
An Integrated Approach to
Assertion-Based Random Testing in Prolog

Ignacio Casso 1 ^ ' , José F. Morales1 , Pedro López-García1,3 ,
and Manuel V. Hermenegildo1,2

IMDEA Software Institute, Madrid, Spain
{ignacio.decasso,josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

ETSI Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Spanish Council for Scientific Research (CSIC), Madrid, Spain

A b s t r a c t . We present an approach for assertion-based random testing
of Prolog programs that is tightly integrated within an overall assertion-
based program development scheme. Our starting point is the Ciao
model, a framework that unifies unit testing and run-time verification,
as well as static verification and static debugging, using a common asser­
tion language. Properties which cannot be verified statically are checked
dynamically. In this context, the idea of generating random test val­
ues from assertion preconditions emerges naturally since these precondi­
tions are conjunctions of literals, and the corresponding predicates can
in principle be used as generators. Our tool generates valid inputs from
the properties that appear in the assertions shared with other parts of
the model, and the run time-check instrumentation of the Ciao frame­
work is used to perform a wide variety of checks. This integration also
facilitates the combination with static analysis. The generation process
is based on running standard predicates under non-standard (random)
search rules. Generation can be fully automatic but can also be guided
or defined specifically by the user. We propose methods for supporting
(C)LP-specific properties, including combinations of shape-based (regu­
lar) types and variable sharing and instantiation, and we also provide
some ideas for shrinking for these properties. We also provide a case
study applying the tool to the verification and checking of the code of
some of the abstract domains used by the Ciao system.

1 Introduction and Motiv ation

Code validation is a vital task in any software development cycle. Tradition­
ally, two of the main approaches used to this end are verification and testing.
The former uses formal methods to prove automatically or interactively some
specification of the code, while the latter mainly consists in executing the code
for concrete inputs or test cases and checking that the program input-output
relations (and behaviour, in general) are the expected ones.

Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, and
the Madrid P2018/TCS-4339 BLOQUES-CM program. We are also grateful to the
anonymous reviewers for their useful comments.

The Ciao language [11] introduced a novel development workflow [12,13,21]
that integrates the two approaches above. In this model, program assertions are
fully integrated in the language, and serve both as specifications for static analy­
sis and as run-time check generators, unifying run-time verification and unit test­
ing with static verification and static debugging. This model represents an alter­
native approach for writing safe programs without relying on full static typing,
which is specially useful for dynamic languages like Prolog, and can be considered
an antecedent of the popular gradual- and hybrid-typing approaches [5,22,24].

The Ciao Model: For our purposes, assertions in the Ciao model can be seen
as a shorthand for defining instrumentation to be added to programs, in order
to check dynamically preconditions and postconditions, including conditional
postconditions, properties at arbitrary program points, and certain computa­
tional (non-functional) properties. The run-time semantics implemented by the
translation of the assertion language ensures that execution paths that violate
the assertions are captured during execution, thus detecting errors. Optionally,
(abstract interpretation-based [4]) compile-time analysis is used to detect asser­
tion violations, or to prove (parts of) assertions true, verifying the program or
reducing run-time checking overhead. As an example, consider the following Ciao
code (with the standard definition of quick-sort):

: - p red q s (Xs ,Ys) : (l i s t (X s) , v a r (Y s)) => (l i s t (Y s) , s o r t e d (Y s)) + n o t _ f a i l s .

: - prop l i s t / 1 .
l i s t ([]) .
l i s t ([_ | T]) : - l i s t (T) .

: - prop s o r t e d / 1 .

The assertion has a calls field (the conjunction after ‘:’), a success field (the
conjunction after ‘=>’), and a computational properties field (after ‘+’), where all
these fields are optional. It states that a valid calling mode for qs/2 is to invoke
it with its first argument instantiated to a list, and that it will then return
a list in Ys, that this list will be sorted, and that the predicate will not fail.
Properties such as l i s t / 1 or sorted/1 are normal predicates, but which meet
certain conditions (e.g., termination) [13] and are marked as such via prop/1
declarations. Other properties like var/1 or not_fai ls are builtins.

Compile-time analysis with a types/shapes domain can easily detect that, if
the predicate is called as stated in the assertion, the l i s t (Ys) check on success
will always succeed, and that the predicate itself will also succeed. If this pred­
icate appears within a larger program, analysis can also typically infer whether
or not qs/2 is called with a list and a free variable. However, perhaps, e.g.,
sorted(Ys) cannot be checked statically (this is in fact often possible, but let
us assume that, e.g., a suitable abstract domain is not at hand). The assertion
would then be simplified to:
r 1
| : - p r ed qs (Xs ,Ys) => s o r t e d (Y s) .

At run time, sorted(Ys) will be called within the assertion checking-harness,
right after calls to qs/2. This harness ensures that the variable bindings (or
constraints) and the whole checking process are kept isolated from the normal
execution of the program (this can be seen conceptually as including a Prolog
copy_term, or calling within a double negation, \+\+, executing in a separate
process, etc.).

Testing vs. Run-Time Checking: The checking of sorted/1 in the example
above will occur in principle during execution of the program, i.e., in deployment.
However, in many cases it is not desirable to wait until then to detect errors.
This is the case for example if errors can be catastrophic or perhaps if there is
interest in testing, perhaps for debugging purposes, more general properties that
have not been formally proved and whose main statements are not directly part
of the program (and thus, will never be executed), such as, e.g.:

i (: - p red r e v r e v (X) : l i s t (X) + n o t _ f a i l s .
2 r e v r e v (X) : - r e v e r s e (X , Y) , r e v e r s e (Y , X) .

This implies performing a testing process prior to deployment. The Ciao
model includes a mechanism, integrated with the assertion language, that allows
defining test assertions, which will run (parts of) the program for a given input
and check the corresponding output, as well as driving the run-time checks inde­
pendently of concrete application data [16]. For example, if the following (unit)
tests are added to qs/2:

i : - t e s t q s (Xs ,Ys) : (Xs = []) => (Ys = []) .
2 : - t e s t q s (Xs ,Ys) : (Xs = [3 , 2 , 4 , 1]) => (Ys = [1 , 2 , 3 , 4]) .

qs/2 will be run with, e.g., [3 ,2 ,4 ,1] as input in Xs, and the output generated
in Ys will be checked to be instantiated to [1 , 2 , 3 , 4] . This is done by extracting
the test drivers [16]:

i : - t e x e c q s ([] , _) .
2 : - t e x e c q s ([3 , 2 , 4 , 1] , _) .

and the rest of the work (checking the assertion fields) is done by the standard
assertion run-time checking machinery. In our case, this includes checking at run
time the simplified assertion “ : - pred qs(Xs,Ys) => sorted(Ys).”, so that
the output in Ys will be checked by calling the implementation of sorted/1.
This overall process is depicted in Fig. 1 and will be discussed further in Sect. 2.

Towards Automatic Generation: Hand-written test cases such as those
above are quite useful in practice, but they are also tedious to write and even
when they are present they may not cover some interesting cases. An aspect
that is specific to (Constraint-)Logic Programming (CLP) and is quite relevant
in this context is that predicates in general (and properties in particular) can
be used as both checkers and generators. For example, calling l i s t (X) from the

r ev rev /1 example above with X uninstantiated generates lazily, through back­
tracking, an infinite set of lists, Xs = [] ; Xs = [_] ; Xs = [_,_,_] . . . , which
can be used to catch cases in which an error in the coding of r eve r se /2 makes
r ev rev /1 fail. This leads naturally to the idea of generating systematically and
automatically test cases by running in generation mode (i.e., “backwards”) the
properties in the calls fields of assertions.

While this idea of using properties as test case generators has always been
present in the descriptions of the Ciao model [12,21], it has not really been
exploited significantly to date. Our purpose in this paper is to fill this gap. We
report on the development of LPtest , an implementation of random testing [8]
with a more natural connection with Prolog semantics, as well as with the Ciao
framework. Due to this connection and the use of assertions, this assertion-based
testing allows supporting complex properties like combinations of shape-based
(regular) types, variable sharing, and instantiation, and also non-functional
properties.

Our contributions can be summarized as follows:

– We have developed an approach and a tool for assertion-based random test
generation for Prolog and related languages. It has a number of character­
istics in common with property-based testing from functional languages, as
exemplified by QuickCheck [3], but provides the assertions and properties
required in order to cover (C)LP features such as logical variables and non-
ground data structures or non-determinism, with related properties such as
modes, variables sharing, non-failure, determinacy and number of solutions,
etc. In this, LPtest is most similar to PrologTest [1], but we argue that our
framework is more general and we support richer properties.

– Our approach offers a number of advantages that stem directly from framing
it within the Ciao model. This includes the integration with compile-time
checking (static analysis) and the combination with the run-time checking
framework, etc. using a single assertion language. This for example greatly
simplifies error reporting and diagnosis, which can all be inherited from these
parts of the framework. It can also be combined with other test-case genera­
tion schemes. To the extent of our knowledge, this has only been attempted
partially by PropEr [20]. Also, since Erlang is in many ways closer to a func­
tional language, PropEr does not support Prolog-relevant properties and it is
not integrated with static analysis. In comparison to PrologTest, we provide
combination with static analysis, through an integrated assertion language,
whereas the assertions of PrologTest are specific to the tool, and we also
support a larger set of properties.

– In our approach the automatic generation of inputs is performed by run­
ning in generation mode the properties (predicates) in those preconditions,
taking advantage of the specialized SLD search rules of the language (e.g.,
breadth first, iterative deepening, and, in particular, random search) or imple­
mentations specialized for such generation. In particular, we perform auto­
matic generation of instances of Prolog regular types, instantiation modes,
sharing relations among variables and grounding, arithmetic constraints, etc.

Program

Code
(user, builtins,
libraries)

Assertions
(user, builtins,
libraries)

check
test
t rust

Unit-tests

Possible
me error

Com pile-time
error

Fig . 1 . The Ciao assertion framework (CiaoPP’s verification/testing architecture).
(Color figure online)

To the extent of our knowledge all previous tools only supported generation
for types, while we also consider the latter.

– We have enhanced assertion and property-based test generation by combining
it with static analysis and abstract domains. To the extent of our knowledge
previous work had at most discarded properties that could be proved stat­
ically (which in LPtest comes free from the overall setting, as mentioned
before), but not used static analysis information to guide or improve the
testing process.

– We have implemented automatic shrinking for our tool, and in particular we
have developed an automatic shrinking algorithm for Prolog regular types.

The rest of this paper is organized as follows. In Sect. 2 we review our app­
roach to assertion-based testing in the context of Prolog and Ciao. In Sect. 3 we
introduce our test input generation schema. In Sect. 4, we show how assertion-
based testing can be combined with and enhanced by static analysis. Sect. 5 is
dedicated to shrinking of test cases in LPtest . In Sect. 6 we show some prelimi­
nary results of a case study in which our tool is applied to checking some of the
domain operations in the static analyses of CiaoPP (the Ciao “preprocessor”).
Finally, we review the related work in Sect. 7 and provide our conclusions in
Sect. 8.

2 Using LPtest Within the Ciao Model

As mentioned before, the goal of LPtest is to integrate random testing of
assertions within Ciao’s assertion-based verification and debugging framework
(Fig. 1). Given an assertion for a predicate, we want to generate goals for that
predicate satisfying the assertion precondition (i.e., valid call patterns for the

predicate) and execute them to check that the assertion holds for those cases or
find errors. As also mentioned in the introduction, the Ciao framework already
provides most of the components needed for this task: the run-time checking
framework allows us to check at runtime that the assertions for a predicate are
not violated, and the unit-test framework allows us to specify and run concrete
goals to check those assertions. We only need to be able to generate terms sat­
isfying the assertion preconditions and feed them into the other parts of the
framework (the new yellow box in Fig. 1). This generation of test cases is dis­
cussed in Sect. 3, and the following example shows how everything is integrated
step by step.

Consider again a similar assertion for the qs /2 predicate, and assume that
the program has a bug and fails for lists with repeated elements:

:- module(qs , [qs /2] , [asser t ions , nat iveprops]) .

:- pred qs(Xs,Ys) : (l i s t (X s , i n t) , var(Ys))
=> (l i s t (Y s , i n t) , sorted(Ys)) + no t_ fa i l s .

part i t ionC [] ,_, [] , []) .
partitionC[X|Xs],Pv,[X|L],R) :- X < Pv, !, par t i t ion(Xs,Pv,L,R). % should be =<
partitionC[X|Xs],Pv,L,[X|R]) :- X > Pv, par t i t ion(Xs,Pv,L,R).

Following Fig. 1, the assertions of the qs module are verified statically [13].
As a result, parts of each assertion may be proved true or false (in which case
no testing is needed for them), and, if any other parts are left after this process,
run-time checking and/or testing is performed for them. CiaoPP generates a new
source file which includes the original assertions marked with status checked,
f a l s e , or, for the ones that remain for run-time checking, check. LPtest starts
by reporting a simple adaptation of CiaoPP’s output. E.g., for our example,
LPtest will output:

Testing a s s e r t i o n :
: - pred qs(Xs,Ys) : (l i s t (X s , i n t) , var(Ys))

=> (l i s t (Y s , i n t) , sor ted(Ys)) + n o t _ f a i l s .

Assertion was p a r t i a l l y ver i f ied s t a t i c a l l y :
: - checked pred qs(Xs,Ys) (l i s t (X s , i n t) , var(Ys)) => l i s t (Y s , i n t) .

Left to check: :
: - check pred qs(Xs,Ys) => sorted(Ys) + n o t _ f a i l s .

LPtest will then try to test dynamically the remaining assertion. For that,
it will first collect the Ciao properties that the test case must fulfill (i.e., those
in the precondition of the assertion, which is taken from the original assertion,
which is also output by CiaoPP), and generate a number of test case drivers
(texec’s) satisfying those properties. Those test cases will be pipelined to the
unit-test framework, which, relying on the standard run-time checking instru­
mentation, will manage their execution, capture any error reported during run­
time checking, and return them to LPtest , which will output:

Assertion
: - check pred qs(Xs,Ys)

proven fa l se for t e s t c a s e :
: - texec q s ([5 , 9 , - 3 , 8 , 9 , - 6 , 2] , _) .

because:
c a l l to qs(Xs,Ys) f a i l s for
Xs = [5 , 9 , - 3 , 8 , 9 , - 6 , 2]

=> sorted(Ys) + n o t _ f a i l s .

Finally, LPtest will try to shrink the test cases, enumerating test cases that
are progressively smaller and repeating the steps above in a loop to find the
smallest test case which violates the assertion. LPtest will output:

i Tes t case s h r i n k e d t o :
2 : - t e x e c q s ([® , ®] , _) .

The testing algorithm for a module can thus be summarized as follows:

1. (CiaoPP) Use static analysis to check the assertions. Remove proved asser­
tions, simplify partially proved assertions.

2. (LPtest) For each assertion, generate N test cases from the properties in
the precondition, following the guidelines in Sect. 3. For each test case, go
to 3. Then go to 4.

3. (RTcheck) Use the unit-test framework to execute the test case and cap­
ture any run-time checking error (i.e., assertion violation).

4. (LPtest) Collect all failed test cases from RTcheck. For each of them, go
to 5 to shrink them, and then report them (using RTcheck).

5. (LPtest) Generate a simpler test case not generated yet.
• If not possible, finalize and return current test case as shrinked test

case. If possible, go to 3 to run the test.
If the new test case fails, go to 5 with the new test case.
If it succeeds, repeat this step.

The use of the Ciao static verification and run-time checking framework in this
(pseudo-)algorithm, together with the rich set of native properties in Ciao, allows
us to specify and check a wide range of properties for our programs. We provide
a few examples of the expressive power of the approach:

(Conditional) Postconditions. We can write postconditions using the success
(=>) field of the assertions. Those postconditions can range from user-defined
predicates to properties native to CiaoPP, for which there are built-in checkers
in the run-time checking framework. These properties include types, which can be
partially instantiated, i.e., contain variables, and additional features particular to
logic programming such as modes and sharing between variables. As an example,
one can test with LPtest the following assertions, where covered(X,Y) means
that all variables occurring in X also occur in Y:

1 : - p red r e v (X s , Y s) : l i s t (X s) => l i s t (Y s) .
2 : - p red s o r t (X s , Y s) : l i s t (X s , i n t) => (l i s t C Y s , i n t) , s o r t e d (Y s)) .
3 : - p red numbervarsCTerm,N,M) => g r o u n d (T e r m) .
4 : - p red v a r s e t (T e r m , X s) => (l i s t (X s , v a r) , cove redCTerm,Xs)) .

For this kind of properties, LPtest tries to ensure that at least some of the
test cases do not succeed trivially (by the predicate just failing), and warns
otherwise.

Computational Properties. LPtest can also be used to check properties regarding
the computation of a predicate. These properties are typically native and talk
about features that range from determinism and multiplicity of solutions to
resource usage (cost). They can be checked with LPtest, as long as the run-time
checking framework supports it (e.g., some properties, like termination, are not
decidable). Examples of this would be:

1 (: - p red r e v (x , Y) : l i s t (X) + (n o t _ f a i l s , i s _ d e t , n o _ c h o i c e p o i n t s) .
2 : - p red appendCX,Y,Z) : l i s t (X) => c o s t (s t e p s , u b , l e n g t h (X)) .

Rich Generation. The properties supported for generation include not only
types, but also modes and sharing between variables, and arithmetic constraints,
as well as a restricted set of user-defined properties. As an example, LPtest can
test the following assertion:

1
2
3
4
5
6
7
8
9

3 Test Case Generation

The previous section illustrated specially the parts that LPtest inherits from the
Ciao framework, but a crucial step was skipped: the generation of test cases from
the cal ls field of the assertions, i.e., the generation of Prolog terms satisfying a
conjunction of Ciao properties. This was obviously one of the main challenges
we faced when designing and implementing LPtest . In order for the tool to be
integrated naturally within the Ciao verification and debugging framework, this
generation had to be as automatic as possible. However, full automation is not
always possible in the presence of arbitrary properties potentially using the whole
Prolog language (e.g., cuts, dynamic predicates, etc.). The solution we arrived
at is to support fully automatic and efficient generation for reasonable subsets
of the Prolog language, and provide means for the user to guide the generation
in more complex scenarios.

Pure Prolog. The simplest and essential subset of Prolog is pure Prolog. In
pure Prolog every predicate, and, in particular, every Ciao property, is itself
a generator: if it succeeds with some terms as arguments, those terms will be
(possibly instances of) answers to the predicate when called with free variables
as arguments. The problem is that the classic depth-first search strategy used in
Prolog resolution, with which those answers will be computed, is not well suited
for test-case generation. One of Ciao’s features comes here to the rescue. Ciao
has a concept of packages, syntactic and/or semantic extensions to the language
that can be loaded module-locally. This mechanism is used to implement lan­
guage extensions such as functional syntax, constraints, higher order, etc., and,
in particular alternative search rules. These include for example (several versions
of) breadth first, iterative deepening, Andorra-style execution, etc. These rules
can be activated on a per-module basis. For example, the predicates in a module
that starts with the following header:

(
i : - module(myprops, _, [b f]) .

(which loads the bf package) will run in breadth-first mode. While breadth-
first is useful mostly for teaching, other alternative search rules are quite useful
in practice. Motivated by the LPtest context, i.e., with the idea of running
properties in generation mode, we have developed also a randomized alternative
search strategy package, rnd, which can be described by the following simplified
meta-interpreter:

s o l v e _ g o a l (G) : - r a n d o m _ c l a u s e (G , B o d y) , s o l v e _ b o d y (B o d y) .

r andom_c lause (Head ,Body) : -
f i n d a l l (c l (H e a d , B) > m e t a _ c l a u s e (H e a d , B) > C l a u s e L i s t) ,
o n c e (s h u f f l e (C I a u s e L i s t , S h u f f l e L i s t)) ,
m e m b e r (c l (H e a d , B o d y) , S h u f f l e L i s t) . % Body=[] for f a c t s

s o l v e _ b o d y ([]) .
s o l v e _ b o d y ([G | G s]) : - s o l v e _ g o a l (G) , s o l v e _ b o d y (G s) .

The actual algorithm used for generation is of course more involved. Among
other details, it only does backtracking on failure (on success it starts all over
again to produce the next answer, without repeating traces), and it has a growth
control mechanism to avoid getting stuck in traces that lead to non-terminating
generations.

Using this search strategy, a set of terms satisfying a conjunction of pure Pro­
log properties can be generated just by running all those properties sequentially
with unbounded variables. This is implemented using different versions of each
property (generation, run-time check) which are generated automatically from
the declarative definition of the property using instrumentation. In particular,
this simplest subset of the language allows us to deal directly with regular types
(e.g., l i s t / 1) .

M o d e , Shar ing, and Ar i thmet ic Cons t ra in t s . We extend the subset of the
language for which generation is supported with arithmetic (e.g., i n t / 1 , f l t / 1 ,

</2), mode-related extralogical predicates and properties (e.g., f r e e / 1 , gnd/1),
and sharing-related native properties (e.g., mshare/1, which describes the shar­
ing –aliasing– relations of a set of variables using sharing sets [15], and indep/2,
that states that two variable do not share). When a goal or a property of this kind
appears during generation, the variables occurring in it are constrained using a
constraints domain. The domain ensures that those constraints are satisfiable
during all steps of generation, failing and backtracking otherwise. There is a last
step in generation in which all free variables are randomly further intantiated in
a way that those constraints are satisfied.

This can be seen conceptually as choosing first a trace at random for each
property and collecting constraints in the trace, and then randomly sampling
(enumerating) the constrains. However, since the constraints introduced by uni­
fication are terms, it is equivalent to solving a predicate with the random search
strategy and treating each builtin or native property as a constraint. In practice,
we support more builtins for generation in properties (e.g., ==/2 just unifies two
variables, we have shape constraints that handle = . . / 2 , and support negation to
some extent), but the approach has only been tested significantly for the subset
of Prolog presented so far.

In the last phase of constraints (random sampling), unconstrained free vari­
ables can be further instantiated with some probability, using random shape and
sharing constraints, chosen among native properties and properties defined by
the users on modules that are loaded at the time. This way, random terms are
still generated for an assertion without precondition, or the generated term for
l i s t (X) is not always a list of free variables. This is also the technique used to
further instantiate a free variable constrained as ground but for which no shape
information is available.

Genera t ion for O the r P rope r t i e s . For the remaining properties which use
Prolog features not covered so far (e.g., dynamic predicates), there is a last
step in the generation algorithm in which they are simply checked for the terms
generated so far. User-defined generators are encouraged for assertions with pre­
conditions that are complex enough to reach this step. There is a limit to how
many times generation can reach this step and fail, to avoid getting stuck in
an inefficient or non-terminating generate-and-check loop. To recognize these
properties without inspecting the code (left as future work), users are trusted
to mark the properties suitable for generation, and only the native properties
discussed and the regular types are considered suitable by default.

4 Integration with Static Analysis

The use of a unified assertion framework for testing and analysis allows us to
enhance LPtest random testing by combining it with static analysis.

First of all, as illustrated in Sect. 2 and Fig. 1, CiaoPP first performs a series of
static analyses through which some of the assertions may be verified statically,
possibly partially. Thus, only some parts of some assertions may need to be
checked in the testing phase [13].

Beyond this, and perhaps more interestingly in our context, statically inferred
information can also help while testing the remaining assertions. In particular,
it is used to generate more relevant test cases in the generation phase. Consider
for example the following assertion:

r 1
: - p red qs (Xs ,Ys) => s o r t e d (Y s) .

Without the usual precondition, LPtest would have to generate arbitrary
terms to test the assertion, most of which would not be relevant test cases
since the predicate would fail for them, and therefore the assertion would be
satisfied trivially. However, static analysis typically infers the output type for
this predicate:

(:- p r ed q s (X s , _) => l i s t (X s , i n t) .

I.e., analysis infers that on success Xs must be a list, and so on call it must be
compatible with a list if it is to succeed (inputs that generate failure are also
interesting of course, but not to check properties that should hold on success).
Therefore the assertion can also be checked as follows:

f:- p red q s (X s , _) : c o m p a t C X s , l i s t (i n t)) => s o r t e d _ i n t _ l i s t (X s) .

where compat(Xs, l ist(int)) means that Xs is either a list of integers or can
be further instantiated to one. Now we would only generate relevant inputs
(generation for compat/2 is implemented by randomly uninstantiating a term),
and LPtest is able to prove the assertion false. The same can be done for modes
and sharing to some extent: variables that are inferred to be free on success must
also be free on call, and variables inferred to be independent must be independent
on call too. Also, when a predicate is not exported, the calls assertions inferred
for it can be used for generation. In general, the idea here is to perform some
backwards analysis. However, this can also be done without explicit backwards
analysis by treating testing and (forward) static analysis independently and one
after the other, which makes the integration conceptually simple and easy to
implement.

A Finer -Gra in In tegra t ion . We now propose a finer-grained integration of
assertion-based testing and analysis, which still treats analysis as a black box,
although not as an independent step. So far our approach has been to try to check
an assertion with static analysis, and if this fails we perform random testing.
However, the analysis often fails to prove the assertion because its precondition
(i.e., the entry abstract substitution to the analysis) is too general, but it can
prove it for refinements of that entry, i.e., refinements of the precondition. In
that case, all test cases satisfying that refined precondition are guaranteed to
succeed, and therefore useless in practice. We propose to work with different
refined versions of an assertion, by adding further, exhaustive constraints in a

native domain to the precondition, and performing testing only on the versions
which the analysis cannot verify statically, thus pruning the test case input
space. For example, for an assertion of a predicate of arity one, without mode
properties, a set of assertions equivalent to the original one would result by
generating three different assertions with the same success but preconditions
ground(X), var(X), and (nonground(X), nonvar(X)). The idea is to generalize
this to arbitrary, maybe infinite abstract domains, for which a given abstract
value is not so easily partitioned as in the example above. Alternatively, the test
exploration can be limited to subsets of the domain, since in any case the testing
process cannot achieve completeness in general. The core of an algorithm for this
domain partition would be the following: to test an assertion for a given entry
A G Da, the assertion is proved by the analysis or tested recursively for a set
of abstract values S C {B\B G Da,B n. A} lower than that entry, and random
test cases are generated in the “space” between the entry and those lower values
7(A) \ \Jj(B), where 7 is the concretization function in the domain. For this it
is only necessary to provide a suitable sampling function in the domain, and a
rich generation algorithm for that domain. But note that, e.g., for the sharing-
freeness domain, we already have the latter: we already have generation for
mode and sharing constraints, and a transformation scheme between abstract
values and mode/sharing properties. Note also that all this can still be done
while treating the static analysis as a black box, and that if the enumeration of
abstract values is fine-grained enough, this algorithm also ensures coverage of
the test input space during generation.

5 Shrinking

One flaw of random testing is that often the failed test cases reported are unnec­
essary complex, and thus not very useful for debugging. Many property-based
tools introduce shrinking to solve this problem: after one counter-example is
found, they try to reduce it to a simpler counter-example that still fails the test
in the same way. LPtest supports shrinking too, both user-guided and auto­
matic. We present the latter.

The shrinking algorithm mirrors that of generation, and in fact reuses most
of the generation framework. It can be seen as a new generation with further
constraints: bounds on the shape and size of the generated goal. The traces fol­
lowed to generate the new term from a property must be “subtraces” of the ones
followed to generate the original one. The random sampling of the constraints
for the new terms must be “simpler” than for the original ones. The final step in
which the remaining properties are checked is kept.

We present the algorithm for the first step. Generation for the shrinked value
follows the path that leads to the to-be-shrinked value, but at any moment it
can non-deterministically stop following that trace and generate a new subterm
using size parameter 0. Applying this method to shrink lists of Peano numbers
is equivalent to the following predicate, where the first argument is the term to
be shrinked and the second a free variable to be the shrinked value on success:

This method can shrink the list [s (0) , 0 , s (s (s (0)))] to [s (0) , 0] or
[s (0) , 0 , s (s (0))] , but never to [s (0) , s (s (s (0)))] . To solve that, we allow
the trace of the to-be-shrinked term to advance non-deterministically at any
moment to an equivalent point, so that the trace of the generated term does not
have to follow it completely in parallel. It would be as if the following clauses
were added to the the previous predicate (the one which sketches the actual
workings of the method during meta-interpretation):

1
2
3
4
5

s h r i n k _ p e a n o _ l i s t C[_IXs],Ys)
s h r i n k _ p e a n o _ l i s t (X s , Y s) .

s h r i n k _ p e a n o _ n u m b e r (s (X) , Y) :
sh r ink_peano_number (X ,Y) .

With this method, [s (0) , s (s (s (0)))] would now be a valid shrinked value.
This is implemented building shrinking versions of the properties, similarly to

the examples presented, and running them in generation mode. However, since
we want shrinking to be an enumeration of simpler values, and not random, the
search strategy used is the usual depth-first strategy and not the randomized
one presented in Sect. 3. The usual sampling of constraints is used too, instead
of the random one.

The number of potential shrinked values grows exponentially with the size of
the traces. To mitigate this problem, LPtest commits to a shrinked value once
it checks that it violates the assertion too, and continues to shrink that value,
but never starts from another one on backtracking. Also, the enumeration of
shrinked values returns first the values closer to the original term, i.e., if X is
returned before Y, then shrinking Y could never produce X. Therefore we never
repeat a shrinked value1 in our greedy search for the simplest counterexample.

6 A Case Study

In order to better illustrate our ideas, we present now a case study which consists
in testing the correctness of the implementation of some of CiaoPP’s abstract
domains. In particular, we focus herein on the sharing-freeness domain [19] and

1 Actually, we do not repeat subtraces, but two different subtraces can represent the
same value (e.g., there are two ways to obtain s(0) from s(s(0))).

-

the correctness of its structure as a lattice and its handling of builtins. Tested
predicates include leq/2, which checks if an abstract value is below another in
the lattice, lub/3 and glb/3, which compute the least upper bound and greatest
lower bound of two abstract values, built in_success/3, which computes the
success substitution of a builtin from a call substitution, and abs t r ac t /2 , which
computes the abstraction for a list of substitutions.

Generation. Testing these predicates required generating random values for
abstract values and builtins. The latter is simple: a simple declaration of the
property built in(F,A), which simply enumerates the builtins together with
their arity, is itself a generator, and using the generation scheme proposed in
Sect. 3 it becomes a random generator, while it can still be used as a checker
in the run-time checking framework. The same happens for a simple declarative
definition of the property shfr(ShFr,Vs), which checks that ShFr is a valid
sharing-freeness value for a list of variables Vs. This is however not that trivial
and proves that our generation scheme works and is useful in practice, since that
property is not a regular type, and among others it includes sharing constraints
between free variables. These two properties allowed us to test assertions like
the following:

: - p red l e q _ r e £ l e x i v e (X) : s h f r (X , _) + n o t _ f a i l s .
l e q _ r e f l e x i v e (X) : - l e q (X , X) .

: - p red lub(X,Y,Z) : (s h f r (X , V s) , s h f r (Y , V s)) => (l e q (X , Z) , l e q (Y , Z)) .

: - p red b u i l t i n _ s u c e s s (F u n c , A r , C a l l , S u c c)
: (b u i l t i n C F u n c , A r) , l e n g t h C V s , A) , s h f r C C a l l , V s))
+ (n o t _ f a i l s , i s _ d e t , n o t _ f u r t h e r _ i n s t ([C a l l])) }

To check some assertions we needed to generate related pairs of abstract
values. That is encoded in the precondition as a final literal leq(ShFr1,ShFr2),
as in the next assertion:

: - p red b u i l t i n s _ m o n o t o n i c (F , A, X, Y)
: (b u i l t i n C F , A) , l e n g t h C V s , A) , s h f r (X , V s) , s h f r (Y , V s) , l e q (X , Y))
+ n o t _ f a i l s .

b u i l t i n s _ m o n o t o n i c (F , A , X , Y) : -
b u i l t i n _ s u c c e s s (F , A , X , X 2) , b u i l t i n _ s u c c e s s (F , A , Y , Y 2) , l e q (X 2 , Y 2) .

In our framework the generation is performed by producing first the two
values independently, and checking the literal. This became inefficient, so we
decided to write our own generator for this particular case. Finally, we tested
the generation for arbitrary terms with the following assertion, which checks
that the abstract value resulting from executing a builtin and abstracting the
arguments on success is lower than the one resulting of abstracting the arguments
on call and calling bu i l t i n_succes s /3 :

1
2
3
4
5

pred bui l t in_soundness(Bl t , Args)
: (b u i l t i n (B l t) , Blt=F/A, length(Args ,A) , l i s t (A r g s , term))
+ n o t _ f a i l s .

bui l t in_soundess(Bit ,Args)

Analysis. Many properties used in our assertions were user-defined, complex,
and not native to CiaoPP, so there were many cases in which the analysis could
not abstract them precisely. However, the analysis did manage to simplify or
prove some of the remaining ones, particularly regular types and those dealing
with determinism (+ i s_de t) and efficiency (no_choicepoints). Additionally,
we successfully did the experiment of not defining the regular type b u i l t i n / 2 ,
and letting the analysis infer it on its own and use it for generation. We also
tested by hand the finer integration between testing and analysis proposed in
Sect. 4: some assertions involving builtins could not be proven for the general
case, but this could be done for some of the simpler builtins, and thus testing
could be avoided for those particular cases.

Bugs Found. We did not find any bugs in the implementations for different
domains of the lattice operations l e q / 2 , lub /2 , and g lb /2 . This was not sur­
prising: they are relatively simple and commonly used in CiaoPP. However, we
found several bugs in bu i l t in_success /2 (part of the description of the “trans­
fer function” for some language built-ins) in some domains. Some of them were
minor and thus had never been found or reported before: some builtin handlers
left unnecessary choicepoints, or failed for the abstract value (with which they
are never called in CiaoPP). Others were more serious: we found bugs for less
commonly-used builtins, and even two larger bugs for the builtins =/2 and ==/2.
The handler failed for the literal X=X and for literals like f(X)==g(Y), both of
which do not normally appear in realistic programs and thus were not detected
before.

7 Related Work

Random testing has been used for a long time in Software Engineering [8]. As
mentioned before, the idea of using properties and assertions as test case gen­
erators was proposed in the context of the Ciao model [12,21] for logic pro­
grams, although it had not really been exploited significantly until this work.
QuickCheck [3] provided the first full implementation of a property-based ran­
dom test generation system. It was first developed for Haskell and functional pro­
gramming languages in general and then extended to other languages, and has
seen significant practical use [14]. It uses a domain-specific language of testable
specifications and generates test data based on Haskell types. ErlangQuickCheck
and PropEr [20] are closely related systems for Erlang, where types are dynam­
ically checked and the value generation is guided by means of functions, using
quantified types defined by these generating functions. We use a number of ideas

: -

from QuickCheck and the related systems, such as applying shrinking to reduce
the test cases. However, LPtest is based on the ideas of the (earlier) Ciao model
and we do not propose a new assertion language, but rather use and extend that
of the Ciao system. This allows supporting Prolog-relevant properties, which deal
with non-ground data, logical variables, variable sharing, etc., while QuickCheck
is limited to ground data. Also, while QuickCheck offers quite flexible control
of the random generation, we argue that using random search strategies over
predicates defining properties is an interesting and more natural approach for
Prolog.

The closest related work is PrologTest [1], which adapts QuickCheck and
random property-based testing to the Prolog context. We share many objectives
with PrologTest but we argue that our framework is more general, with richer
properties (e.g., variable sharing), and is combined with static analysis. Also, as
in QuickCheck, PrologTest uses a specific assertion language, while, as men­
tioned before, we share the Ciao assertions with the other parts of the Ciao
system. PrologTest also uses Prolog predicates as random generators. This can
also be done in LPtest , but we also propose an approach which we argue is
more elegant, based on separating the code of the generator from the random
generation strategy, using the facilities present in the Ciao system for running
code under different SLD search rules, such as breadth first, iterative deepening,
or randomized search.

Other directly related systems are EasyCheck [2] and CurryCheck [9] for the
Curry language. In these systems test cases are generated from the (strong)
types present in the language, as in QuickCheck. However, they also deal with
determinism and modes. To the extent of our knowledge test case minimization
has not been implemented in these systems.

There has also been work on generating test cases using CLP and partial
evaluation techniques, both for Prolog and imperative languages (see, e.g., [6,7]
and its references). This work differs from (and is complementary to) ours in
that the test cases are generated via a symbolic execution of the program, with
the traditional aims of path coverage, etc., rather than from assertions and with
the objective of randomized testing.

Other related work includes fuzz testing [18], where “nonsensical” (i.e.,
fully random) inputs are passed to programs to trigger program crashes, and
grammar-based testing, where inputs generation is based on a grammatical def­
inition of inputs (similar to generating with regular types) [10]. Schrijvers pro­
posed Tor [23] as a mechanism for supporting the execution of predicates using
alternative search rules, similar in spirit to Ciao’s implementation of search-
strategies via packages. Midtgaard and Moller [17] have also applied property-
based testing to checking the correctness of static analysis implementations.

8 Conclusions and Future Work

We have presented an approach and a tool, LPtest , for assertion-based random
testing of Prolog programs that is integrated with the Ciao assertion model.

In this context, the idea of generating random test values from assertion precon­
ditions emerges naturally since preconditions are conjunctions of literals, and the
corresponding predicates can conceptually be used as generators. LPtest gener­
ates valid inputs from the properties that appear in the assertions shared with
other parts of the model. We have shown how this generation process can be
based on running the property predicates under non-standard (random) search
rules and how the run time-check instrumentation of the Ciao framework can
be used to perform a wide variety of checks. We have proposed methods for sup­
porting (C)LP-specific properties, including combinations of shape-based (regu­
lar) types and variable sharing and instantiation. We have also proposed some
integrations of the test generation system with static analysis and provided a
number of ideas for shrinking in our context. Finally, we have shown some results
on the applicability of the approach and tool to the verification and checking of
the implementations of some of Ciao’s abstract domains. The tool has already
proven itself quite useful in finding bugs in production-level code.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0_1

2. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7_23

3. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Fifth ACM SIGPLAN International Conference on Func­
tional Programming, ICFP 2000, pp. 268–279. ACM (2000)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

5. Flanagan, C.: Hybrid type checking. In: 33rd ACM SIGPLAN-SIGACT Sympo­
sium on Principles of Programming Languages, POPL 2006, pp. 245–256, January
2006

6. Gómez-Zamalloa, M., Albert, E., Puebla, G.: On the generation of test data for
prolog by partial evaluation. In: Proceedings of WLPE 2008, pp. 26–43 (2008)

7. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in CLP. Theor. Pract. Logic Prog. 10(4–6), 659–674
(2010). ICLP 2010 Special Issue

8. Hamlet, D.: Random testing. In: Marciniak, J . (ed.) Encyclopedia of Software
Engineering, pp. 970–978. Wiley, New York (1994)

9. Hanus, M.: CurryCheck: checking properties of curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_13

10. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating
minimal test suites for grammar-based software. In: 20th IEEE/ACM Interna­
tional Conference on Automated Software Engineering (ASE 2005), pp. 104–113,
November 2005

11. Hermenegildo, M.V., et al.: An overview of ciao and its design philosophy. TPLP
12(1–2), 219–252 (2012). http://arxiv.org/abs/1102.5497

12. Hermenegildo, M.V., Puebla, G., Bueno, F. : Using global analysis, partial specifica­
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Pro­
gramming Paradigm: A 25-Year Perspective, pp. 161–192. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-60085-2_7

13. Hermenegildo, M.V., Puebla, G., Bueno, F. , Lopez-Garcia, P.: Integrated pro­
gram debugging, verification, and optimization using abstract interpretation (and
the Ciao system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005).
https://doi.org/10.1016/j.scico.2005.02.006

14. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7_1

15. Jacobs, D., Langen, A.: Accurate and efficient approximation of variable aliasing
in logic programs. In: North American Conference on Logic Programming (1989)

16. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

17. Midtgaard, J., Møller, A.: QuickChecking static analysis properties. Softw. Test.
Verif. Reliab. 27(6) (2017). https://doi.org/10.1002/stvr.1640

18. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

19. Muthukumar, K., Hermenegildo, M.: Combined determination of sharing and free-
ness of program variables through abstract interpretation. In: ICLP 1991, pp. 49–
63. MIT Press (June 1991)

20. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifica­
tions with property-based testing. In: 10th ACM SIGPLAN Workshop On Erlang,
pp. 39–50, September 2011

21. Puebla, G., Bueno, F. , Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327_16

22. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: 42nd POPL, pp. 167–180. ACM, January 2015

23. Schrijvers, T., Demoen, B., Triska, M., Desouter, B.: Tor: modular search with
hookable disjunction. Sci. Comput. Program. 84, 101–120 (2014)

24. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81–92 (2006)

