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Abstract. JDart performs dynamic symbolic execution of Java pro-
grams: it executes programs with concrete inputs while recording sym-
bolic constraints on executed program paths. A constraint solver is then
used for generating new concrete values from recorded constraints that
drive execution along previously unexplored paths. JDart is built on
top of the Java PathFinder software model checker and uses the JCon-
straints library for the integration of constraint solvers.

1 Overview

JDart is a dynamic symbolic execution engine for the JVM build on top of
Java PathFinder (JPF) [11]. Dynamic symbolic execution [4,6] (sometimes also
referred to as concolic execution) executes programs with concrete values while
recording symbolic constraints for execution paths. The approach combines the
benefits of fast concrete execution with the possibility of generating new concrete
values, triggered by symbolic constraints, that exercise previously unexplored
program behaviors. JDart can be used for checking assertions in Java programs:
Concolic execution will explore new program paths until either (a) an assertion
violation is discovered, (b) all program paths have been explored, or (c) resource
limits of the analysis are exhausted.

The initial driver of the development of JDart was the need for an analysis
that is robust enough to handle large and complex systems, concretely the Au-
toResolver software for prediction and resolution of airplane loss of separation
developed at NASA Ames Research Center [7]. Though JDart provides a robust
and scalable platform for dynamic symbolic analysis of Java programs [7], we
had to extend its functionality in several ways in order to be able to compete at
SV-COMP 2020 [1]. We developed:

1. a new analysis mode in which fresh symbolic variables are introduced during
analysis (in contrast to a fixed number of manually declared symbolic values),

2. a number of symbolic models encoding environment behavior (driven by
SV-COMP 2020 benchmarks), and

3. a new mode for solving constraints in a sequence of attempts using succes-
sively weaker bounds on variables (cf. Section 2).
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Fig. 1: Architecture of JDart [7].

While (1) enabled JDart to enter the competition, (2) accounts for the largest
part of improvements over our own baseline, and (3) contributes to better per-
formance on some benchmarks with assertion violations in big state spaces.

2 Architecture

JDart combines dynamic execution with recording and analysis of symbolic
path constraints. It runs as an extension of the JPF software model checker [11].
In particular, JDart uses the Java virtual machine implemented by JPF and
its capabilities for annotating values on the stack and the heap with symbolic
information. The tool itself is written in Java and uses JConstraints [5] for
encoding SMT problems. Moreover, JConstraints acts as a frontend to an
SMT solver (e.g., Z3 [3]) used for finding concrete values that drive the analysis.

Figure 1 illustrates the architecture of JDart: The tool consists of three lay-
ers: Concrete analysis frontends make up the top layer (e.g., generation of method
summaries, generation of test suites, assertion checking). The main components
record and analyze execution paths (Explorer) and perform concolic execution
(Executor). The Executor uses concolic implementations of bytecode instruc-
tions. These bytecodes are executed instead of the original JPF bytecodes. A
concolic bytecode tracks the symbolic representation of a value and annotates
a concrete value with its symbolic counterpart. Whenever execution takes a
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branching decision based on a concrete value with a symbolic annotation, the
symbolic value is added to the constraints tree maintained by the Explorer. A
constraint solver is used for finding concrete values that drive execution along
unexplored paths of the tree.

Leveraging the modular architecture of JDart and JConstraints, we im-
plemented a meta-constraint solver for finding small concrete values for symbolic
numeric variables. This allows JDart to find assertion violations faster and with
less resource consumption in cases where a symbolic variable controls the number
or length of execution paths (e.g., symbolic array size or a symbolic loop bound).
The meta-constraint solver performs multiple calls to an SMT solver, adding suc-
cessively weaker bounds to numeric variables. E.g., for a path constraint ϕ over
symbolic numeric variable x, the solver adds bounds (−z ≤ x) ∧ (x ≤ z) with
z ∈ (1, 2, 3, 5, 8, 13, 21, . . .), i.e., the first numbers in the Fibonacci sequence.
If the solver finds a model for the constraint, JDart uses this model for driving
concolic execution. In case no model is found in a fixed number of attempts,
the SMT solver is called without added bounds. The number of attempts is a
configuration parameter of JDart and was fixed to 7 for SV-COMP 2020.

Analysis of JDart can be bounded by termination strategies. When checking
assertions the termination strategy is stopping on the first occurrence of an as-
sertion violation. Additional strategies could be bounding depth of the symbolic
analysis, bounding runtime, or termination on specific errors. We refer the reader
to [7] for a more detailed and complete discussion of the features of JDart.

3 Strengths and Weaknesses

JDart scored 524 points (max. of 602) in the Java track and was declared
third winner for Java, behind JBMC (527 points) [2] and Java Ranger (549
points) [9]. All other tools scored considerably fewer points than JDart (next
best is COASTAL [10] with 472). As Java Ranger and JBMC, JDart did
not report a single incorrect verdict. JDart exhibits the general strengths and
weaknesses of dynamic and symbolic analysis approaches for Java programs:

Runtime. Driven by concrete execution, the analysis is fairly fast. JDart is
overall the second fastest tool in cases where it can provide an answer. Not
using bounds JDart, on the other hand, has a relatively high number of
timeouts and runs that terminate due to resource limitations — and thus
only the fourth lowest cumulative runtime.

Symbolic Strings. Particular to Java verification is the challenge of provid-
ing models for the behavior of classes in the Java standard library. In
SV-COMP 2020 such models are mostly required for analyzing benchmarks
that extensively incorporate String processing. We made a substantial contri-
bution to the code base of JDart and implemented models for java.lang.
String and related classes. As a consequence, JDart can analyze all but
one corresponding benchmark examples (JDart currently cannot analyze
regular expressions symbolically).
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Unbounded Behavior. Based on principles of symbolic execution, JDart
does not terminate on unbounded loops or in case of unbounded recursion,
leading to a number of timeouts on the corresponding set of benchmarks.

4 Tool Setup

The source code of JDart used for the competition artifact [8] is available
on GitHub1. JDart is designed as a plug-in to JPF and relies on ant as a
build system. One of its dependencies is the jpf-core project [11]. The other
dependency is the JConstraints library, which was configured to use Z3 [3]
with incremental solving as a constraint solver for SV-COMP 2020.

For the competition, JDart is wrapped by the run-jdart.sh shell script
which generates .jpf configuration files, specifying which benchmark to analyze
and the global configuration options to JDart: For SV-COMP 2020 all termi-
nation criteria except for assertion violations are disabled, executing JDart as
an almost unbounded assertion checker (the only bound in place is an upper
bound of 127 on maximal length of String variables). The shell script records
and interprets the output of JDart and can also report the version of JDart.

5 Software Project

The version of JDart that was used in SV-COMP 2020 is maintained by the
Automated Quality Assurance Group at Technical University of Dortmund (in
particular by the authors of this paper) and is available under the Apache Li-
cense, version 2.0, on GitHub1. An initial version of JDart was developed by the
authors of [7] at NASA Ames Research Center and Carnegie Mellon University.
The original version of JDart is available on GitHub2.
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