
JDart: Dynamic Symbolic Execution for Java
Bytecode (Competition Contribution)

Malte Mues and Falk Howar

Dortmund University of Technology
Dortmund, Germany

malte.mues@tu-dortmund.de
falk.howar@tu-dormtund.de

Abstract. JDart performs dynamic symbolic execution of Java pro-
grams: it executes programs with concrete inputs while recording sym-
bolic constraints on executed program paths. A constraint solver is then
used for generating new concrete values from recorded constraints that
drive execution along previously unexplored paths. JDart is built on
top of the Java PathFinder software model checker and uses the JCon-
straints library for the integration of constraint solvers.

1 Overview

JDart is a dynamic symbolic execution engine for the JVM build on top of
Java PathFinder (JPF) [11]. Dynamic symbolic execution [4,6] (sometimes also
referred to as concolic execution) executes programs with concrete values while
recording symbolic constraints for execution paths. The approach combines the
benefits of fast concrete execution with the possibility of generating new concrete
values, triggered by symbolic constraints, that exercise previously unexplored
program behaviors. JDart can be used for checking assertions in Java programs:
Concolic execution will explore new program paths until either (a) an assertion
violation is discovered, (b) all program paths have been explored, or (c) resource
limits of the analysis are exhausted.

The initial driver of the development of JDart was the need for an analysis
that is robust enough to handle large and complex systems, concretely the Au-
toResolver software for prediction and resolution of airplane loss of separation
developed at NASA Ames Research Center [7]. Though JDart provides a robust
and scalable platform for dynamic symbolic analysis of Java programs [7], we
had to extend its functionality in several ways in order to be able to compete at
SV-COMP 2020 [1]. We developed:

1. a new analysis mode in which fresh symbolic variables are introduced during
analysis (in contrast to a fixed number of manually declared symbolic values),

2. a number of symbolic models encoding environment behavior (driven by
SV-COMP 2020 benchmarks), and

3. a new mode for solving constraints in a sequence of attempts using succes-
sively weaker bounds on variables (cf. Section 2).

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 398–402, 2020.
https://doi.org/10.1007/978-3-030-45237-7_28

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_28&domain=pdf
http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-9524-4459
https://doi.org/10.1007/978-3-030-45237-7_28

JDart: Dynamic Symbolic Execution for Java Bytecode 399

Fig. 1: Architecture of JDart [7].

While (1) enabled JDart to enter the competition, (2) accounts for the largest
part of improvements over our own baseline, and (3) contributes to better per-
formance on some benchmarks with assertion violations in big state spaces.

2 Architecture

JDart combines dynamic execution with recording and analysis of symbolic
path constraints. It runs as an extension of the JPF software model checker [11].
In particular, JDart uses the Java virtual machine implemented by JPF and
its capabilities for annotating values on the stack and the heap with symbolic
information. The tool itself is written in Java and uses JConstraints [5] for
encoding SMT problems. Moreover, JConstraints acts as a frontend to an
SMT solver (e.g., Z3 [3]) used for finding concrete values that drive the analysis.

Figure 1 illustrates the architecture of JDart: The tool consists of three lay-
ers: Concrete analysis frontends make up the top layer (e.g., generation of method
summaries, generation of test suites, assertion checking). The main components
record and analyze execution paths (Explorer) and perform concolic execution
(Executor). The Executor uses concolic implementations of bytecode instruc-
tions. These bytecodes are executed instead of the original JPF bytecodes. A
concolic bytecode tracks the symbolic representation of a value and annotates
a concrete value with its symbolic counterpart. Whenever execution takes a

400 M. Mues and F. Howar

branching decision based on a concrete value with a symbolic annotation, the
symbolic value is added to the constraints tree maintained by the Explorer. A
constraint solver is used for finding concrete values that drive execution along
unexplored paths of the tree.

Leveraging the modular architecture of JDart and JConstraints, we im-
plemented a meta-constraint solver for finding small concrete values for symbolic
numeric variables. This allows JDart to find assertion violations faster and with
less resource consumption in cases where a symbolic variable controls the number
or length of execution paths (e.g., symbolic array size or a symbolic loop bound).
The meta-constraint solver performs multiple calls to an SMT solver, adding suc-
cessively weaker bounds to numeric variables. E.g., for a path constraint ϕ over
symbolic numeric variable x, the solver adds bounds (−z ≤ x) ∧ (x ≤ z) with
z ∈ (1, 2, 3, 5, 8, 13, 21, . . .), i.e., the first numbers in the Fibonacci sequence.
If the solver finds a model for the constraint, JDart uses this model for driving
concolic execution. In case no model is found in a fixed number of attempts,
the SMT solver is called without added bounds. The number of attempts is a
configuration parameter of JDart and was fixed to 7 for SV-COMP 2020.

Analysis of JDart can be bounded by termination strategies. When checking
assertions the termination strategy is stopping on the first occurrence of an as-
sertion violation. Additional strategies could be bounding depth of the symbolic
analysis, bounding runtime, or termination on specific errors. We refer the reader
to [7] for a more detailed and complete discussion of the features of JDart.

3 Strengths and Weaknesses

JDart scored 524 points (max. of 602) in the Java track and was declared
third winner for Java, behind JBMC (527 points) [2] and Java Ranger (549
points) [9]. All other tools scored considerably fewer points than JDart (next
best is COASTAL [10] with 472). As Java Ranger and JBMC, JDart did
not report a single incorrect verdict. JDart exhibits the general strengths and
weaknesses of dynamic and symbolic analysis approaches for Java programs:

Runtime. Driven by concrete execution, the analysis is fairly fast. JDart is
overall the second fastest tool in cases where it can provide an answer. Not
using bounds JDart, on the other hand, has a relatively high number of
timeouts and runs that terminate due to resource limitations — and thus
only the fourth lowest cumulative runtime.

Symbolic Strings. Particular to Java verification is the challenge of provid-
ing models for the behavior of classes in the Java standard library. In
SV-COMP 2020 such models are mostly required for analyzing benchmarks
that extensively incorporate String processing. We made a substantial contri-
bution to the code base of JDart and implemented models for java.lang.
String and related classes. As a consequence, JDart can analyze all but
one corresponding benchmark examples (JDart currently cannot analyze
regular expressions symbolically).

JDart: Dynamic Symbolic Execution for Java Bytecode 401

Unbounded Behavior. Based on principles of symbolic execution, JDart
does not terminate on unbounded loops or in case of unbounded recursion,
leading to a number of timeouts on the corresponding set of benchmarks.

4 Tool Setup

The source code of JDart used for the competition artifact [8] is available
on GitHub1. JDart is designed as a plug-in to JPF and relies on ant as a
build system. One of its dependencies is the jpf-core project [11]. The other
dependency is the JConstraints library, which was configured to use Z3 [3]
with incremental solving as a constraint solver for SV-COMP 2020.

For the competition, JDart is wrapped by the run-jdart.sh shell script
which generates .jpf configuration files, specifying which benchmark to analyze
and the global configuration options to JDart: For SV-COMP 2020 all termi-
nation criteria except for assertion violations are disabled, executing JDart as
an almost unbounded assertion checker (the only bound in place is an upper
bound of 127 on maximal length of String variables). The shell script records
and interprets the output of JDart and can also report the version of JDart.

5 Software Project

The version of JDart that was used in SV-COMP 2020 is maintained by the
Automated Quality Assurance Group at Technical University of Dortmund (in
particular by the authors of this paper) and is available under the Apache Li-
cense, version 2.0, on GitHub1. An initial version of JDart was developed by the
authors of [7] at NASA Ames Research Center and Carnegie Mellon University.
The original version of JDart is available on GitHub2.

Acknowledgments. We are grateful for the work on JDart and JConstraints
by the respective original authors. Our success would not have been possible
without their contributions.

References

1. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In:
Proc. TACAS (2). LNCS 12079, Springer (2020), https://www.sosy-lab.org/
research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_
SV-COMP_2020.pdf

2. Cordeiro, L., Kroening, D., Schrammel, P.: Jbmc: Bounded model checking for java
bytecode. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 219–223. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17502-
3_17

1 https://github.com/tudo-aqua/jdart,
Commit c7e30a29b98a69df2c7c96ae39b90ba0fe00e204

2 https://github.com/psycopaths/jdart

https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-030-17502-3_17
https://github.com/tudo-aqua/jdart
https://github.com/psycopaths/jdart

402 M. Mues and F. Howar

3. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

4. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random test-
ing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 213–223. PLDI ’05, ACM (2005).
https://doi.org/10.1007/978-3-642-19237-1_4

5. Howar, F., Jabbour, F., Mues, M.: JConstraints: A library for working with
logic expressions in Java. In: Models, Mindsets, Meta: The What, the How, and
the Why Not?, pp. 310–325. Springer (2019). https://doi.org/10.1007/978-3-030-
22348-9_19

6. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

7. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analysis framework.
In: Proceedings of TACAS 2016. pp. 442–459 (2016). https://doi.org/10.1007/978-
3-662-49674-9_26

8. Mues, M., Howar, F.: JDart artifact used in SV-COMP 2020. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678593

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

11. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Automated Software Engineering 10(2), 203–232 (Apr 2003).
https://doi.org/10.1023/A:1022920129859

9. Sharma, V., Hussein, S., Whalen, M., McCamant, S., Visser, W.: Java Ranger
at SV-COMP 2020 (competition contribution). In: Biere, A., Parker, D.
(eds.) TACAS 2020. LNCS, vol. 12079, pp. 393–397. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7_27

10. Visser, W., Geldenhuys, J.: COASTAL: Combining concolic and fuzzing
for Java (competition contribution). In: Biere, A., Parker, D. (eds.)

https://doi.org/10.1007/978-3-030-45237-7_23
TACAS 2020. LNCS, vol. 12079, pp. 373–377. Springer, Cham (2020).

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-19237-1_4
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.5281/zenodo.3678593
https://doi.org/10.1023/A:1022920129859
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-45237-7_27
https://doi.org/10.1007/978-3-030-45237-7_23

	JDart: Dynamic Symbolic Execution for Java Bytecode (Competition Contribution)
	1 Overview
	2 Architecture
	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References

