®

Check for
updates

GASOL: Gas Analysis and Optimization for
Ethereum Smart Contracts * T

TACAS
Elvira Albert!2®, Jests Correas?®, Pablo Gordillo?®, Faliii{e[e}

Guillermo Roman-Diez3®, and Albert Rubio®2 EV°'2'3‘2’:J'°"

Accepted

! Instituto de Tecnologia del Conocimiento, Spain
2 Complutense University of Madrid, Spain
3 Universidad Politécnica de Madrid, Spain

Abstract. We present the main concepts, components, and usage of
GASOL, a Gas AnalysiS and Optimization tooL for Ethereum smart con-
tracts. GASOL offers a wide variety of cost models that allow inferring
the gas consumption associated to selected types of EVM instructions
and/or inferring the number of times that such types of bytecode in-
structions are executed. Among others, we have cost models to measure
only storage opcodes, to measure a selected family of gas-consumption
opcodes following the Ethereum’s classification, to estimate the cost of
a selected program line, etc. After choosing the desired cost model and
the function of interest, GASOL returns to the user an upper bound of
the cost for this function. As the gas consumption is often dominated
by the instructions that access the storage, GASOL uses the gas analysis
to detect under-optimized storage patterns, and includes an (optional)
automatic optimization of the selected function. Our tool can be used
within an Eclipse plugin for Solidity which displays the gas and instruc-
tions bounds and, when applicable, the gas-optimized Solidity function.

1 Introduction and Main Applications

Ethereum [27] is a global, open-source platform for decentralized applications
that has become the world’s leading programmable blockchain. As other block-
chains, Ethereum has a native cryptocurrency named Ether. Unlike other block-
chains, Ethereum is programmable using a Turing complete language, i.e., de-
velopers can code smart contracts that control digital value, run exactly as pro-
grammed, and are immutable. A smart contract is basically a collection of code
(its functions) and data (its state) that resides at a specific address on the
Ethereum blockchain. Smart contracts on the Ethereum blockchain are metered
using gas. Gas is a unit that measures the amount of computational effort that
it will take to execute each operation. Every single operation in Ethereum, be it

*This work was funded partially by the Spanish MCIU, AEI and FEDER
(EU) projects RT12018-094403-B-C31 and RT12018-094403-B-C33, the MINECO and
FEDER (EU) projects TIN2015-69175-C4-2-R and TIN2015-69175-C4-3-R, by the CM
projects P2018/TCS-4314 and S2018/TCS-4339 co-funded by EIE Funds of the EU and
by the UCM CT27/16-CT28/16 grant.

tThe software and dataset used during the current study are available at 10.6084 /
m9.figshare.11876697
© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 118-125, 2020.
https://doi.org/10.1007/978-3-030-45237-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_7&domain=pdf
http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0002-3219-0799
http://orcid.org/0000-0001-6189-4667
http://orcid.org/0000-0002-5427-8855
http://orcid.org/0000-0002-0501-9830
https://10.6084/m9.figshare.11876697
https://10.6084/m9.figshare.11876697
https://doi.org/10.1007/978-3-030-45237-7_7

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 119

a transaction or a smart contract instruction execution, requires some amount of
gas. The gas consumption of the Ethereum Virtual Machine (EVM) instructions
is spelled out in [27]; importantly, instructions that use replicated storage are
gas-expensive. Miners get paid an amount in Fther which is equivalent to the
total amount of gas it took them to execute a complete operation. The rationale
for gas metering is threefold: (i) Paying for gas at the moment of proposing the
transaction prevents the emitter from wasting miners computational power by
requiring them to perform worthless intensive work. (ii) Gas fees disincentive
users to consume too much of replicated storage, which is a valuable resource
in a blockchain-based consensus system (this is why storage bytecodes are gas-
expensive). (iii) It puts a cap on the number of computations that a transaction
can execute, hence prevents DoS attacks based on non-terminating executions.

Solidity [13] is the most popular language to write Ethereum smart contracts
that are then compiled into EVM bytecode. The Solidity compiler, solc, is able
to generate only constant gas bounds. However, when the bounds are parametric
expressions that depend on the function parameters, on the contract state, or on
the blockchain state (according to the experiments in [8] this happens in almost
10% of the functions), named solc, returns co as gas bound. This paper presents
GASOL [6], a resource analysis and optimization tool that is able to infer para-
metric bounds and optimize the gas consumption of Ethereum smart contracts.
GASOL takes as input a smart contract (either in EVM, disassembled EVM, or
in Solidity source code), a selection of a cost model among those available in
the system (c.f. Section 2), and a selected public function, and it automatically
infers cost upper bounds for this function. Optionally, the user can enable the
gas optimization option (c.f. Section 3) to optimize the function w.r.t. storage
usage, a highly valuable resource. GASOL has a wide range of applications: (1)
It can be used to estimate the gas fee for running transactions, as it soundly
over-approximates the gas consumption of functions. (2) It can be used to cer-
tify that the contract is free of out-of-gas vulnerabilities, as our bounds ensure
that if the gas limit paid by the user is higher than our inferred gas bounds,
the contract will not run out-of-gas. (3) As an attacker, one might estimate, how
much Fther (in gas), an adversary has to pour into a contract in order to execute
an out-of-gas attack. Also, attacks were produced by introducing a very large
number of underpriced bytecode instructions [23]. Our cost models could allow
detecting these second type of attacks by measuring how many instructions will
be executed (that should be very large) while its associated gas consumption
remains very low. (4) As we will show in the paper, the gas analysis can be used
to detect gas-expensive fragments of code and automatically optimize them.

2 Gas Analysis using Gasol

Figure 1 overviews the components of the GASOL tool [6]. The programmer
can use GASOL during the software development process from its Eclipse plugin
that allows selecting the cost model of interest and the function to be analyzed
and/or optimized from the Outline. This selection together with the compiled
EVM code is sent to the gas analyzer. A technical description of all phases

120 E. Albert et al.

& Eclipse Plugin

-
Solidity
~(@m—
Gas Upper
B e
i

Fig. 1. Overview of GASOL’s components

that comprise a gas analysis for EVM smart contracts is given in [8]. Basically,
the analyzer uses various tools [3,7] to extract the CFGs and decompile them
into a high-level representation from which upper bounds (UB) are produced by
using extensions of resource analyzers and solvers [4,5]. However, in our basic
gas analyzer named GASTAP [8], there was only one cost model to compute the
overall gas consumption of the function (including the opcode and memory gas
costs [27]), while GASOL is an extension of GASTAP that introduces optimization,
a wide variety of analysis options to define novel cost models, and an Eclipse
plugin. The UBs are provided to the user in the console as well as in markers
for functions within the Eclipse editor. If the user had selected the optimization
option, the analyzer detects potential sources of optimization and feeds them to
the optimizer to generate an optimized Solidity function within a new file.

Fig. 2 displays our Eclipse plugin that contains a fragment of the public
smart contract ExtraBalToken [1] used as running example. We can see its six
state variables and its function fill that we will analyze and optimize. The right
side window shows GASOL’s configuration options to set up the cost model:

(i) Type of resource (gas/instructions): by selecting gas, we estimate the gas
consumption according to the gas model in [27] (hence, use GASOL as a gas ana-
lyzer); by selecting instructions, we estimate the number of bytecode instructions
executed (using GASOL as a standard complexity analyzer).

(i) Type of instructions: allows selecting which instructions (or group of instruc-
tions) will be measured as follows.

- All: every bytecode instruction will be measured. For instance, by selecting gas
in (i), the function fill, and this option, we obtain as gas bound: 1077 + 40896 -
data. Besides, by using this option, GASOL also yields the so-called memory gas

(see[27]): 3-(data+5)+ {(dag‘lfgs)w . The analyzer abstracts arrays by their length,

hence, these bounds are functions of the length of the input array (denoted as
data) and can be used, e.g., to determine precisely how much gas is necessary
to run a transaction that executes this function.

- Gas-family: [27] classifies bytecode instructions according to their gas consumed
in six groups: zero, base, verylow, low, mid and high. Instructions that do not
belong to any of the previous groups are considered as single families. This option
provides the cost due to each gas-family separately and, by using the filter in (iii),
we can type the name of the desired group(s). As an example, for the function
fill using gas in (i), we obtain gas bounds 297 + 315 - data and 16 + 8 - data for
the gas-families verylow and mid, resp.

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 121

&5 Project Explorer 53 = O | 4 Ox4fc550cd2312ed6.sol 4 Oxdf9e97970c9.sol 4 Ox156f9176717422.50l | ExtraBalToken.sol &%

& < 4
S-S .

— 5 uint256 public totalSupply;

i Gasol 6 mapping (address => uint256) public balance0f;

5 TACAS20 mapping (address => mapping (address => uint256)) public allowance;
: bool public sealed; e — -
5 9 uint constant D166 = 0x10000000000000000000000000]
10 address public owner; ~ GASOL Preferences Please configure the app
11
012 function fill(uint[] data) public{ GastAnalyzeij Type of resource: G =
13 if ((msg.sender != owner)||(sealed))
w14 throw; . Type of instructions: Storage v
15 for (uint i=6; i<data.length; i++) {
16 address a = address(data[i] & (D166-1)) GAS Optimization Al -
17 uint amount = data[i] / D160; : Gas-family
18 if (balance0Of[a] == 0) { / In case it' Filter (separated by comma)
& Outline -5 1 balance0f(a] = amount; (separated by comma) | [[
20 totalSupply += amount; . Storage Optimization
Bla < | 21 } V)
- 22 ' \ Line
6 pragma solidity “0.4.25 22) Selected
% ExtraBalToken 2 e
- totalSupply : uint256 =
- balanceOf : (adress = uin||) Tasks | © Console 52 @) Error Log ® Cancel Apply and Close

@-=allowance : (address => (ac GASOL Console
GASOL analysis of 'fill(uint256[]1)' performed with parameters:
Type of resource: gas

= sealed : bool

COITEDRIB Type of instructions: storage
09 owner : address Filter: any
AT R Function fill(uint256(]) terminates?: yes

s> Transfer (address, address, |
& transfer(address, uint256) :v
& approve(address, unt256) £ UB for fill(uint256[]) [c(unknown)] : 20200*nat(data)
& transferFrom(address, addre UB for fill(uint256[]) [c(totalSupply)] : 20200*nat(data)
& () vold UB for fill(uint256[]) [c(owner)] : 200
< UB for fill(uint256[1) [c(sealed)] : 200

Total UB for fill(uint256[]): 400+40400*nat(data)

Fig. 2. Excerpt of smart contract ExtraBalToken in Solidity within Eclipse plugin.

- Storage: only the instructions that access the storage (namely bytecodes SLOAD
and SSTORE) are accounted. The gas bounds displayed within the Eclipse console
in Fig. 2 correspond to this setting, where we can see that the gas due to the
access of each basic storage variable is shown separately. The first row unknown
accumulates the gas of all accesses to non-basic types (data structures) as we
still cannot identify them. By comparing this storage gas with the overall gas
bound shown above for All, we can observe that most of the gas consumed by
the function is indeed dominated by the storage (namely 40.000 out of 40.896 at
each loop iteration) and it is thus a target for optimization (see Sec. 3).

- Storage-optimization: it bounds the number of SLOAD and SSTORE instructions
executed by the current function (excluding those in transitive calls). It is the
cost model that is used to detect and carry out the optimization described in
Sec. 3. Thus, it is the only selection that enables the Gas optimization that ap-
pears as third option, and forces the selection of “instructions” as type of resource
in (i). We obtain for the state variable totalSuply the bound: 2-data, which cap-
tures that we execute two accesses (one read, one write) to field totalSuply at
each loop iteration.

- Line: this option allows specifying the line number (of the Solidity program)
whose cost will be measured, and the remaining lines will be filtered out. For
instance, if the line number specified in the filter (iii) is 17, i.e., the Solidity
instruction: uint amount = datali]/D160, the obtained gas bound is 3+97-data.
In the absence of number in the filter, the bounds are given separately for all
program lines. This option is intended to help the programmer in improving the
gas consumption of her code by trying out different implementation options and
comparing the results.

- Selected: allows computing the consumption associated to each different EVM
instruction separately. For instance, if we select the bytecode instructions MLOAD
and SHA3, we obtain the gas bounds 6+15-data and 84-data resp. As in the
previous option, the filter allows the user to select the instructions of interest
and filter out the remaining.

122 E. Albert et al.

(#i3) Filter: this is a text field used to filter out information from the UBs. For
gas-family, the user can specify low, mid, etc. For storage, it allows specifying the
name of the basic field(s) whose storage will be measured. For line and selected,
we can type the line numbers and names of bytecode instructions of interest.
Once all options have been selected, we have set up a cost model that is sent
together with the EVM code to the gas analyzer and, after analysis, it outputs
an UB for the selected function w.r.t. the cost model activated by the options.
This UB is displayed, as shown in Fig. 2 in the console of the Eclipse plugin,
and also within markers next to the function definition.

3 Gas Optimization using Gasol

The information yield by the gas analysis is used in GASOL to detect potential
optimizations. Currently, the optimization target is the reduction of the gas con-
sumption associated to the usage of storage. In particular, we aim at replacing
multiple accesses to the same (global) storage data within a fragment of code
(each write access costs 20.000 in the worst case and 5.000 in the best case) by
one access that copies the data in storage to a (local) memory position followed
by accesses to such memory position (an access to the local memory costs only
3) and a final update to the storage if needed. The cost model number of in-
structions for storage-optimization described in Sec. 2 allows us to detect such
storage optimizations, namely for each different field, if we get a bound that is
different from one, we know that there may be multiple accesses to the same po-
sition in the storage and we try to replace them by gas-efficient memory accesses.
Our transformation is done at the level of the Solidity code, by defining a local
variable with the same name as the state variable to transform, and introduc-
ing setter and getter functions to access the storage variable. Currently, we can
transform accesses to variables of basic types, in the future, we plan to extend
it to data structures (maps and arrays). The number of instructions bound for
field totalSupply is 2 - data (hence # 1), and our optimization of £ill is:

. . . 8 uint amount = datali D160;
! fun_ctl(;r;ﬁ fill (luSmt []I data) {f' 1d ISupply () 9 if (balanceOf[a] :=[]Oé {
2 uint totalSupply = get_tield_totalSupply (); X
10 balanceOf[a] = amount;
3 .
4 if ((msg.sender != owner)||(sealed)) E totalSupply += amount;
5 throw; 3
6 for (uint i=0; i<data.length; i++) { - .
7 address a = address(data[i] & (D160—1)); 1 set field_totalSupply (totalSupply);

The gas bound (using the option All) for the optimized fill yield by GASOL is
21368 + 20674 - data, which means that, assuming the worst case for write access
to storage, the gas consumed inside the loop is 49.45% smaller than the one for
the original fill function (the memory gas does not change). Note that, even if
we consider the best case of 5.000 for write access to storage for the accesses we
have optimized, the gas reduction is still around 20%. This is, in fact, what we
have manually estimated using the actual data of the 82 times this function has
been executed in the Ethereum blockchain, achieving with GASOL a total saving
of almost 60M gas. As our transformation is local to the function, in order to
be sound, we check that the transformed global data is not being accessed by

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 123

transitive calls. For instance, if there was a call to another function from function
fill that accesses totalSupply, we would not transform it. Besides, for efficiency,
we check if all accesses are read (bytecode SLOAD) and, in such case, we do not
need to invoke the setter at the end (and avoid an unnecessary write access).

4 Related Tools and Conclusions

Numerous tools are being developed to catch different types of vulnerabilities of
smart contracts [20,16,22,19,17,26,18,10,15,9]. As mentioned in Sec. 1, the Solid-
ity compiler solc is not able to give any gas estimation for the running example,
as its gas consumption is not constant. Therefore, new gas analysis tools are be-
ing developed to detect potential gas related vulnerabilities and to infer bounds
in these complex situations. The purpose of the GASPER and MADMAX tools is
precisely the detection of gas related vulnerabilities. MADMAX [14] focuses on
identifying control- and data-flow patterns inherent for the gas-related vulnera-
bilities, thus, it works as a bug-finder, rather than as a gas analyzer like GASOL.
Similarly, GASPER identifies gas-costly programming patterns [12] by matching
specific control-flow patterns and using SMT solvers and symbolic computation.
Thus, it is an optimization detector, not an automatic optimizer as GASOL. The
recently developed ebso tool [24] also aims at optimizing the gas consumption
of EVM code. In contrast to GASOL, ebso’s optimizations are limited to a basic
block level, while our transformation might involve several blocks of the CFG
and would not be achievable by ebso’s approach. Also, ebso is not guided by
the results of an automatic resource analysis which can capture the expensive
storage patterns as in our case. Instead it is based on a full exploration of all
possible alternative instructions (within the considered block) that would lead to
the same result and consume less gas. They have obtained a number of rewrite
rules that define sequences of bytecode instructions that can be replaced by
equivalent ones that consume less. We could easily incorporate such basic block
replacement optimizations within our tool, and it is part of our agenda.

The approach of [21], like ours, aims at inferring precise gas bounds. Their
approach is based on symbolically enumerating all execution paths [11] and
unwinding loops to a limit. Instead, using resource analysis, GASOL infers the
maximal number of iterations for loops and generates accurate gas bounds which
are valid for any possible execution of the function and not only for the unwound
paths. The approach by Marescotti et al. has not been implemented in the con-
text of EVM and a tool like GASOL has not been delivered. An orthogonal line of
work with ours is the construction of resource-oriented attacks [23] that exploit
the weaknesses of the EVM gas model. GASOL’s cost models could help detect
this resource-oriented attacks by estimating the number of executed bytecode
instructions (very high) and their associated gas consumption (very low).

Finally, there is a tendency to define new languages (see Scilla [25], Michelson
[2]) for programming smart contracts that provide certain safety guarantees, e.g.,
Scilla [25] provides predictable gas consumption by disallowing general recursion
and while-loops. However, Ethereum is today the most widely used blockchain,
and Solidity the most popular programming language to write Ethereum smart
contracts, for which a gas analyzer+optimizer is of clear relevance.

124

E. Albert et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. ExtraBalToken contract. https://etherscan.io/address/

0x5c40ef6£527f4fba68368774¢6130ce65151232

The Michelson Language. https://www.michelson-lang.com

Oyente: An Analysis Tool for Smart Contracts (2018), https://github.com/
melonproject/oyente

. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gémez-Zamalloa, M.,

Martin-Martin, E., Puebla, G., Roman-Diez, G.: SACO: Static Analyzer for Con-
current Objects. In: TACAS. LNCS, vol. 8413, pp. 562-567. Springer (2014)
Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: SAS. LNCS, vol. 5079, pp.
221-237. Springer (2008)

Albert, E., Correas, J., Gordillo, P., Roman-Diez, G., Rubio, A.: GASOL: Gas
Analysis and Optimization for Ethereum Smart Contracts (Artifact) (2020),
Figshare 2020, 10.6084/m9.figshare.11876697

Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: A Framework
for High-Level Analysis of Ethereum Bytecode. In: ATVA. LNCS, vol. 11138, pp.
513-520. Springer (2018)

Albert, E., Gordillo, P., Rubio, A., Sergey, I.: Running on Fumes: Preventing Out-
Of-Gas vulnerabilitires in Ethereum Smart Contracts using Static Resource Anal-
ysis. In: VECoS. LNCS, vol. 11847, pp. 63-78. Springer (2019)

Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards Verifying Ethereum Smart
Contract Bytecode in Isabelle/HOL. In: CPP. pp. 66-77. ACM (2018)
Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: PLAS. pp.
91-96. ACM (2016)

Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In: TACAS. LNCS, vol. 1579, pp. 193-207. Springer (1999)

Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour your
money. In: SANER. pp. 442-446. IEEE Computer Society (2017)

Ethereum: Solidity (2018), https://solidity.readthedocs.io

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.:
Madmax: surviving out-of-gas conditions in ethereum smart contracts. PACMPL
2(OOPSLA), 116:1-116:27 (2018)

Grishchenko, 1., Maffei, M., Schneidewind, C.: A Semantic Framework for the Se-
curity Analysis of Ethereum Smart Contracts. In: POST. LNCS, vol. 10804, pp.
243-269. Springer (2018)

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with applications
to smart contracts. PACMPL 2(POPL), 48:1-48:28 (2018)

Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: NDSS. The Internet Society (2018)

Kolluri, A., Nikolic, I., Sergey, 1., Hobor, A., Saxena, P.: Exploiting The Laws of
Order in Smart Contracts. CoRR abs/1810.11605 (2018)

Krupp, J., Rossow, C.: teether: Gnawing at ethereum to automatically exploit
smart contracts. In: USENIX Security Symposium. pp. 1317-1333. USENIX As-
sociation (2018)

https://etherscan.io/address/0x5c40ef6f527f4fba68368774e6130ce6515123f2
https://etherscan.io/address/0x5c40ef6f527f4fba68368774e6130ce6515123f2
https://www.michelson-lang.com
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
https://10.6084/m9.figshare.11876697
https://solidity.readthedocs.io

20.

21.

22.

23.

24.

25.

26.

27.

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 125

Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS. pp. 254-269. ACM (2016)

Marescotti, M., Blicha, M., Hyvérinen, A.E.J., Asadi, S., Sharygina, N.: Computing
Exact Worst-Case Gas Consumption for Smart Contracts. In: ISoLA. LNCS,; vol.
11247, pp. 450-465. Springer (2018)

Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: ACSAC. pp. 653-663. ACM (2018)

Pérez, D., Livshits, B.: Broken metre: Attacking resource metering in EVM. CoRR
abs/1909.07220 (2019), http://arxiv.org/abs/1909.07220

Schett, M., Nagele, J.: Blockchain superoptimizer. In: 29th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2019)
(2019)

Sergey, 1., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with Scilla. In: 34th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2019) (2019)

Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Biinzli, F., Vechev,
M.T.: Securify: Practical security analysis of smart contracts. In: CCS. pp. 67-82.
ACM (2018)

Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1909.07220
http://creativecommons.org/licenses/by/4.0/

	GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts
	1 Introduction and Main Applications
	2 Gas Analysis using Gasol
	3 Gas Optimization using Gasol
	4 Related Tools and Conclusions
	References

