch, South Africa
visserw@sun.ac.za

Abstract. Path-merging is a known technique for accelerating symbolic
execution. One technique, named “veritesting” by Avgerinos et al. uses
summaries of bounded control-flow regions and has been shown to accel-
erate symbolic execution of binary code. But, when applied to symbolic
execution of Java code, veritesting needs to be extended to summarize
dynamically dispatched methods and exceptional control-flow. Such an
extension of veritesting has been implemented in Java Ranger by imple-
menting as an extension of Symbolic PathFinder, a symbolic executor
for Java bytecode. In this paper, we briefly describe the architecture of
Java Ranger and describe its setup for SV-COMP 2020.

1 Approach

Symbolic execution is a well-known program analysis technique that has been
applied to many applications such as test generation [3,7], equivalence check-
ing [6,8], and vulnerability finding [13]. However, when applied to large soft-
ware, symbolic execution can suffer from scalability challenges caused by path
explosion. Path-merging techniques such as veritesting [1] and dynamic state
merging [4] help alleviate these scalability limitations. In particular, veritest-
ing attempts to construct a static summary of a multi-path region and use it.
Veritesting has been shown to significantly accelerate symbolic execution of bi-
nary code. Given that a large amount of software in use today is still written in
Java, it is desirable to bring the benefits of veritesting to symbolic execution of
Java as well. However, features such as dynamic dispatch make path-merging for
Java code challenging [11]. The summary of a multi-path region that contains
a dynamically-dispatched method call can only be constructed if the method to
be called can also be summarized. Java Ranger (JR) extends the current state-
of-the-art path-merging ideas presented by Avgerinos et al. [1] by first building
static summaries which are later transformed using runtime information such as

27

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_27&domain=pdf
http://orcid.org/0000-0001-9877-8926
http://orcid.org/0000-0002-5071-6811
http://orcid.org/0000-0003-3824-1435
http://orcid.org/0000-0002-0913-3091
https://doi.org/10.1007/978-3-030-45237-7_27


394 V. Sharma et al.

the dynamic type of an object reference used for accessing a field. Java Ranger
is built as an extension to Symbolic PathFinder (SPF) [5].

2 Architecture

Java Ranger is implemented as an SPF listener that watches for symbolic branch
conditions in branching instructions. On encountering a symbolic branch instruc-
tion, JR attempts to create a summary for the multi-path region that begins at
that branch instruction and ends at its exit points. A multi-path region is a
region of code that begins at a branch instruction with a symbolic branch condi-
tion. An exit point of a multi-path region is either (1) the first program location
in a control-flow path through the multi-path region which could not be sum-
marized, or (2) the location of the immediate post-dominator of the multi-path
region. This mechanism is also explained by Sharma et al. [12] in Figure 4.

3 Strengths And Weaknesses

Since JR improves scalability limitations of symbolic execution, its strength can
only be observed when running it over large software. However, JR falls back
to vanilla symbolic execution when it finds no opportunity for path-merging.
SV-COMP 2020 had 416 verification tasks in the Java track. More information
on SV-COMP 2020 can be found in its competition report [2]. JR instantiated
at least one static summary on 96 different benchmarks of the 416 benchmarks.
The summary for a multi-path region can be instantiated more than once on
each benchmark because it is possible that the symbolic executor will encounter
the same multi-path region more than once while running the benchmark. In
total, JR instantiated 356 unique summaries. The total number of instantiated
summaries used by JR was 20,182. JR also inlined a method summary a total
of 62,857 times while instantiating these summaries.

JR also had a “unknown” conclusion on 40 of the 416 SV-COMP 2020 verifi-
cation tasks. 22 of the 40 were caused due to our JR configuration which turned
off support for symbolic strings because we found SPF’s support for solving
string constraints was not stable. 9 “unknown” conclusions were reached due to
missing support for symbolic array lengths in multi-dimensional arrays. 8 of the
40 occurred due to a timeout. The last “unknown” result occurs in the equiva-
lence check verification task in the ApacheCLI benchmark due to JR’s use of a
depth limit.

We made use of two depth limit parameters in SV-COMP 2020. The first
was a limit on the exploration depth of our baseline symbolic executor, SPF.
The second was a depth limit on the recursive depth to which our method
summaries would be inlined. While we wished to avoid the use of any such limit,
we found similar kinds of limits were used by many participanting tools in SV-
COMP 2019. It is common to use some kind of limitation when applying symbolic
execution tools in practice, since they can get bogged down by path explosion or
related problems, and path-merging helps with but does not eliminate this issue.



Java Ranger at SV-COMP 2020 (Competition Contribution) 395

The Java verification category of SV-COMP 2020 did not score a tool’s answer
differently if it used a depth limit for producing that answer. Instead, the use of
depth limit is reflected in each tool’s score only if it caused the tool to produce an
incorrect answer. We describe these depth limits and JR’s configuration options
in the following section.

4 Tool Setup and Configuration

Java Ranger’s setup is very similar to the setup used by SPF. Since Java Ranger
is simply an extension of SPF, the Java Ranger directory can be specified as
a valid jpf-symbc extension of JPF. A JR configuration requires the following
additions.
veritestingMode = <1-5>

veritestingMode specifies the path-merging features to be enabled with each
higher number adding a new feature to the set of features enabled by the previous
number. Setting veritestingMode to 1 runs vanilla SPF. Setting it to 2 enables
path-merging for multi-path regions with no method calls and a single exit point.
Setting it to 3 adds path-merging for multi-path regions that make method calls
where the method can be summarized by Java Ranger. Setting it to 4 adds path-
merging for multi-path regions with more than one exit point caused due to
exceptional behavior and unsummarized method calls. Setting it to 5 adds path-
merging for summarizing return instructions in multi-path regions by treating
them as an additional exit point.

performanceMode = <true or false>

Setting performanceMode to true causes Java Ranger to minimize the number
of solver calls to check the feasibility of the path condition when summarizing a
multi-path region with multiple exit points.

TARGET



396 V. Sharma et al.

to SPF, which is in turn built as an extension to JPF, we were able to restrict
JR’s exploration of choices using this option. We set this parameter to the value
13 for SV-COMP 2020.

5 Software Project and Contributors

Java Ranger is an extension of SPF. It is maintained on GitHub [9]. The version
of Java Ranger that participated in Sv-COMP 2020 is publicly available [10].
For more information, please contact the authors of this paper.

6 Acknowledgments

The research described in this paper has been supported in part by the National
Science Foundation under grant 1563920.

References

1. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing Symbolic Execution
with Veritesting. In: Proceedings of the 36th International Conference on Software
Engineering. pp. 1083–1094. ICSE 2014, ACM, New York, NY, USA (2014)

3. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proceedings of the 2005 ACM SIGPLANConference on Programming Language
Design and Implementation. pp. 213–223. ACM, New York, NY, USA (2005)

4. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient State Merging in Sym-
bolic Execution. In: PLDI. pp. 193–204. PLDI ’12, ACM, New York, NY, USA
(2012)

5. Păsăreanu, C.S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., Rungta, N.:
”Symbolic PathFinder: Integrating Symbolic Execution With Model Checking For
Java Bytecode Analysis”. Automated Software Engineering 20(3), 391–425 (Sep
2013)

6. Ramos, D.A., Engler, D.R.: Practical, Low-effort Equivalence Verification of Real
Code. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. pp. 669–685. CAV’11, Springer-Verlag, Berlin, Heidelberg (2011)

7. Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 263–272. ESEC/FSE-13, ACM, New York, NY, USA (2005)

8. Sharma, V., Hietala, K., McCamant, S.: Finding Substitutable Binary Code By
Synthesizing Adaptors. In: 11th IEEE Conference on Software Testing, Validation
and Verification (ICST) (Apr 2018)

9. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W.: Java Ranger.
https://github.com/vaibhavbsharma/java-ranger (2019–2020)

10. Sharma, V., Soha, Michael, Stephen, Willem: Java Ranger at SV-COMP 2020 (Feb
2020). https://doi.org/10.5281/zenodo.3678718

2. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2). LNCS 12079, Springer (2020), https://www.sosy-lab.org/research/
pub/2020-TACAS.Advances in Automatic Software Verification SV-COMP
2020.pdf

https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://github.com/vaibhavbsharma/java-ranger
https://doi.org/10.5281/zenodo.3678718
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf


Java Ranger at SV-COMP 2020 (Competition Contribution) 397

11. Sharma, V., Whalen, M.W., McCamant, S., Visser, W.: Veritesting Challenges in
Symbolic Execution of Java. In: Java PathFinder Workshop (Jan 2018)

12. Sharma, V., Whalen, M.W., McCamant, S., Visser, W.: Veritesting challenges in
symbolic execution of Java. SIGSOFT Softw. Eng. Notes 42(4), 1–5 (Jan 2018).
https://doi.org/10.1145/3149485.3149491

13. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting Fuzzing Through Selec-
tive Symbolic Execution. In: Network and Distributed System Security Symposium
(NDSS) (2016)

14. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Automated Software Engineering 10(2), 203–232 (Apr 2003).
https://doi.org/10.1023/A:1022920129859

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1023/A:1022920129859
http://creativecommons.org/licenses/by/4.0/

	Java Ranger at SV-COMP 2020 (Competition Contribution)
	1 Approach
	2 Architecture
	3 Strengths And Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	6 Acknowledgments
	References




