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Abstract. Path-merging is a known technique for accelerating symbolic
execution. One technique, named “veritesting” by Avgerinos et al. uses
summaries of bounded control-flow regions and has been shown to accel-
erate symbolic execution of binary code. But, when applied to symbolic
execution of Java code, veritesting needs to be extended to summarize
dynamically dispatched methods and exceptional control-flow. Such an
extension of veritesting has been implemented in Java Ranger by imple-
menting as an extension of Symbolic PathFinder, a symbolic executor
for Java bytecode. In this paper, we briefly describe the architecture of
Java Ranger and describe its setup for SV-COMP 2020.

1 Approach

Symbolic execution is a well-known program analysis technique that has been
applied to many applications such as test generation [3,7], equivalence check-
ing [6,8], and vulnerability finding [13]. However, when applied to large soft-
ware, symbolic execution can suffer from scalability challenges caused by path
explosion. Path-merging techniques such as veritesting [1] and dynamic state
merging [4] help alleviate these scalability limitations. In particular, veritest-
ing attempts to construct a static summary of a multi-path region and use it.
Veritesting has been shown to significantly accelerate symbolic execution of bi-
nary code. Given that a large amount of software in use today is still written in
Java, it is desirable to bring the benefits of veritesting to symbolic execution of
Java as well. However, features such as dynamic dispatch make path-merging for
Java code challenging [11]. The summary of a multi-path region that contains
a dynamically-dispatched method call can only be constructed if the method to
be called can also be summarized. Java Ranger (JR) extends the current state-
of-the-art path-merging ideas presented by Avgerinos et al. [1] by first building
static summaries which are later transformed using runtime information such as
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the dynamic type of an object reference used for accessing a field. Java Ranger
is built as an extension to Symbolic PathFinder (SPF) [5].

2 Architecture

Java Ranger is implemented as an SPF listener that watches for symbolic branch
conditions in branching instructions. On encountering a symbolic branch instruc-
tion, JR attempts to create a summary for the multi-path region that begins at
that branch instruction and ends at its exit points. A multi-path region is a
region of code that begins at a branch instruction with a symbolic branch condi-
tion. An exit point of a multi-path region is either (1) the first program location
in a control-flow path through the multi-path region which could not be sum-
marized, or (2) the location of the immediate post-dominator of the multi-path
region. This mechanism is also explained by Sharma et al. [12] in Figure 4.

3 Strengths And Weaknesses

Since JR improves scalability limitations of symbolic execution, its strength can
only be observed when running it over large software. However, JR falls back
to vanilla symbolic execution when it finds no opportunity for path-merging.
SV-COMP 2020 had 416 verification tasks in the Java track. More information
on SV-COMP 2020 can be found in its competition report [2]. JR instantiated
at least one static summary on 96 different benchmarks of the 416 benchmarks.
The summary for a multi-path region can be instantiated more than once on
each benchmark because it is possible that the symbolic executor will encounter
the same multi-path region more than once while running the benchmark. In
total, JR instantiated 356 unique summaries. The total number of instantiated
summaries used by JR was 20,182. JR also inlined a method summary a total
of 62,857 times while instantiating these summaries.

JR also had a “unknown” conclusion on 40 of the 416 SV-COMP 2020 verifi-
cation tasks. 22 of the 40 were caused due to our JR configuration which turned
off support for symbolic strings because we found SPF’s support for solving
string constraints was not stable. 9 “unknown” conclusions were reached due to
missing support for symbolic array lengths in multi-dimensional arrays. 8 of the
40 occurred due to a timeout. The last “unknown” result occurs in the equiva-
lence check verification task in the ApacheCLI benchmark due to JR’s use of a
depth limit.

We made use of two depth limit parameters in SV-COMP 2020. The first
was a limit on the exploration depth of our baseline symbolic executor, SPF.
The second was a depth limit on the recursive depth to which our method
summaries would be inlined. While we wished to avoid the use of any such limit,
we found similar kinds of limits were used by many participanting tools in SV-
COMP 2019. It is common to use some kind of limitation when applying symbolic
execution tools in practice, since they can get bogged down by path explosion or
related problems, and path-merging helps with but does not eliminate this issue.
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The Java verification category of SV-COMP 2020 did not score a tool’s answer
differently if it used a depth limit for producing that answer. Instead, the use of
depth limit is reflected in each tool’s score only if it caused the tool to produce an
incorrect answer. We describe these depth limits and JR’s configuration options
in the following section.

4 Tool Setup and Configuration

Java Ranger’s setup is very similar to the setup used by SPF. Since Java Ranger
is simply an extension of SPF, the Java Ranger directory can be specified as
a valid jpf-symbc extension of JPF. A JR configuration requires the following
additions.
veritestingMode = <1-5>

veritestingMode specifies the path-merging features to be enabled with each
higher number adding a new feature to the set of features enabled by the previous
number. Setting veritestingMode to 1 runs vanilla SPF. Setting it to 2 enables
path-merging for multi-path regions with no method calls and a single exit point.
Setting it to 3 adds path-merging for multi-path regions that make method calls
where the method can be summarized by Java Ranger. Setting it to 4 adds path-
merging for multi-path regions with more than one exit point caused due to
exceptional behavior and unsummarized method calls. Setting it to 5 adds path-
merging for summarizing return instructions in multi-path regions by treating
them as an additional exit point.

performanceMode = <true or false>

Setting performanceMode to true causes Java Ranger to minimize the number
of solver calls to check the feasibility of the path condition when summarizing a
multi-path region with multiple exit points.

TARGET
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to SPF, which is in turn built as an extension to JPF, we were able to restrict
JR’s exploration of choices using this option. We set this parameter to the value
13 for SV-COMP 2020.

5 Software Project and Contributors

Java Ranger is an extension of SPF. It is maintained on GitHub [9]. The version
of Java Ranger that participated in Sv-COMP 2020 is publicly available [10].
For more information, please contact the authors of this paper.
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