f')

Check for
updates

PredatorHP Revamped (Not Only) for Interval-Sized
Memory Regions and Memory Reallocation

(Competition Contribution) * TACAS
Artifact
. . (2 o SV-COMP

Petr Peringer, Veronika Sokova** (B and Tom4s Vojnar 2020

Accepted

Brno University of Technology, Faculty of Information Technology,
Centre of Excellence IT4Innovations, Czech Republic

Abstract. This paper concentrates on improvements of the PredatorHP shape an-
alyzer in the past two years, including, e.g., improved handling of interval-sized
memory regions or new support of memory reallocation. The paper character-
izes PredatorHP’s participation in SV-COMP 2020, pointing out its strengths and
weakness and the way they were influenced by the latest changes in the tool.

1 Verification Approach and Software Architecture

We first briefly recap the main ideas behind PredatorHP and then discuss significant
improvements that have been done in the tool in the past two years.

1.1 The Predator Shape Analyzer

Predator is implemented using C++ and the Boost libraries as a GCC plug-in on top of
the Code Listener framework [2], which we recently upgraded to work with GCC 7.4.0.
Moreover, as shown below, we extended Code Listener by adding a type analysis phase
before the compiled code is passed to the shape analysis implemented in Predator. In
case a memory safety property is to be checked and there are no complex types, such as
structures, unions, arrays, strings, or pointers in the program under analysis (including
possibly unreachable code), we directly assume the program to be memory safe.

source files| compiler config.h analysis
Y or
L] 1 front end n errors | predator
compiler | ... analyzers - .
6ee e code paner code L ComplexTypeChi e Kiﬁﬁ;r
GIMPLE § interface : storage i | “OMPIexIype iterators
Code Listener IR on CL IR

* errors with location info *

The main aim of Predator is shape analysis of sequential C programs that use low-
level C pointer statements to implement various kinds of lists (singly- or doubly-linked,
possibly circular, nested, and/or shared). Predator looks for various memory-related er-
rors (invalid pointer dereferences, double free operations, memory leaks, etc.), and it

* This work was supported by the Czech Ministry of Education, Youth and Sports within the
IT4Innovations Excellence in Science (NPUII) project No. LQ1602.
** Jury member, email: i sokova@fit.vutbr.cz.

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 408-412, 2020.
https://doi.org/10.1007/978-3-030-45237-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_30&domain=pdf
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-030-45237-7_30

PredatorHP Revamped 409

also checks validity of assertions present in the code. Predator uses abstract interpre-
tation based on the domain of symbolic memory graphs (SMGs) [1]. Predator abstracts
uninterrupted sequences of singly- or doubly-linked memory regions into appropriate
kinds of list segments. Further, Predator abstracts numerical values (either values stored
in memory regions, sizes of the regions, or offsets of pointers) using intervals with con-
stant bounds. The constants used as the bounds have a pre-defined maximum/minimum
value defined in the configuration of Predator (+32/-32 for SV-COMP’20). If the max-
imum/minimum value is exceeded, the bound is set to plus or minus infinity. Predator
uses summaries to speed up analysis of programs structured into functions. Recursive
programs are, however, analysed up to a given call depth only.
PredatorHP, i.e., the Preda- ‘ source filej ‘ Pmpe”}.’ﬁ'lﬂ

tor Hunting Party [3,4], whose I — T T

1 ~ ~
ﬂOW Of COHtrOl 18 ShOWn on ~ scheduler: DFS g scheduler: BFS ¥ scheduler: DFS Escheduler: DFS
the ri ght is imp]emented as % heap abstraction || S no VarKiller E depth 900 S depth 1900
T . S Jjoin : o, sampled intervals | |, sampled intervals
a Python script, 'and used to in- |> call cache 5 5 5
crease the efficiency and pre-
(safe + witness.xml) (error + witness.xml)

cision of the analysis. Namely,
PredatorHP runs the base Predator verifier in parallel with several Predator hunters that
do not use the list-segment abstraction, do not join semantically different SMGs, nor use
function summaries with matching of call parameters based on SMG entailment. While
the Predator verifier can claim a program correct, it cannot report errors to avoid false
alarms caused by abstraction. Predator hunters are classified as breadth-first (BFS) and
depth-first (DFS). The DFS hunters have a limit on the search depth defined as a certain
number of GCC’s GIMPLE instructions. The hunters can normally only report errors.
The only exception is when the verified program has a finite state space that is fully
explored by the BFS hunter in the given time limit.

In SV-COMP’20, based on empirical data, the BFS hunter does not use the Preda-
tor’s VarKiller, which removes dead variables from SMGs. This led to a significant
speedup on 5 verification tasks (and some slowdown on 3 tasks). Further, the most
shallow DFS 200 hunter, searching up to the depth of 200 instructions and used in
PredatorHP up to SV-COMP’19, was removed as it was not bringing any advantage
wrt the DFS 900 hunter, and a DFS 1900 hunter was added to handle more complex
tasks (in particular, memsafety-ext2/split_list_test05-1,ntdrivers/
floppy.1i.cil-3). However, note that the DFS 900 hunter remains needed as oth-
erwise 11 verification tasks would time out.

1.2 Recent Modifications of PredatorHP

One of the main improvements of the latest version of Predator is that its SMG-based
analysis has been extended to support memory reallocation on the heap. If a reallocation
operation is executed on an SMG, two new SMGs are produced. The first one models
the case when a new object of the required size is created, data from the old object are
copied into the new object, and the old object is freed. In the second case, the existing
object is resized. If the size decreases, Predator checks that no memory leak happens
due to some pointer field is removed or invalidated (in case it is partially removed).
Another improvement concerns working with interval-sized memory regions, which
arise when allocating structures or arrays of parametric size. Despite even older versions

410 P. Peringer et al.

of Predator were able to create such regions, the way in which they could have been
treated in the subsequent analysis of the program was very limited. In particular, it was
impossible to dereference interval-sized regions, and hence Predator was very weak
when analysing programs with structures or arrays of an in-advance-not-fixed size. This
situation was first improved for SV-COMP’ 19 in the following pragmatic way.

Namely, whenever Predator hits a conditional statement that would previously yield
an interval value with fixed bounds (such as the statement if (n>=0 && n<10) for
so-far unconstrained n), it will split the further analysis into as many branches as the
number of values in the interval is, each of them evaluating for a concrete value from the
interval. After the split, no further interval-based allocations and dereferences, which
the previous version of Predator used to fail on, happen. In order for the splitting not
to cause a memory explosion, the latest version of Predator contains a parameter that
controls the maximum size of split intervals, which was set to 300 in SV-COMP’20.

The above modification of Predator concerned dealing with memory regions whose
size is given by an interval with finite bounds. In case one of the bounds is infinite,
Predator has been extended to sample the interval and perform the further analysis with
the sampled values. Currently, the sampling is done simply by taking some number of
concrete values from the given interval starting/ending with the bound that is fixed (of
course, for memory regions, unboundedness from above does only make sense). The
number of considered samples is currently set to 3. Of course, this strategy cannot be
used to soundly verify correctness of programs, and so it is used for detecting bugs only.

Despite the above mentioned treatment of intervals was primarily designed for deal-
ing with interval-sized memory regions, it can help in other cases of dealing with in-
tegers too. Namely, it can help both when dealing with integer data as well as when
dealing with interval-based pointer offsets.

Next, we have implemented checking whether all dynamically allocated memory
has been deallocated when a function with the noreturn attribute (such as abort or
exit) is called. The implementation simply searches the SMG representing the mem-
ory at the moment of a call of a noreturn function and checks that it does not contain
any valid dynamically allocated object.

We have also added a support of the clobber instruction of GIMPLE, which termi-
nates the life time of local variables of code blocks. Upon this instruction, Predator now
marks the concerned memory region as deallocated, allowing it to detect invalid deref-
erences of objects local to a block from outside of the block. Further, we have added
a support of the instructions modulo and bitwise-or and created models of the stan-
dard library functions for st rcmp and realloc. This fixed several problems such as
reporting false alarms when assigning fully-overlapping structures.

Finally, we improved the generation of witnesses. Apart from some bug fixes, we
changed the trace generation for the reachability category. Namely, in this category,
if some trace ends with an error other than calling - VERIFIER error, the analysis
recovers and continues to search for other traces.

2 Strengths and Weaknesses

The main strength of PredatorHP is that it treats code with various kinds of unbounded
lists in a sound and efficient way. Predator hunters then allow it to quickly handle pro-
grams with a small finite state space (e.g., benchmarks from 1ist-simple) and avoid

PredatorHP Revamped 411

many false alarms that could otherwise happen. Interestingly, among the 328 correct
tasks in ReachSafety-Heap, MemSafety-Heap, and MemSafety-LinkedLists, only 98 use
unbounded data structures, out of which the Predator verifier (and, of course, no hunter)
handles 56 %. Next, out of the 328 tasks, 83 do not use linked data structures nor arrays,
and 147 use them but are finite-state. The Predator verifier and the BFS hunter handle
93 % of the 83 tasks that are so trivial that even the verifier does not use any abstraction.
Out of the 147 tasks, 53 tasks are handled by both of them, while 2 tasks are handled
solely by the verifier and 75 solely by the BFS hunter.

A weakness of Predator is that it specialises in dealing with lists, and so it handles
structures such as trees, skip-lists, or arrays in a bounded way, i.e., for error detection,
only. Another weakness of Predator has traditionally been its weak treatment of non-
pointer data. We have tried to improve on the latter weakness by the described heuristics
for dealing with intervals of integers with a specific aim to improve the way Predator
handles memory regions of parametric size. The results of PredatorHP on SV-COMP’20
benchmarks with arrays show that the heuristics did help. Indeed, the interval sampling
heuristic allowed us to correctly detect 10 errors in tasks from array-memsafety,
array-examples, and 1loops. Moreover, the interval-splitting heuristic also helped
on some benchmarks for dealing with interval-based sizes, offsets, and/or integer data.
Namely, it removed 8 unknown results in ReachSafety and 4 such results in MemSafety.

The new type analysis looking for presence of complex types allowed Predator to
skip its main analysis loop in 77 tasks in the MemSafety category, of which 13 tasks
(from termination—-crafted) contain recursion, which Predator could not han-
dle, and 6 tasks (from locks) would otherwise timeout. Due to the new support of
reallocation, Predator verifies all tasks containing a call of realloc. Due to the added
support of clobber instructions, Predator detects invalid memory accesses in bench-
marks accessing variables outside of the block in which they were created. All other new
improvements described above did also help in some cases and allowed PredatorHP to
win the 1st place in the MemSafety category and in the ReachSafety-Heap sub-category.

3 Contributors, Software Project, and the Tool Setup

The main author of Predator is Kamil Dudka. Besides him and the PredatorHP team,
Petr Miiller, Michal Kotoun, and numerous other people listed in the docs/THANKS
file in the distribution of Predator have contributed to the distribution of Predator.
Predator is an open source software project distributed under GNU GPLv3. The
source code used in SV-COMP’20 is available too'. The README-SVCOMP-2020 file
shipped with it describes how to build the tool. The script predat orHP . py serves to
run the tool, taking a verification task file as a single positional argument. Paths to both
the property file and the desired witness file are accepted via long options, i.e., 64-bit
compiler options. The verification outcome is printed to the standard output. To run
PredatorHP in the BenchExec environment, the predatorhp.py wrapper and the
predatorhp.xml benchmark definition can be used. In SV-COMP’20, PredatorHP
participated in the MemSafety category and in the ReachSafety-Heap sub-category.

! http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

412 P. Peringer et al.

References

1. Dudka, K., Peringer, P., Vojnar, T.: Byte-Precise Verification of Low-Level List Manipu-
lation. In: Logozzo, F., Fihndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 215-237.
Springer, Heidelberg (2013)

2. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis
Tools. In: Moreno-Diaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011,
Part I. LNCS, vol. 6927, pp. 527-534. Springer, Heidelberg (2012)

3. Muller, P, Peringer, P., Vojnar, T.: Predator Hunting Party (Competition Contribution). In:
Baier, C., Tinelli, C. (eds) TACAS 2015, LNCS, vol. 9035, pp. 443-446. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46681-0_40

4. Peringer, P., Sokovd, V., Vojnar, T.: PredatorHP (Version 3.141). Zenodo (2020). http://doi.
org/10.5281/zenodo.3678356

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-46681-0_40
http://doi.org/10.5281/zenodo.3678356
http://doi.org/10.5281/zenodo.3678356
http://creativecommons.org/licenses/by/4.0/

	PredatorHP Revamped (Not Only) for Interval-Sized Memory Regions and Memory Reallocation (Competition Contribution)
	1 Verification Approach and Software Architecture
	1.1 The Predator Shape Analyzer
	1.2 Recent Modifications of PredatorHP

	2 Strengths and Weaknesses
	3 Contributors, Software Project, and the Tool Setup
	References

