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Abstract. In the standard setting of functional encryption (FE), we
assume both the Central Authority (CA) and the encryptors to run their
respective algorithms faithfully. Badrinarayanan et al. [ASIACRYPT
2016] proposed the concept of verifiable FE, which essentially guarantees
that dishonest encryptors and authorities, even when colluding together,
are not able to generate ciphertexts and tokens that give “inconsistent”
results. They also provide a compiler turning any perfectly correct FE
into a verifiable FE, but do not give efficient constructions.

In this paper we improve on this situation by considering Inner-
Product Encryption (IPE), which is a special case of functional encryp-
tion and a primitive that has attracted wide interest from both prac-
titioners and researchers in the last decade. Specifically, we construct
the first efficient verifiable IPE (VIPE) scheme according to the inner-
product functionality of Katz, Sahai and Waters [EUROCRYPT 2008].
To instantiate the general construction of Badrinarayanan et al. we need
to solve several additional challenges. In particular, we construct the first
efficient perfectly correct IPE scheme. Our VIPE satisfies unconditional
verifiability, whereas its privacy relies on the DLin assumption.

Keywords: Inner-product encryption · Verifiability · Functional
commitments

1 Introduction

Functional encryption (FE) is a new encryption paradigm that was first pro-
posed by Sahai and Waters [23] and formalized by Boneh, Sahai and Waters [7].
Informally, in an FE system, a decryption key allows a user to learn a func-
tion of the original message. More specifically, in a FE scheme for functionality
F : K ×M → CT , defined over key space K, message space M and output space
CT , for every key k ∈ K, the owner of the master secret key MSK associated with
master public key MPK can generate a token Tokk that allows the computation
of F (k,m) from a ciphertext of x computed under the master public key MPK.
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A notable special case of FE is that of inner product encryption (IPE). In IPE
[8,18,19,21,22] the message is a pair (m,x), with m ∈ M, the payloadmessage and
x is an attribute vector in the set Σ and the token is associated with a vector v ∈ Σ.
The functionality is F (v, (m,x)) = fv (x,m) which returns m if 〈x,v〉 = 0 (i.e,.
the two vectors are orthogonal) or ⊥ otherwise. IPE is a generalization of Identity-
Based Encryption [6,9,24] and Anonymous Identity-Based Encryption [1,5], and
has been the subject of extensive studies in the last decade.

In FE and IPE, the encryptors and the Central Authority (CA) that gener-
ate the tokens are assumed to be honest. Indeed, as noticed by Badrinarayanan
et al. in presence of any dishonest party (that is, either the party that gener-
ates the token or the party who encrypts the message), the decryption outputs
may be inconsistent and this raises serious issues in practical applications (e.g.,
auditing). For instance, a dishonest authority might be able to generate a faulty
token Tokv for a vector v such that Tokv enables the owner to decrypt a cipher-
text for a vector x that is not orthogonal to v. Or a dishonest encryptor might
generate a faulty ciphertext that decrypts to an incorrect result with an hon-
estly computed token. These issues are particularly severe in the applications to
functional commitments that we will see later.

Verifiable Inner Product Encryption (VIPE) overcomes those limitations by
adding strong verifiability guarantees to IPE. VIPE is a special case of Verifiable
Functional Encryption (VFE), firstly proposed by Badrinarayanan et al. [2] for
general functionalities. Informally speaking, in VIPE there are public verifica-
tion algorithms to verify that the output of the setup, encryption and token
generation algorithms are computed honestly. Intuitively, if the master public
key MPK and a ciphertext CT pass a public verification test, it means there
exists some message m and a unique vector x – up to parallelism – such that
for all vectors v, if a token Tokv for v is accepted by the verification algorithm
then the following holds:

∀v : Dec(Tokv ,CT) = fv (x,m)

The main component we employ for constructing a VIPE scheme is an IPE
scheme. However, it is worth mentioning that most IPE schemes cannot be made
verifiable following the general compiler of Badrinarayanan et al. because this
compiler requires the IPE scheme to have perfect correctness. We will later
discuss in depth why this property is crucial in constructing VIPE.

1.1 Our Results and Applications

Our Contribution. In this paper we construct an efficient VIPE scheme from
bilinear maps. Towards this goal, we build a perfectly correct IPE scheme that
may be of independent interest. To our knowledge, all IPE schemes known in
literature do not satisfy perfect correctness. Our perfectly correct IPE scheme is
based on standard assumptions over bilinear groups.

We assume the reader to be familiar with the construction of Badrinarayanan
et al. [2] that transforms a generic perfectly correct FE scheme to a VFE scheme for
the same functionality. They employ four duplicates of the underlying FE scheme
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adding NIWI proofs for verifiabilty with trapdoor statements to ensure privacy.
We will use this transform explicitly in Sect. 4. This transform, for the case of the
inner-product functionality of [18], requires a perfectly correct IPE scheme and
non-interactive witness-indistinguishable (NIWI) proofs for the relations we will
define in Sect. 5. Therefore, constructing an efficient VIPE scheme boils down to
building an efficient perfectly correct IPE scheme and efficient NIWI proofs for
specific relations. The rest of the paper is devoted to achieving these goals.

Motivating Applications. IPE has numerous applications, including Anony-
mous Identity-Based Encryption [5], Hidden-Vector Encryption [8], and pred-
icate encryption schemes supporting polynomial evaluation [18]. As shown by
Badrinarayanan et al. [2], making FE schemes verifiable enables more powerful
applications. As an example, in this section we show that VIPE can be used to
construct what we call polynomial commitment scheme which corresponds to a
functional commitment of Badrinarayanan et al. for the polynomial evaluation
predicate. The same construction can easily be adapted to construct functional
commitments for the inner-product predicate.

Perfectly Binding Polynomial Commitments. Using a polynomial commitment
scheme (see also [17]), Alice may publish a commitment to a polynomial poly(x)
with coefficients in Zp. If later Bob wants to know poly(m) for some value m,
that is the evaluation of the polynomial at some point, he sends m to Alice
who replies with the claimed evaluation y and a proof that y = poly(m). The
proof guarantees that the claimed evaluation is consistent with the committed
polynomial. We require the scheme to be perfectly binding.

We construct a polynomial commitment scheme for polynomials of degree
at most d from a VIPE scheme for vectors of dimension d + 2 in the following
way. Let VIP = 〈VIP.SetUp,VIP.TokGen,VIP.Enc,VIP.Dec〉 be a VIPE scheme.
We define the following algorithms:

• Commitment Phase: To commit to a polynomial poly(x) = adx
d+ad−1x

d−1+
. . . + a1x + a0 ∈ Zp[X], run VIP.SetUp(1λ, d + 2) to generate (MPK,MSK),
compute the attribute x := (ad, ad−1, . . . , a1, a0, 1) ∈ Z

d+2
p and ciphertext

CT → VIP.Enc(MPK,x), and output the commitment := (MPK,CT).
• Opening phase: In this phase, a party requests a query (m, y) to check if

the commitment corresponds to a polynomial poly such that poly(m) =
y. The Committer runs the token-generator algorithm of VIP for vector
v := (md,md−1, . . . , m, 1,−y) and sends Tokv as the opening. Note that
〈x,v〉 = adm

d + ad−1m
d−1 + . . . + a1m + a0 − y = poly(m) − y, therefore

VIP.Dec(CT,Tokv ) = 0 iff poly(m) = y.

It is straightforward to see that the above algorithms form a functional commit-
ment (in the sense of [2]) for the polynomial evaluation predicate. We refer the
reader to [2] for more details on functional commitments.

1.2 Technical Overview

To instantiate the transform of Badrinarayanan et al. we need to build an IPE
scheme with perfect correctness. Our starting point to construct a perfectly
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correct IPE scheme is the IPE scheme of Park [22] which only enjoys statistical
correctness. The reason for choosing this IPE is that it is conceptually simple and
its security is based on standard assumptions over bilinear groups. However, to
make the Park’s scheme compatible with the Badrinarayanan et al.’s transform
we need to solve several technical challenges, in particular:

i. The master public key needs to be verifiable.
ii. The scheme has to satisfy perfect correctness.

This requires substantial modification of all main algorithms: setup, token gen-
eration, encryption and decryption.

Verification of Algorithm Outputs. A VIPE scheme requires public verification
algorithms that can verify the outputs of the setup, encryption and token genera-
tion algorithms, in particular check whether these algorithms were run honestly.
In more detail, if any string (master public key, ciphertext or token) passes the
corresponding verification algorithm, it means it was a proper output of the cor-
responding algorithm (setup, encryption or token generation). Each party who
runs the setup, encryption or token generation algorithm needs to provide a proof
that it executed the algorithm honestly without revealing harmful information
about the secret parameters or the randomness used in the algorithm.

Usually non-interactive Zero-Knowledge (NIZK) proofs are used in this con-
text. Unfortunately, NIZK proofs cannot used for verifiable FE as they rely
on a trusted CRS (Common Reference String) or random oracles and we aim
at perfect verifiability which has to hold despite any collusion and computing
power. The transform of Badrinarayanan et al. solves the issue by employing
NIWI-proofs in a clever way.

Following the transform of [2], our VIPE consists of four instances of an IPE
scheme. In the VIPE’s encryption algorithm we first run the IPE’s encryption
algorithm four times to generate four ciphertexts and then we prove that all these
four ciphertexts are the encryption of the same message or that some other trap-
door predicate is satisfied (the latter is needed for message indistinguishability
and will be detailed later).

For the sake of argument, let us assume the VIPE scheme consists only
of two (instead of four) parallel perfectly correct IPE scheme instantiations IP

and ÎP. The master public key of the Park’s scheme [22] contains a component
Λ = e(g, g′) in which g is public but g′ needs to be kept secret. An honestly
computed ciphertext CT in IP includes ct1 = g−s and ct7 = Λ−s · m among
its components (we here ignore the other components). We first provide proof
that CT (resp. ĈT in ÎP) is well-formed. Then we need to prove that the two
ciphertexts are both encryptions of the same message M (i.e., m = ˆm = M).
We reduce the problem to proving that the following property holds:

ct7
ĉt7

=
e(g, g′)−s · m

e(ĝ, ĝ′)−ŝ · m̂
=

e(ĉt1, ĝ′)
e(ct1, g′)

=
e(ĝŝ, ĝ′)
e(gs, g′)

However, since g′ and ĝ′ are not public, the party who runs the encryption
algorithm would be unable to prove this property. We solve this issue in the
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following way: We add to the master public key of IP two elements g1, g2 (and
ĝ1, ĝ2 for ÎP) satisfying Λ = e(g, g′) = e(g1, g2), Λ̂ = e(ĝ, ĝ′) = e(ĝ1, ĝ2). Then,
we add the following equations for the new secret variables X3 = gs

1, X̂3 = ĝŝ
1:

ct−1
7 · ĉt7 = e(X3, g2) · e(X̂3, ĝ2)−1, e(g,X3) = e(ct1, g1),e(ĝ, X̂3) = e(ĉt1, ĝ1)

It is easy to see that these equations are satisfied iff m = m̂, and now they can
be proven by the encryptor. Having modified Park’s scheme, we thus have to
prove that the modified scheme is IND-secure. This is done in Sect. 3.1 in which
we reduce the IND-Security of the scheme to the Decision Linear assumption.

Achieving Perfect Correctness. For the Badrinarayanan et al.’s transform to
work, it is crucial that the underlying IPE scheme have perfect correctness. If the
IPE scheme had a negligible probability of decryption error rather than perfect
correctness, then dishonest parties might collude with each other so that invalid
results would be accepted by the verification algorithms. Contrast this with the
aforementioned functional commitments. In the latter primitive, the committer
is the same party who generates the ciphertext (the commitment) and the token
(the decommitment) and thus might profit from a negligible space of decryp-
tion error to prove false assertions on its committed value. To our knowledge,
all IPE schemes1 known in the literature have a negligible probability of error
which makes cheating possible and so not directly usable to construct verifiable
functional encryption and functional commitments for the IPE functionality.

In more detail, in most pairing-based IPE schemes the encryption and decryp-
tion algorithms work as follows:

Enc(MPK,x,m) → CT, Dec(Tokv ,CT) → m∗ = m · (r)〈x,v〉,

in which r is some random value that depends on the randomness used by the
token generator and encryption algorithms. Thus, even in case of honest parties,
there is a negligible probability that r = 1 and so, even if 〈x,v〉 �= 0, the
decryption algorithm may output a valid message m instead of ⊥.

In case of dishonest parties, it may happen that two parties (the encryptor
and the token generator) collude with each other to create randomness such
that r equals 1. In this case, the parties would be able to provide valid proofs
of the fact that they followed the protocol correctly and invalid results would
pass the verification algorithms. A similar problem also appears in the context
of MPC in the head [16], where the soundness of the ZK protocol built from
MPC strongly relies on the perfect correctness of the underlying MPC. To cope
with statistical correctness in MPC in the head, a coin tossing protocol can be
employed, while in a completely non-interactive scenario like ours this is more
challenging. Hence, to obtain a VIPE scheme it is crucial to construct an IPE
scheme satisfying perfect correctness.

Recall that the decryption algorithm in the IPE scheme of Park [22] works
as follows:

Dec(Tokv ,CT = Enc(x,m)) −→ m∗ = m · e(g, h)(λ1s3+λ2s4)〈x,v〉

1 Recall that we refer to the IPE functionality of Katz, Sahai and Waters [18].
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in which λ1, λ2 are random values used in the token generation algorithm and
s3, s4 are random values used in the encryption algorithm. To decide whether
to accept the output of the decryption or not, the first attempt would be the
following. Generate two ciphertexts ct, ct′ with two independent random values
{si}, {s′

i}, decrypt both ct and ct′ to get M and M ′ and if M = M ′ accept the
result, or output ⊥ otherwise. In more detail:

M = m · e(h, g)(λ1s3+s4λ2)〈x,v〉,M ′ = m · e(h, g)(λ1s′
3+s′

4λ2)〈x,v〉

However, in case 〈x,v〉 �= 0 there is non-zero probability for which:

λ1s3 + s4λ2 = λ1s
′
3 + λ2s

′
4 �= 0 ⇒ M = M ′ �= m

To avoid this issue, we choose the random values in such a way that the above
equality can never occur. To do so, in the encryption algorithm we choose non-
zero random values s1, . . . , s4 and s′

1, . . . , s
′
4 such that s3 �= s′

3, and s4 = s′
4. In

this case, we have:

λ1s3 + s4λ2 = λ1s
′
3 + λ2s4 ⇒ λ1(s3 − s′

3) = 0 ⇒ (λ1 = 0) ∨ (s3 = s′
3)

Based on the way λ1, s3, s
′
3 have been chosen, neither (λ1 = 0) nor (s3 = s′

3)
may happen, hence the decryption algorithm outputs m if and only if 〈x,v〉 = 0.
The resulting IPE scheme satisfies perfect correctness as wished and we prove
that it is still selectively indistinguishability-secure under the DLin Assumption.
When constructing a VIPE scheme from such IPE scheme, these additional con-
straints in the encryption and token generation procedures will correspond to
more constraints in the proofs of correct encryption and token generation.

Furthermore, an additional challenge we will have to address is that some of
the proofs in the Badrinarayanan et al. transform are for relations that consist
of a generalized form of disjunction and thus standard techniques to implement
disjunctions for GS proofs cannot be directly applied, see Sect. 5.1.

1.3 Related Work and Comparison

Verifiable functional encryption has been introduced by Badrinarayanan et al.
[2], who provide a construction for general functionalities.

Recently, [3] introduced a new FE scheme that supports an extension of
the inner-product functionality. The scheme is perfectly correct assuming the
message space to be short. However, notice that when employing the scheme in
order to construct an IPE scheme (according to the functionality of Katz, Sahai
and Waters [18]) the perfect correctness is lost. In essence, the IPE constructed
from the scheme in [3] would encrypt some additional random value r so that
the decryption would return the value m + r · 〈x,v〉. In this way, if the vectors
x and v are orthogonal then the payload message m is obtained, otherwise a
random value is returned.

As corollary of our VIPE, we obtain functional commitments (in the sense
of [2]) for the polynomial evaluation and inner-product predicate. A similar form
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of commitments has been proposed by Libert et al. [20] but differs from ours
in different aspects. In the Libert et al.’s scheme, the decommitter reveals the
evaluations of the inner-product of the committed vector with any vector of
its choice, whereas in ours just the binary value of the inner-product predicate
(i.e whether the two vectors are orthogonal or not) is leaked. Our functional
commitments are perfectly binding rather than computational binding as in
Libert et al. Moreover, ours are not based on any trust assumption, whereas
in [20] the generator of the public-key can completely break the binding property.

Tang and Ji [26] constructed an Attribute-based Encryption scheme that
enjoys a weaker form of verifiability limited to the secret keys.

Roadmap. In Sect. 2 we provide the building blocks and the basic terminology
used in this paper. In Sect. 3 we construct our perfectly correct IPE scheme
and prove its security based on the Decisional Bilinear Diffie-Hellman and DLin
assumptions. In Sect. 4 we define VIPE and present one candidate construction
built on perfectly correct IPE and the NIWI proofs of Sect. 5.

2 Preliminaries

Notation. Throughout the paper, we use λ ∈ N as a security parameter. For any
integer n > 0, we denote by [n] the set {1, . . . , n}. PPT stands for probabilistic
polynomial time algorithm and negl(λ) denotes a negligible function in λ.

2.1 Building Blocks

Definition 1 (Bilinear group [6]). A bilinear group consists of a pair of
groups G and GT of prime order p with a map e : G × G → GT satisfying:

1. Bilinearity: for all a, b ∈ Z, e(ga, gb) = e(g, g)ab for any g ∈ G.
2. Non-degeneracy: e(g, g) �= 1GT

for any g ∈ G.
3. Efficiency: there exists an efficient algorithm to compute the map.

Definition 2 (NIWI). A non-interactive witness indistinguishable proof sys-
tem (NIWI) is a pair of PPT algorithms 〈P,V〉 for a NP-relation RL satisfying
the following properties:

1. Completeness: for all (x,w) ∈ RL,Pr [ V(x, π) = 1 | π ←− P(x,w) ] = 1.
2. Perfect soundness: for every x /∈ L and π ∈ {0, 1}∗, Pr [V(x, π) = 1 ] = 0.
3. Witness indistinguishability: for any sequence {(xn, w1,n, w2,n)}n∈N, which

xn ∈ {0, 1}n, w1,n, w2,n ∈ RL(xn), the following holds:
n ∈ N : {π1,n| π1,n ← P(xn, w1,n)}n ≈c {π2,n| π2,n ← P(xn, w2,n)}n.

Groth and Sahai (GS) [14] provide NIWI systems for the satisfiability of what
they call “Pairing Products Equations” that can be used to instantiate the
relations needed in our VIPE construction (cf. Construction 7). Using the tech-
niques of [13], such proofs may be made perfectly sound.
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IPE Scheme: For any n > 0, let Σn be a set of vectors of length n defined over
some field and let M be a message space. For any vector v ∈ Σn, the function
fv : Σn × M → M ∪ {⊥} is

fv (x,m) =

{
m If 〈x,v〉 = 0
⊥ If 〈x,v〉 �= 0

.

Both M, n and the field size can depend on the security parameter λ but for
simplicity hereafter we will skip this detail. IPE can be seen as a FE scheme for
the previous functionality. More concretely, an IPE scheme is defined as follows.

Definition 3 (IPE Scheme). An IPE scheme IP for a message space M and
for a family of sets Σ = {Σn}n>0 consisting of sets of vectors of length n over
some field is a tuple of four PPT algorithms IP = {IP.SetUp, IP.TokGen, IP.Enc,
IP.Dec} with the following syntax and satisfying the correctness property below.

• IP.SetUp(1λ, n) −→ (MPK,MSK): the setup algorithm, on input the security
parameter λ and the vector length n, generates master public key MPK and
master secret key MSK for that parameter.

• IP.TokGen(MPK,MSK,v) −→ Tokv : on input master keys and vector v ∈ Σn,
the token generation algorithm generates the token Tokv .

• IP.Enc(MPK,−→x ,m) −→ CT: the encryption algorithm encrypts message m ∈
M and vector x ∈ Σn under the master public key.

• IP.Dec(MPK,Tokv ,CT) −→ m′ ∈ M ∪ {⊥}.
• Perfect correctness: IP is perfectly correct if for all λ, n > 0,x,v ∈ Σn and

all m ∈ M the following holds:

Pr

⎡
⎣ IP.Dec(MPK,Tokv ,CT)

= fv (x,m) |
(MPK,MSK) ←− IP.SetUp(1λ, n),
Tokv ←− IP.TokGen(MPK,MSK,v),
CT ←− IP.Enc(MPK,x,m)

⎤
⎦ = 1

Security. To model security we adopt the indistinguishability-based (IND)
notion of security [8], in particular selective security [4]. Boneh, Sahai, and
Waters [7] showed deficiencies of this notion in general and impossibility results
for the more general notion of simulation-based security; see also [7,10,11,15]
for general techniques to overcome the known impossibility results in different
settings. Nonetheless, to our knowledge no practical attacks are known for nat-
ural schemes. Selective security is sufficient for CCA-security [4] and for our
application of verifiable polynomial commitments of Sect. 1.1.

The selectively indistinguishability-based notion of security for an IPE
scheme over the vector space Σ and message space M is formalized by means
of the game INDA,C,λ,n in Fig. 1, between an adversary A and a challenger C
(defined in the game) parameterized by security parameter λ and dimension n.
The advantage of A in this game is AdvIP,λ,n(A) =

∣∣∣Pr
[
INDA,IP,λ,n = 1

]
− 1

2

∣∣∣.
Definition 4. An IPE scheme IP is selectively-indistinguishable secure (IND-
Secure) if for all n > 0 and all PPT adversaries A, AdvIP,λ,n(A) is a negligible
function of λ.
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– Selective Challenge Phase. A(1λ, n) −→ x0,x1 ∈ Σn. Then A sends these
two vectors to the challenger.

– Setup Phase. The challenger C generates the pair (MSK,MPK) by invoking
the setup algorithm on input (1λ, n). Then C sends MPK to A.

– Query Phase 1. A asks for the token for a vector vi ∈ Σn.
– Challenge Phase. A sends to the challenger two messages m0, m1 ∈ M of

the same length.
– C flips a coin to generate random bit b and send CT = Enc(MPK,xb, mb).
– Query Phase 2. Query Phase 2: same as Query Phase 1.
– Output Phase. A outputs a bit b′.
– Winning Condition. A wins the game if b′ = b and the following condition is

met. It is required that if m0 �= m1, 〈x0,vi〉, 〈x1,vi〉 �= 0 for all the vectors vi

queried in both query phase 1 and 2, or 〈vi,x0〉 = 0 iff 〈vi,x1〉 = 0 otherwise.
If the winning condition is satisfied the output of the game is 1 or 0 otherwise.

Fig. 1. Security Game INDA,IP,λ,n

2.2 Hardness Assumptions

We conjecture that the following problems hold relative to some bilinear group
generator GroupGen(1λ) → (p,G,GT , e) that takes security parameter λ as input
and outputs λ-bit prime p, the descriptions of two groups G and GT of order p
and a bilinear map e : G × G → GT .

Assumption 1. The Decisional Bilinear Diffie-Hellman assumption (DBDH)
in bilinear groups (p,G,GT , e) states the hardness for PPT adversaries of solving
the following problem. On input (g, gα, gβ , gγ , Z) ∈ G

4 × GT , decide whether
Z = e(g, gαβγ) or Z is a random element in GT .

Assumption 2. The Decisional Linear assumption (DLin) in a bilinear group
(p,G,GT , e) states the hardness for PPT adversaries of solving the following
problem. On input (g, gα, gβ , gατ , gβη, Z) ∈ G

6, decide whether Z = gη+τ or a
random element in G.

In this paper we use the following equivalent formulation of DLin given
in [22]: on input (g, gα, gβ , gτ , gαη, Z) ∈ G

6 decide whether Z = gβ(η+τ) or
a random element.

Note that DLin is stronger than DBDH. In the rest of this paper we assume
the existence of a bilinear group generator GroupGen such that DLin (and thus
DBDH) holds relative to it.

3 Our Perfectly Correct Inner-Product Encryption

In this section we construct our perfectly correct IPE, the key ingredient for
building verifiable inner-product encryption (see Sect. 4).
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Let GroupGen(1λ) −→ (p,G,GT , e) be a bilinear group generator, and
n ∈ N be the vector length. We construct a perfectly correct IPE scheme
IP = 〈IP.SetUp, IP.Enc, IP.TokGen, IP.Dec〉 for the set Z

n
p of vectors of length

n over Zp and for message space M = GT .

Construction 1 [Our perfectly correct IPE scheme IP]

– IP.SetUp(1λ, n) −→ (MSK,MPK):
For security parameter λ, i ∈ [n] and b ∈ [2], compute what follows:
1. Run GroupGen(1λ) (cf. Sect. 2.2) to generate a tuple 〈p,G,GT , e〉.
2. Pick g, g′ ← G and δ1, θ1, δ2, θ2, w1,i, t1,i, fb,i, hb,i, k ← Z

∗
p.

3. Pick Ω ← Zp and compute {w2,i, t2,i}i∈[n] such that:

Ω = δ1w2,i − δ2w1,i = θ1t2,i − θ2t1,i.

4. For i ∈ [n], b[2] set:

Wb,i = gwb,i , Fb,i = gfb,i , K1 = gk, Ub = gδb , h = gΩ,

Tb,i = gtb,i , Hb,i = ghb,i , K2 = g′ 1
k , Vb = gθb , Λ = e(g, g′).

5. Set:

MPK =[(p,G,Gt, e), (g, h, {Wb,i, Fb,i, Tb,i,Hb,i, Ub, Vb}b∈[2],i∈[n],

K1,K2, Λ) ∈ G
8n+8 × GT ],

MSK =({wb,i, fb,i, tb,i, hb,i, δb, θb}b∈[2],i∈[n], g
′) ∈ Z

8n+4
p × G.

6. Return (MPK,MSK).
– IP.Enc(MPK,x,m) −→ CT:

1. For x = (x1, . . . , xn) ∈ Z
n
p and a message m ∈ GT , pick random elements

s1, . . . s4, s
′
1, . . . , s

′
3 ← Z

∗
p such that s3 �= s′

3 and compute what follows:

ct1 = gs2 , ct2 = hs1 ,⎧⎨
⎩
ct3,i = W s1

1,i · F s2
1,i · Uxis3

1 , ct4,i = W s1
2,i · F s2

2,i · Uxis3
2

ct5,i = T s1
1,i · Hs2

1,i · V xis4
1 , ct6,i = T s1

2,i · Hs2
2,i · V xis4

2

⎫⎬
⎭

i∈[n]

,

ct7 = e(gs3 , gs4), ct8 = Λ−s2 · m.

ct′1 = gs′
2 , ct′2 = hs′

1 ,⎧⎪⎨
⎪⎩
ct′3,i = W

s′
1

1,i · F
s′
2

1,i · U
xis

′
3

1 , ct′4,i = W
s′
1

2,i · F
s′
2

2,i · U
xis

′
3

2

ct′5,i = T
s′
1

1,i · H
s′
2

1,i · V xis4
1 , ct′6,i = T

s′
1

2,i · H
s′
2

2,i · V xis4
2

⎫⎪⎬
⎪⎭

i∈[n]

,

ct′7 = e(gs′
3 , gs4), ct′8 = Λ−s′

2 · m.

2. Set:

ct = (ct1, ct2,
{
ct3,i , ct4,i

ct5,i , ct6,i

}
, ct7, ct8) ,

ct′ = (ct′1, ct
′
2,

{
ct′3,i , ct′4,i

ct′5,i , ct′6,i

}
, ct′7, ct

′
8).
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3. Output CT = (ct, ct′).
– IP.TokGen(MSK,v) −→ Tokv :

1. Pick λ1, λ2 ← Z
∗
p and for any i ∈ [n] pick {ri}, {Φi} ← Z

∗
p.

2. Set Tokv = (KA,KB ,

{
K3,i , K4,i

K5,i , K6,i

}
i∈[n]

) as follows and return Tokv .

KA = g′.
n∏

i=1

K
−f1,i
3,i · K

−f2,i
4,i · K

−h1,i
5,i · K

−h2,i
6,i , KB =

n∏
i=1

g−(ri+Φi).

K3,i = g−δ2ri · gλ1viw2,i , K4,i = gδ1ri · g−λ1viw1,i .

K5,i = g−θ2Φi · gλ2vit2,i , K6,i = gθ1Φi · g−λ2vit1,i .

– IP.Dec(CT,Tokv ):
Let CT = (ct, ct′), such that ct = (ct1, ct2, {ct3,i, ct4,i, ct5,i, ct6,i}, ct7, ct8),
ct′ = (ct′1, ct

′
2, {ct′3,i, ct

′
4,i, ct

′
5,i, ct

′
6,i}, ct7, ct8)

1. If ct7 = ct′7 output ⊥ and stop, otherwise go to the next step.
2. Compute:

Υ = ct8 · e(ct1,KA) · e(ct2,KB)·
n∏

i=1

e(ct3,i,K3,i) · e(ct4,i,K4,i) · e(ct5,i,K5,i) · e(ct6,i,K6,i).

Υ ′ = ct′8 · e(ct′1,KA) · e(ct′2,KB)·
n∏

i=1

e(ct′3,i,K3,i) · e(ct′4,i,K4,i) · e(ct′5,i,K5,i) · e(ct′6,i,K6,i).

3. If Υ = Υ ′ output Υ otherwise output ⊥.

Perfect Correctness: We now show that an honestly generated ciphertext
decrypts correctly with probability 1. Since F−s2

1,i · ct3,i = W s1
1,i · Us3xi

1 , we get

e(F−s2
1,i · ct3,i,K3,i) = e(g, g)s1λ1viw1,iw2,i−s3xiδ1δ2 · e(g, g)−s1riδ2w1,i+s3λ1viδ1w2,i

e(F−s2
2,i · ct4,i,K4,i) = e(g, g)−s1λ1viw1,iw2,i+s3xiδ1δ2 · e(g, g)s1riδ1w2,i−s3λ1viδ2w1,i

We then get

e(F−s2
1,i · ct3,i,K3,i) · e(F−s2

2,i · ct4,i,K4,i) =(
e(gs1 , gri) · e(gxis3 , gλ1vi)

)δ1w2,i−δ2w1,i

=

e(hs1 , gri) · e(hs3λ1 , gxivi) = e(ct2, gri) · e(hλ1s3 , gxivi)

The same computation gives us

e(H−s2
1,i · ct5,i,K5,i) · e(H−s2

2,i · ct6,i,K6,i) = e(ct2, gΦi) · e(hλ2s4 , gxivi)
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As a conclusion we have the following:

e(ct1,KA) ·
n∏

i=1

e(ct3,i,K3,i) · e(ct4,i,K4,i) · e(ct5,i,K5,i) · e(ct6,i,K6,i) =

= Λs2

n∏
i=1

e(F−s2
1,i ,K3,i)e(F−s2

1,i ,K4,i) · e(H−s2
1,i ,K5,i) · e(H−s2

1,i ,K6,i) =

= Λs2 · e(ct2,K−1
B ) · e(h, g)(λ1s3+λ2s4)〈x,v〉

Plugging this into the decryption algorithm we get

Υ = m · e(h, g)(λ1s3+λ2s4)〈x,v〉, Υ ′ = m · e(h, g)(λ1s′
3+s4λ2)〈x,v〉

First note that it cannot happen that ct7 �= ct′7 for honestly generated cipher-
texts. Clearly, 〈x,v〉 = 0 ⇒ (Υ = Υ ′ = m). All we need to check is thus that
if 〈x,v〉 �= 0, we get output ⊥. We could only get a wrong output if it happens
that Υ = Υ ′, but this is impossible since it implies (using λ1 �= 0, s3 �= s′

3)

e(h, g)(λ1s3−λ1s′
3)〈x,v〉 = 1GT

⇒ λ1(s3 − s′
3)〈x,v〉 ≡p 0 ⇒ 〈x,v〉 ≡p 0.

3.1 Security Reduction to DLin and DBDH

In this section we prove our IPE scheme is IND-Secure under the standard com-
putational assumptions.

Theorem 1. The IPE scheme IP of Construction 1 is IND-Secure if the DBDH
and DLin assumptions hold relative to GroupGen.

To prove the theorem we define a series of hybrid experiments H0, . . . ,H12 in
which H0 corresponds to the real experiment with challenge bit b = 0 and H12

corresponds to the real experiment with challenge bit b = 1, and we show that
they are computationally indistinguishable. We provide the full proof of Theo-
rem 1 in the full version of this paper [25].

• Hybrid H0: this hybrid is identical to the real game with challenge bit b = 0.
Precisely, the ciphertext is computed for message m0 and vector x as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], e(gs3 , gs4),

Λ−s2 · m0)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], e(gs′

3 , gs4),

Λ−s′
2 · m0)
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• Hybrid H1: this hybrid is identical to the previous hybrid except that
instead of e(g, g)s3s4 , e(g, g)s′

3s4 , the ciphertext contains two random elements
R1, R

′
1 ← GT . Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1{W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], R1 ,

Λ−s2 · m0)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], R′

1 ,

Λ−s′
2 · m0)

• Hybrid H2: this hybrid is identical to the previous hybrid except that instead
of Λ−s2 ·m0, Λ

−s′
2 ·m0, the ciphertext contains two random elements R,R′ ←

GT . Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], R1, R )

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], R

′
1, R′ )

• Hybrid H3: this hybrid is identical to the previous hybrid except that instead
of T s1

b,i ·H
s2
b,i ·V

xis4
b , T

s′
1

b,i ·H
s′
2

b,i ·V
xis4
b , the ciphertext contains T s1

b,i ·H
s2
b,i, T

s′
1

b,i ·H
s′
2

b,i.
Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H4: this hybrid is identical to the previous hybrid except that instead
of T s1

b,i ·H
s2
b,i, T

s′
1

b,i ·H
s′
2

b,i, the ciphertext contains T s1
b,i ·H

s2
b,i ·V

yis4
b , T

s′
1

b,i ·H
s′
2

b,i ·V
yis4
b .

Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, R

′)

• Hybrid H5: CT6 = (ct, ct′), This hybrid is identical to the previous hybrid
except that the power of Vb in ct is s4 and its power in ct′ is s′

4. Precisely,
the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H6: this hybrid is identical to the previous hybrid except that s3 = s′
3.

Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · Uxis3
b , T

s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)
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• Hybrid H7: This hybrid is identical to the previous hybrid except we replace
s3 with 0.

ct = (gs2 , hs1 , { W s1
b,i · F s2

b,i , T s1
b,i · Hs2

b,i · V yis4
b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H8: This hybrid is identical to the previous hybrid except that instead
of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F s′
2

b,i · Uyis3
b . Precisely:

ct = (gs2 , hs1 , { W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · Uyis3
b , T

s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H9: this hybrid is identical to the previous hybrid except that instead
of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F s′
2

b,i · Uyis
′
3

b . Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H10: this hybrid is identical to the previous hybrid except that
instead of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F
s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b .
Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, R

′)

• Hybrid H11: this hybrid is identical to the previous hybrid except that
instead of choosing R,R′ ← GT , we set R = Λ−s2 · m1, R

′ = Λ−s′
2 · m1.

Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, Λ−s2 · m1 )

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, Λ−s′

2 · m1 )

• Hybrid H12: this hybrid is identical to the previous hybrid except that
instead of R1, R

′
1, we set e(gs3 , gs4), e(gs′

3 , gs4), which is identical to the real
game with challenge bit b = 1, in particular for message m1 and vector y.
Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], e(gs3 , gs4) ,

Λ−s2 · m1)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], e(gs′

3 , gs4) ,

Λ−s′
2 · m1)
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Proposition 2. If the DLin assumption holds relative to GroupGen, then H0 is
computationally indistinguishable from H1.

Proof. Let us assume there exists a PPT adversary A which distinguishes
between H0 and H1 with non-negligible advantage. We describe a simulator B
which uses A, on input (g,A = gα, B = gβ , C = gτ ,D = gαη, Z) ∈ G

6, output
1 if Z = gβ(η+τ) and 0 if Z is a random element in G. B interacts with A as
follows:

SetUp Phase. The adversary A sends to the simulator, B, two vectors x,y ∈
Z

n
p . The simulator picks g′ ← G and Ω̃, k, δ̃b, θb, {w1,i, t̃1,i, fb,i, hb,i}i∈[n],b∈[2] ←

Zp, compute {w2,i, t̃2,i}i∈[n] such that for each i, Ω̃ = δ̃1w2,i − δ̃2w1,i = θ1t̃2,i −
θ2t̃1,i. Compute the master public key components as follows and returns it:

{Wb,i = gwb,i , Fb,i = gfb,i}b∈[2],i∈[n], {Ub = Aδ̃b}b∈[2], h = AΩ̃ , Λ = e(g, g′).

{Tb,i = At̃b,i ,Hb,i = ghb,i}b∈[2],i∈[n], {Vb = gθb}b∈[2],K1 = gk, K2 = g′ 1
k .

By doing so, B implicitly sets δb = αδ̃b, tb,i = αt̃b,i for b ∈ [2], i ∈ [n] and Ω = αΩ̃,
which shows that each element of the master public key is independently and
uniformly distributed in Zp. Also notice that for each i ∈ [n], we have: δ1w2,i −
δ2w1,i = αδ̃1w2,i − αδ̃2w1,i = θ1αt̃2,i − θ2αt̃1,i = θ1t2,i − θ2t1,i = αΩ̃ = Ω. hence
the output has the same structure as the output of the real setup algorithm.

Token Query Phase. All the secret parameters except {δb, tb,i}b∈[2],i∈[n], Ω
are known by B. When A asks for a query for a vector v, B picks
λ1, λ̃2, {r̃i, Φi}i∈[n] ← Z

�
p. In generating Tokv , the simulator implicitly sets

λ2 = αλ̃2, ri = αr̃i which are independently and uniformly distributed in Z
�
p.

Token elements are set as follows:

K3,i = A−δ̃2ri · gλ1viw2,ixi = (by the above settings) = g−δ2ri · gviw2,iλ1 .

K5,i = g−θ2φi · Aλ2vi t̃2,ixi = (by the above settings) = g−θ2φi · gλ2vit2,ixi .

Similarly, K4,i = Aδ̃1ri · g−λ1viw1,ixi ,K6,i = gθ1ri · A−λ2vi t̃1,ixi .

KB =
n∏

i=1

A−rig−Φi =
n∏

i=1

g−(αr̃i+Φi) =
n∏

i=1

g−(ri+Φi).

B knows {fb,i, hb,i}b∈[2],i∈[n], hence it can compute KA.

Generating the Challenge Ciphertext. A sends message m0 to B. To gener-
ate a challenge ciphertext, B picks s1, s2, s

′
1, s

′
2, s̃3, s̃4, s̃3′ ← Z

�
p such that s̃3 �= s̃′

3.
B implicitly sets s3 = ηs̃3, s4 = βs̃4 and computes the ciphertext as follows:
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ct1 = gs2 , ct′1 = gs′
2 , ct2 = hs1 , ct′2 = hs′

1 .

ct3,i = W s1
1,i · F s2

1,i · Dδ̃1s̃3xi , ct′3,i = W
s′
1

1,i · F
s′
2

1,i · Dδ̃1xis̃
′
3 .

ct4,i = W s1
2,i · F s2

2,i · Dδ̃2s̃3xi , ct′4,i = W
s′
1

2,i · F
s′
2

2,i · Dδ̃2xis̃
′
3 .

ct5,i = T s1
1,i · Hs2

1,i · Bθ1s̃4xi , ct′5,i = T
s′
1

1,i · H
s′
2

1,i · Bθ1s̃4xi .

ct6,i = T s1
2,i · Hs2

2,i · Bθ2s̃4xi , ct′6,i = T
s′
1

2,i · H
s′
2

2,i · Bθ2s̃4xi .

ct7 = ( e(Z,g)
e(B,C) )

s̃3s̃4 , , ct′7 = ( e(Z,g)
e(B,C) )

s̃3′ s̃4 ,

ct8 = e(g, g′)−s2 · m0 , ct′8 = e(g, g′)−s′
2 · m0

Since Dδ̃bxis̃3 = gαδ̃bηs̃3xi = Uxis3
b , Bθbs̃4xi = V βs̃4xi

1 = V s4xi

b , for each i ∈ [n]
the values ct3,i, ct

′
3,i, . . . , ct6,i, ct

′
6,i are computed properly.

Analysing the Game: Let us analyze the two events, Z = gβ(τ+η) or Z ← G:

• Z = gβ(τ+η) ⇒ e(Z, g)
e(B,C)

=
e(gβ(τ+η), g)
e(gβ , gτ )

=
e(gβ , gτ ) · e(gβ , gη)

e(gβ , gτ )
= e(gη, gβ)

⇒ ct7 = (
e(Z, g)
e(B,C)

)s̃3s̃4 = e(gηs̃3 , gβs̃4) = e(gs3 , gs4), ct′7 = e(gs′
3 , gs4)

⇒ A interacting with H0.

• Z ← G ⇒ ct7, ct
′
7 random elements in GT ⇒ A interacting with H1. ��

Proposition 3. If the DBDH assumption holds relative to GroupGen, then H1

is computationally indistinguishable from H2.

Proposition 4. If the DLin assumption holds relative to GroupGen, then H2 is
computationally indistinguishable from H3.

Proposition 5. If the DLin assumption holds relative to GroupGen, then H3 is
computationally indistinguishable from H4.

The Propositions 3, 4, 5 are proved in the full version [25].

Proposition 6. If the DLin assumption holds relative to GroupGen, then H4 is
computationally indistinguishable from H5.

Proof. The simulator takes as input (g,A = gα, B = gβ , C = gτ ,D = gαη, Z
?=

gβ(η+τ)) and by interacting with the adversary A, distinguish between the two

cases Z = gβ(η+τ) and Z
$←− G, a random element of the group.

SetUp and Token Query Phase. B runs as in the SetUp phase and token
query phase in Proposition 5.
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Generating the Challenge Ciphertext. B chooses random elements s̃1, s̃2, s̃3,
s̃4, s̃

′
1, s̃

′
2, s̃

′
3, k ← Z

�
p and computes the challenge ciphertext as follows:

• ct1 = C · gs̃2 = gτ+s̃2 ⇒ s2 = τ + s̃2, • ct′1 = Ck · gs̃2′ = gkτ+s̃′
2 ⇒ s′

2 = kτ + s̃2

• ct2 = DΩ̃ · AΩ̃s̃1 = (gαΩ̃)(η+s̃1) = hη+s̃1 ⇒ s1 = η + s̃1

• ct′2 = DkΩ̃ · AΩ̃s̃′
1 = (gαΩ̃)(kη+s̃′

1) = hkη+s̃′
1 ⇒ s′

1 = kη + s̃′
1

• ct3,i = W s̃1
1,i · F s̃2

1,i · U s̃3xi
1 · Dw̃1,i · Cf1,i = W s̃1

1,i · F s̃2+τ
1,i · U s̃3xi

1 · gηαw̃1,i · F τ
1,i =

= W s̃1
1,i · F s̃2+τ

1,i · U s̃3xi
1 · gη(w1,i−βδ1xi) = W s̃1+η

1,i · F s̃2+τ
1,i · U

(s̃3−ηβ)xi

1

⇒ s3 = −ηβ + s̃3

• ct4,i = W s̃1
2,i · F s̃2

2,i · U s̃3xi
2 · Dw̃2,i · Cf2,i , ( similar computation as ct3,i)

• ct′3,i = W
s̃′
1

1,i · F
s̃′
2

1,i · U
s̃′
3xi

1 · Dkw̃1,i · Ckf1,i = W
s̃′
1

1,i · F
s̃′
2

1,i · U
s̃′
3xi

1 · gkηαw̃1,i · F kτ
1,i

= W
s̃′
1

1,i · F
s̃′
2+kτ

1,i · U
s̃′
3xi

1 · gkη(w1,i−βδ1xi) = W
s̃′
1+kη

1,i · F
s̃′
2+kτ

1,i · U
(s̃′

3−kηβ)xi

1

⇒ s′
3 = −kηβ + s̃′

3

• ct′4,i = W
s̃′
1

2,i · F
s̃′
2

2,i · U
s̃′
3xi

2 · Dkw̃2,i · Ckf2,i , ( similar computation as ct′3,i)

• ct5,i = T s̃1
1,i · Dt̃1,i · H s̃2

1,i · C h̃1,i · Zθ1yi · gs̃4θ1yi

• ct′5,i = T
s̃′
1

1,i · Dkt̃1,i · H
s̃′
2

1,i · Ckh̃1,i · Zkθ1yi · gs̃4θ1yi

• ct6,i = T s̃1
2,i · Dt̃2,i · H s̃2

2,i · C h̃2,i · Zθ2yi · gs̃4θ2yi

• ct′6,i = T
s̃′
1

2,i · Dkt̃2,i · H
s̃′
2

2,i · Ckh̃2,i · Zkθ2yi · gs̃4θ2yi

Analysis of the Game: First, notice that:

Dt̃1,i = gηαt̃1,i = gη(t1,i−βθ1yi) = T η
1,i · g−βηθ1yi ,Dkt̃1,i = T kη

1,i · g−kβηθ1yi

C h̃1,i = gτ(h1,i−βθ1yi) = Hτ
1,i · g−βτθ1yi , Ckh̃1,i = Hkτ

1,i · g−kβτθ1yi ⇒

ct5,i = T s̃1
1,i · Dt̃1,i · H s̃2

1,i · C h̃1,i · (Z · gs̃4)θ1yi

= T η+s̃1
1,i · Hτ+s̃2

1,i · (g−β(τ+η) · Z · gs̃4)θ1yi

= T s1
1,i · Hs2

1,i · (g(−β(τ+η)) · Z · gs̃4)θ1yi

ct′5,i = T
s′
1

1,i · H
s′
2

1,i · (g(−kβ(τ+η)) · Zk · gs̃4)θ1yi

If Z = gβ(η+τ) ⇒
{

g−β(τ+η) · Z · gs̃4 = gs̃4 ⇒ ct5,i = T s1
1,i · Hs2

1,i · Us4yi

1

g(−kβ(τ+η)) · Zk · gs̃4 = gs̃4 ⇒ ct5,i = T
s′
1

1,i · H
s′
2

1,i · Us4yi

1

⇒ The adversary interacts with hybrid H4

If Z = gr ⇒
{

g−β(τ+η) · Z · gs̃4 = gr+s̃4 ⇒ ct5,i = T s1
1,i · Hs2

1,i · Us4yi

1

g(−kβ(τ+η)) · Zk · gs̃4 = gkr+s̃4 ⇒ ct5,i = T
s′
1

1,i · H
s′
2

1,i · U
s′
4yi

1

⇒ The adversary interacts with hybrid H5. ��
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4 Verifiable Inner-Product Encryption

Firstly, we present a formal definition of a VIPE scheme. Essentially, VIPE
is similar to IPE except that it is endowed with extra verification algorithms
VrfyCT,VrfyTok and VrfyMPK.

Definition 5. A verifiable inner product encryption scheme for a message space
M and for a family Σ = {Σn}n>0 of vectors over some field is a tuple of PPT
algorithms (here called VIP) VIP = {VIP.SetUp,VIP.TokGen,VIP.Enc,VIP.Dec,
VIP.VrfyMPK,VIP.VrfyCT,VIP.VrfyTok} with the syntax and properties below:

– VIP.SetUp(1λ, n) → (MPK,MSK): as for IPE.
– VIP.TokGen(MPK,MSK,v) −→ Tokv : as for IPE.
– VIP.Enc(MPK,−→x ,m) → CT: as for IPE.
– VIP.Dec(MPK,Tokv ,CT) → m ∈ M ∪ {⊥}: as for IPE.
– VIP.VrfyMPK(MPK) → {0, 1}: this is a deterministic algorithm that outputs

1 if MPK was correctly generated, or outputs 0 otherwise.
– VIP.VrfyCT(MPK,CT) → {0, 1}: this is a deterministic algorithm that outputs

1 if CT was correctly generated using the master public key on input some m
in the message space M and a vector x, or outputs 0 otherwise.

– VIP.VrfyTok(MPK,v,Tokv ) −→ {0, 1}: this is a deterministic algorithm that
outputs 1 if Tokv was correctly generated using the master secret key on input
vector v, or outputs 0 otherwise.

– Perfect correctness: as for IPE.
– Verifiability: VIP is verifiable if for all MPK ∈ {0, 1}∗, all CT ∈ {0, 1}∗, there

exists n > 0, (x,m) ∈ Σn × M such that for all v ∈ Σn and Tokv ∈ {0, 1}∗,
the following holds:⎛
⎝VIP.VrfyMPK(MPK) = 1 ∧

VIP.VrfyCT(MPK,CT) = 1 ∧
VIP.VrfyTok(MPK,v,Tokv ) = 1

⎞
⎠ ⇒ Pr

[
VIP.Dec(MPK,Tokv ,CT)
= fv (x,m)

]
= 1

Intuitively verifiability states that each ciphertext (possibly with a maliciously
generated public key) should be associated with a unique message (x,m) and
decryption for a function fv using any possibly maliciously generated token Tokv
should result in fv (x,m) for the unique message associated with the ciphertext [2].

4.1 Our Construction

Our VIPE is based on a perfectly correct IPE (cf. our IPE scheme of Construc-
tion 1), a perfectly binding commitment scheme such as the commitment scheme
proposed in [13] and NIWI proofs for some specific relations that will be detailed
below.

Let n ∈ N be the vector length and λ the security parameter. Let IP be a
perfectly correct IPE scheme, Com be a perfectly binding commitment scheme
and NIWImpk = 〈Pmpk,Vmpk〉, NIWIenc = 〈Penc,Venc〉 and NIWItok = 〈P tok,V tok〉
be NIWI proofs systems for, resp., the relations Ŗmpk, Ŗenc and Ŗtok, that are
essentially instantiations of analogous relations in [2]. The construction of these
NIWI systems is provided in Sect. 5.
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• Ŗmpk
IP (

x︷︸︸︷
mpk,

w︷ ︸︸ ︷
(msk, rmpk)) = TRUE ⇐⇒ (mpk,msk) = IP.SetUp(1λ, n; rmpk)

• Ŗtok
IP

( x︷ ︸︸ ︷
(mpk, t,v),

w︷ ︸︸ ︷
(msk, rmpk, rtoken)

)
= TRUE

⇐⇒
(

(mpk, (msk, rmpk)) ∈ Ŗmpk
IP ∧

t = IP.TokGen(MSK,v; rtok)

)

• Ŗk,ct
IP

( x︷ ︸︸ ︷(
(ct1,mpk1), . . . , (ctk,mpkk)

)
,

w︷ ︸︸ ︷(
x,m, renc1 , . . . , renck

) )
= TRUE, k ∈ [4]

⇐⇒ ∀i ∈ [k] cti = IP.Enc(mpki,x,m; renci )
• Ŗenc(x,w) = TRUE ⇐⇒ Penc

1 (x,w) ∨ Penc
2 (x,w), with

Penc
1

(
({ci}i∈[4], {ai}i∈[4], z0, z1), (m,x, {renci }i∈[4], i1, i2, r

com
0 , rcom1 )

)
= TRUE

⇐⇒
((

(c1, a1), . . . , (c4, a4)
)
, (x,m, {renci }i∈[4])

)
∈ Ŗ4,ct

IP

Penc
2

(
({ci}i∈[4], {ai}i∈[4], z0, z1), (m,x, {renci }i∈[4], i1, i2, r

com
0 , rcom1 )

)
= TRUE

⇐⇒
(

i1, i2 ∈ [4] ∧ (i1 �= i2) ∧
((

(ci1 , ai1), (ci2 , ai2)) , (x,m, renci )
)

∈ Ŗ2,ct
IP

∧ z0 = Com({ci}i∈[4]; rcom0 ) ∧ z1 = Com(0; rcom1 )

)

• Ŗtok(x,w) = TRUE ⇐⇒ Ptok
1 (x,w) ∨ Ptok

2 (x,w), with, where

Ptok
1

(
(v, {ti}i∈[4], {ai}i∈[4], z0, z1),

({bi}i∈[4], {rmpk
i }i∈[4], {rtoki }i∈[4], i1, i2, i3, r

com
0 , rcom1 )

)
= TRUE

⇐⇒

⎛
⎝ ∀i ∈ [4] :

(
(ai, (bi, r

mpk
i )

)
∈ Ŗmpk∧(

(ai, ti,vi), (bi, r
mpk
i , rtoki ))

)
∈ Ŗtok

IP

∧ z1 = Com(1; rcom1 )

⎞
⎠ , and

Ptok
2

(
(v, {ti}i∈[4], {ai}i∈[4], z0, z1),(

{bi}i∈[4], {rmpk
i }i∈[4], {rtoki }i∈[4], i1, i2, i3, r

com
0 , rcom1

))
= TRUE

⇐⇒

⎛
⎜⎜⎜⎜⎜⎝

i1, i2, i3 ∈ [4] ∧ (i1 �= i2) ∧ (i1 �= i3) ∧ (i2 �= i3)
∀j ∈ [3] :

(
aij , (bij , r

mpk
ij

)
)

∈ Ŗmpk∧( (
aij , tij ,vij

)
,
(
bij , r

mpk
ij

, rtokij
)
)

∈ Ŗtok
IP

∧ z0 = Com({ci}i∈[4]; rcom1 )∧
∃m ∈ M ∀i ∈ [4] IP.Dec(ci, ti) = fv (m)

⎞
⎟⎟⎟⎟⎟⎠

Construction 7 [Our VIPE VIP]

• VIP.SetUp(1λ, n) → (MPK,MSK):
1. For i ∈ [4], run IP.SetUp(1λ, n) to generate (MPKi,MSKi).
2. Run the commitment algorithm to generate Z0 = Com(0; rcom0 ) and

Z1 = Com(1; rcom1 ).
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3. Output VIP.MPK = ({MPKi}i∈[4],Z0,Z1),VIP.MSK = ({MSKi}i∈[4],
rcom0 , rcom1 ).

• VIP.Enc(MPK,m,x) → CT:
1. For i ∈ [4], run the encryption algorithm to compute CTi = IP.Enc

(MPK,m,x; renci ).
2. Set x = ({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), w = (m,x, {renci }i∈[4], 0, 0,

0|u0|, 0|u1|), and run Penc(x,w) to generate πct for relation Ŗenc(x,w).
Note that Penc

1 (x,w) = TRUE.
3. Output ciphertext CT = ({CTi}i∈[4], πct).

• VIP.TokGen(MPK,MSK, fv ):
1. For i ∈ [4], run IP.TokGen(MSK,v; rtoki ) to generate Toki

v .
2. x = (v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), w = ({MSKi}i∈[4], {rtoki }i∈[4],

0, 0, 0, 0|rcom0 |, |rcom1 |) run P tok to generate πtok to prove Ŗtok(x,w) =
TRUE. Note that Ptok

1 (x,w) = TRUE
3. Output token Tokv = ({Toki

v}i∈[4], πtok).
• VIP.Dec(MPK, fv ,Tokv ,CT):

1. Run the verification algorithms Vmpk,Venc,V tok on input the corre-
sponding pairs of statement and proof (the proof for the verification
of the master public key is set to the empty string). If some verifica-
tion algorithms fails, then stop and output ⊥ or go to the next step
otherwise.

2. For all i ∈ [4], compute m(i) = IP.Dec(Tok(i)v ,CTi) and output the
following:{
If ∃i1, i2, i3 ∈ [4] s.t. m = m(i1) = m(i2) = m(i3) ⇒ Output m.

If � ∃i1, i2, i3 ∈ [4] s.t. m(i1) = m(i2) = m(i3) ⇒ Output ⊥ .

• VIP.VrfyMPK(MPK): run Vmpk(MPK, ε) and output its result.
• VIP.VrfyCT

(
({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), πct)

)
:

run Venc
(
({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), πct

)
and output its result.

• VIP.VrfyTok
(
(v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), πtok

)
:

run V tok
(
(v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), πtok

)
and output its result.

Correctness of VIP follows from perfect correctness of IP. IND-Security and
Verifiability of VIP follows as corollary (following Theorem2) from the verifia-
bility and IND-Security of the construction of [2] for general functions.

Theorem 2. If IP is a perfectly correct IND-Secure IP scheme for message space
M and for the set Zn

p of vectors of length n over Zp, and NIWImpk,NIWIct,NIWItok

are NIWI systems resp. for the relations Ŗmpk, Ŗenc, Ŗtok and Com is a non-
interactive perfectly binding and computationally hiding commitment scheme,
then VIP is an IND-Secure VIPE scheme for the class of inner product function-
ality over M and Z

n
p .
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5 NIWI Proofs and Verification Algorithms

In this section we present the proof systems that we used in our VIP scheme, to
prove membership of relations Ŗmpk, Ŗtok and Ŗenc. For each of our relations2, we
need to define a system of equations such that satisfiability of that system and
the membership in the relation are equivalent. Then, the GS generic prover and
verifier algorithms, NIWIGS = 〈PGS,VGS〉, can be used for such equations. In this
section, for each of our relations of Sect. 4, we will either define a corresponding
system of equations or we will show how to implement directly (without using
GS proofs).

Definition 6 (Pairing Product System of Equations). Consider a bilinear
map e : G × G → GT . The following system of equation with k equations over
m variables Xi ∈ G, i ∈ [m] and constants B

(t)
i ∈ G, τ (t) ∈ GT and γ

(t)
ij ∈ Zp for

i ∈ [m], t ∈ [k] is called a pairing product system of equations over (G,GT , e):

E :

⎧⎪⎨
⎪⎩
∏m

i=1 e(Xi, B
(1)
i ) ·

∏m
i=1

∏m
j=1 e(Xi,Xj)γ

(1)
ij = τ (1)

. . .∏m
i=1 e(Xi, B

(k)
i ) ·

∏m
i=1

∏m
j=1 e(Xi,Xj)γ

(k)
ij = τ (k)

(1)

(g1, g2, . . . , gm) ∈ G
m is a solution for the equation E iff

(
E[(g1, . . . , gm)] = TRUE

)
=

⎧⎪⎨
⎪⎩
∏m

i=1 e(gi, B
(1)
i ) ·

∏m
i=1

∏m
j=1 e(gi, gj)γ

(1)
ij = τ (1)

. . .∏m
i=1 e(gi, B

(k)
i ) ·

∏m
i=1

∏m
j=1 e(gi, gj)γ

(k)
ij = τ (k)

We define the following relation for pairing product system of equations:

ŖE = {(x,w)| x = E, w = (g1, . . . , gm) : E[(g1, . . . , gm)] = TRUE}

Throughout the paper, we denote by NIWIGS = 〈PGS,VGS〉 a Groth-Sahai [14]
NIWI-proof system. Precisely:

• PGS(x = E, w = (g1, . . . , gm)) → πE • VGS(x, πE) →
{

1 : If (x,w) ∈ ŖE

0 : Otherwise

5.1 How to Handle Generalized or Statements

Some of our relations of Sect. 4 consist of a generalized form of disjunction (OR)
of two predicates, let us say P1 and P2. Suppose that we have equivalent systems

2 Actually, we will implement some or part of them not directly using GS proofs.
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of equations for each of the two predicate, that is a system of equations E1 (resp.
E2) representing predicate P1 (resp. P2). Consider the following relation:

ŖOR ={(x,w)| x = (E1,E2), w = (idx, w1, w2) : idx ∈ {1, 2} ∧
(Eidx, widx) ∈ ŖE ∧ w ¯idx ∈ G

3},

where ¯idx means {1, 2}/{idx}.
Notice that the relation is not exactly a disjunction of pairing product equa-

tions because we need to make sure that the statement that holds is the one
selected by the index in the witness, so we cannot use the technique of Groth [12]
and we will follow a different approach.

By hypothesis PGS takes as input a system of equations E as statement and
a solution (g1, . . . , gm) as witness and provides a NIWI-proof of membership of
(E, w) ∈ ŖE. Therefore, to use NIWIGS to generate a NIWI-proof for relation ŖOR,
we need to define a third system of equation EOR with the following properties:

1. EOR ≈ ŖOR. With this notation, we mean that there exist two efficiently com-
putable functions f and g such that:

∃w = (idx, w1, w2)
(
x = (E1,E2), w

)
∈ ŖOR ⇔ ∃w̃

(
EOR = f(x), w̃

)
∈ ŖE.(

x,w
)

∈ ŖOR ⇒
(
f(x), g(x,w)

)
∈ ŖOR.

The latter properties guarantee that a proof for relation ŖOR computed using
NIWIGS satisfies completeness and soundness. For WI to hold, we need the
following property.

2. The function f is efficiently invertible.

Now we show how to construct the system of equations EOR with the aforemen-
tioned properties. Consider two systems of pairing product equations E1 and E2

- same structure as in 1. For simplicity, we assume the equations are over two
variables (the general case is straightforward).

E1 : e(X1, a1) · e(X2, a2) = τ1 ,E2 : e(Y1, b1) · e(Y2, b2) = τ2

We define the new system of equations EOR with 4 new variables Z11,Z12,
Z21,Z22 as follows:

EOR :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e(X1, a1) · e(X2, a2) · e(Z11,Z12) = τ1

e(Y1, b1) · e(Y2, b2) · e(Z21,Z22) = τ2

e(Z11,Z22) = 1
e(Z11, g) · e(Zidx, g) = e(g, g)
e(Z22, g) · e(Zidx, g) = e(g2, g)

Analysis of the Equations: Consider (Zidx ←↩ gidx,X1 ←↩ g1,X2 ←↩ g2,Y1 ←↩
g3,Y2 ←↩ g4,Z11 ←↩ g11, . . . ,Z22 ←↩ g22) as a solution for EOR. So, there exist
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values idx, z11, z22 ∈ Zp such that gidx = gidx, g11 = gz11 , g22 = gz22 and for t ∈ [k]
there exist values αt such that τt = e(g, αt).

• e(Z11, g) · e(Zidx, g) = e(g, g) ⇒ e(gz11+idx−1, g) = 1
⇒ z11 = 1 − idx and similarly z22 = 2 − idx.

• e(Z11,Z22) = 1 ⇒ (z11 = 0 ∨ z22 = 0)
• z11 = 0 ∧ z11 = 1 − idx ⇒ e(X1 ←↩ g1, a1) · e(X2 ←↩ g2, a2) = τ1

⇒ (E1[g1, g2] = TRUE ∧ idx = 1)
• Similarly, z22 = 0 ∧ z22 = 2 − idx

⇒ e(Z21,Z22) = 1 ⇒ (E2[g3, g4] = TRUE ∧ idx = 2)

The above facts imply that:

EOR[(gidx, g1, . . . , g4, g11, . . . , g22)] = TRUE ⇒(
(E1[g1, g2, α1] = TRUE ∧ idx = 1

)
∨
(
E2[g3, g4, α2] = TRUE ∧ idx = 2)

)
,

as it was to show. It is also easy to see that the previous transformation is
efficiently invertible.

For the other direction, suppose w.l.o.g that w1 = (g1, g2, α1) is a solution
to x = E1 (the other case is symmetrical and we omit it), namely (x,w1) ∈ R’¸ .
Suppose also that w2 = (g3, g4, α2) ∈ G

3 is an arbitrary triple of elements of G.
Therefore (1, w1, w2) is a witness to (E1,E2) with respect to relation ŖOR. Then,
setting (Zidx ←↩ g1,X1 ←↩ g1,X2 ←↩ g2,Y1 ←↩ g0,Y2 ←↩ g0,Z11 ←↩ g0,Z12 ←↩
g1,Z21 ←↩ α2,Z22 ←↩ g1), we have that:

EOR[(gidx, g1, . . . , g4, g11, . . . , g22)] = TRUE.

(Notice that we implicitly defined a transformation g as needed.)

5.2 OR Proof in the General Case

If the number of pairing products (m) in each of the two equations is greater
than 1, such as:

E1 :

{
e(X1, a1) · e(X2, a2) = τ1

e(X1, a
′
1) · e(X2, a

′
2) = τ ′

1

, E2 :

{
e(Y1, b1) · e(Y2, b2) = τ2

e(Y1, b
′
1) · e(Y2, a

′
2) = τ ′

2

then EOR can be defined as:

EOR :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(X1, a1) · e(X1, a2) · e(Z11,Z12) = τ1

e(X1, a
′
1) · e(X2, a

′
2) · e(Z11,Z13) = τ ′

1

e(Y1, b1) · e(Y2, b2) · e(Z21,Z22) = τ2

e(Y1, b
′
1) · e(Y2, b

′
2) · e(Z23,Z22) = τ ′

2

e(Z11,Z22) = 1
e(Z11, g) · e(Zidx, g) = e(g, g)
e(Z22, g) · e(Zidx, g) = e(g2, g)

We omit further details.
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Notations: For the rest of this section, let us fix n ∈ N as dimension of the
vector space and let i ∈ [n], b ∈ [2]. Note we can efficiently check whether a
string is a valid group element. We recall what follows.

mpk = (g, h, {Wb,i, Fb,i, Tb,i,Hb,i, Ub, Vb},K1,K2, Λ) ∈ G
4n+8 × GT

msk = ({wb,i, fb,i, tb,i, hb,i, δb, θb}, Ω, k) ∈ Z
4n+6
p

tok = (KA,KB , {K3,i,K4,i,K5,i,K6,i}i) ∈ G
4n+2

ct =
(
(ct1, ct2,

{
ct3,i , ct4,i

ct5,i , ct6,i

}
, ct7, ct8),

(ct′1, ct
′
2,

{
ct′3,i , ct′4,i

ct′5,i , ct′6,i

}
, ct′7, ct

′
8)
)

∈ G
8n+6 × G

2
T

5.3 Master Public Key Verification

Let x = mpk. Since g and e(g, g) are generators for the groups G and GT of
prime order p, we can represent all components of x as a power of either g or
e(g, g). That is, there exist Ω, k′, {wb,i, fb,i, tb,i, hb,i}, {δb, θb, kb} for i ∈ [n] and
b ∈ [2], in Zp such that: h = gΩ , Λ = e(g, g)k′

,Wb,i = gwb,i , Fb,i = gfb,i , Tb,i =
gtb,i ,Hb,i = ghb,i , Ub = gδb , Vb = gθb ,Kb = gkb . The following holds:

e(g, h) = e(U1,W2,i) · e(U2,W1,i)−1 = e(V1, T2,i) · e(V2, T1,i)−1 ⇒
e(g, gΩ) = e(gδ1 , gw2,i) · e(gδ2 , g−w1,i) = e(gθ1 , gt2,i) · e(gθ2 , g−t1,i)
⇒ Ω = δ1w2,i − δ2w1,i = θ1t2,i − θ2t1,i.

e(K1,K2) = e(gk1 , gk2) = Λ = e(g, gk′
) ⇒ k′ = k1k2

By defining g′ = gk′
,K1 = gk1 ,K2 = gk2 , it follows that:

Λ = e(K1,K2),K1 = gk,K2 = g′ 1
k

Hence, we have the verification algorithm in Fig. 2 for master public key.

Input: mpk, Output: 1 if mpk is a well-generated master public key for IP
scheme and 0 otherwise

(1) If Λ �= e(K1, K2). output 0 otherwise go to the next step

(2) For i = 1 to n do :

(i.a) If e(U1, W2,i) · e(U2, W1,i)−1 �= e(h, g) output 0 else go to the next step

(i.b) If e(V1 , T2,i) · e(V2 , T1,i)−1 �= e(h, g) output 0 else go to the next step

(3) Output 1.

Fig. 2. Master public key verification algorithm. (membership in relation Ŗmpk
IP )
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5.4 Token Verification Algorithms

As it was defined in Sect. 4, there are two relations for tokens, Ŗtok
IP and Ŗtok.

The algorithm in Fig. 3 verifies membership in relation Ŗtok
IP .

Input: MPK,v = (v1, . . . , vn) �= 0, tok
Output: 1 if tok is a well-generated token for IP scheme and 0 otherwise

1. If v = 0 output 0 else let i∗ be an index such that vi∗ �= 0
2. Compute Λ∗

1 = e(K3,i, U1) · e(K4,i, U2) and Λ∗
2 = e(K5,i, V1) · e(K6,i, V2)

3. If Λ∗
1 = 1GT OR Λ∗

2 = 1GT output ⊥
4. For i = 1 to n do:

(a) If
(
e(K3,i, U1) · e(K4,i, U2)

)vi∗ �= (Λ∗
1)vi output 0

(b) If
(
e(K5,i, V1) · e(K6,i, V2)

)vi∗ �= (Λ∗
2)vi output 0

5. If Λ
∏n

i=1 e(K3,i, F1,i)−1 · e(K4,i, F2,i)−1 · e(K5,i, H1,i)−1e(K6,i, H2,i)−1 �=
e(KA, g) output 0.

6. If
∏n

i=1 e(K3,i, W1,i) · e(K4,i, W2,i) · e(K5,i, T1,i) · e(K6,i, T2,i) �= e(h, KB)−1

output 0.
7. Output 1.

Fig. 3. First token verification algorithm. (membership in relation Ŗtok
IP )

Correctness of the algorithm: For simplicity let’s assume v1 �= 0 and i∗ = 1.

• Λ∗
1, Λ

∗
2 ∈ GT ⇒ ∃λ1, λ2 ∈ Zp s.t. Λ∗

1 = e(g, h)λ1v1 , Λ∗
2 = e(g, h)λ2v1

• ∀i ∈ [n] ∃ri, r
′
i ∈ Zp s.t. K3,i = g−δ2ri · gλ1viw2,i ,K4,i = gδ1r′

i · g−λ1viw1,i

⇒e(K3,i, U1) · e(K4,i, U2) = e(g−δ2ri · gλ1viw2,i , gδ1) · e(gδ1r′
i · g−λ1viw1,i , gδ2) =

e(g, g)δ1δ2(r
′
i−ri) · e(g, h)λ1vi =

⇒
(
e(K3,i, U1) · e(K4,i, U2)

)v1

= e(g, g)v1δ1δ2(r
′
i−ri) · e(g, h)λ1v1vi

– Step 3: Λ∗
1 �= 1GT

, Λ∗
2 �= 1GT

⇒ λ1 �= 0, λ2 �= 0

– Step 4.a: If
(
e(K3,i, U1) · e(K4,i, U2)

)v1

= (Λ∗
1)

vi ⇒ e(g, g)v1δ1δ2(r
′
i−ri) ·

e(h, g)λ1v1vi = e(g, h)λ1v1vi ⇒ e(g, g)v1δ1δ2(r
′
i−ri) = 1GT

⇒ ∀i ∈ [n] : ri =
r′
i ⇒ K3,i = g−δ2ri · gλ1viw2,i ,K4,i = gδ1ri · g−λ1viw1,i And similar compu-

tations show that the equality in step (4.b) holds for all i ∈ [n]. Then we
conclude that there exists φi ∈ Zp such that: K5,i = g−θ2φi · gλ2vit2,i ,K6,i =
gθ1φi · g−λ2vit1,i .
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– Step 5

KA = g′
n∏

i=1

K
−f1,i
3,i K

−f2,i
4,i K

−h1,i
5,i K

−h2,i
6,i

⇐⇒ e(KA, g) = e(g′
n∏

i=1

K
−f1,i
3,i K

−f2,i
4,i K

−h1,i
5,i K

−h2,i
6,i , g)

⇐⇒ e(KA, g) = Λ ·
n∏

i=1

e(K3,i, F1,i)−1.e(K4,i, F2,i)−1.e(K5,i,H1,i)−1

e(K6,i,H2,i)−1.

– Step 6

n∏
i=1

e(K3,i,W1,i) · e(K4,i,W2,i) · e(K5,i, T1,i) · e(K6,i, T2,i) = e(h,KB)−1

=
n∏

i=1

e(gri(δ1w2,i−δ2w1,i), g) · e(gφi(θ1t2,i−θ2t1,i), g) = e(h,KB)−1

=
n∏

i=1

e(g, h)ri+φi = e(h,KB)−1 ⇒ KB =
n∏

i=1

g−(ri+φi)

The second relation is a disjunction of two predicates, Ŗtok(x,w) = P tok
1 ∨ P tok

2 .
The proof of membership for this relation can be implemented using the equa-
tions for the token verification algorithm for relation Ŗtok

IP Fig. 3 and assuming
to have pairing product equations corresponding to the commitments in the two
aforementioned predicates. We skip further details.

5.5 NIWIenc = 〈Penc,Venc〉: NIWI-Proof for Encryption Algorithm

For the relation Ŗct
IP, we first provide a proof of satisfiability for a system of

equations related to a single ciphertext, that is k = 1, and we will later extend it
to the case of two ciphertexts, that is k = 2. For k > 2, the algorithm is similar
to the case k = 2.

Let x = (mpk, ct). We define the following variables for i ∈ [n]:

S1 = gs1 ,S3 = gs3 ,S4 = gs4 ,Xi = gxi ,S ′
1 = gs′

1 ,S ′
3 = gs′

3 ,U1 = Us3
1 ,

U2 = Us3
2 ,V1 = V s4

1 ,V2 = V s4
2 ,U ′

1 = U
s′
3

1 ,U ′
2 = U

s′
3

2 ,K1 = Ks2
1 ,K′

1 = K
s′
2

1

We have the following Equations related to component ct2(ct′2):

e(ct2, g) = e(hs1 , g) = e(h, gs1) = e(h,S1),
(
e(ct′2, g) = e(h,S ′

1)
)
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and related equation to ct3,i for i ∈ [n]: (Same computation results the same
equations for ctj,i, ct

′
j,i for j = 3, 4, 5, 6)

e(ct3,i, g) = e(W s1
1,i, g) · e(F s2

1,i, g) · e(Us3xi
1 , g)

= e(W1,i, g
s1) · e(F1,i, g

s2) · e(Us3
1 , gxi)

= e(W1,i,S1) · e(F1,i, ct1) · e(U1,Xi)

⇒e(ct3,i, g) · e(F1,i, ct1)−1 = e(W1,i,S1) · e(U1,Xi)

The equations show that the exponent of Us3
b and V s4

b in ct3,i, ct4,i, ct5,i, ct6,i

are xi. So we have the following equation:

e(U1, U2) · e(U−1
1 ,U2) = e(Us3 , U2) · e(U−1

1 , Us3
2 ) = e(U1, U2)s3−s3 = 1GT

e(V1, V2) · e(V −1
1 ,V2) = e(V s4 , V2) · e(V −1

1 , V s4
2 ) = e(V1, V2)s4−s4 = 1GT

The equation related to ct7 = e(gs3 , gs4) is the following:

ct7 = e(gs3 , gs4) = e(S3,S4), ct′7 = e(gs′
3 , gs4) = e(S ′

3,S4)

To prove s3 �= s′
3, we just need to check whether ct7 �= ct′7 or not.

ct7 �= ct′7 ⇒ e(gs3 , gs4) �= e(gs′
3 , gs4) ⇒ s3 �= s′

3.

The equation related to ct8, ct
′
8 is the following:

ct8 = Λ−s2 · m, ct′8 = Λ−s′
2 · m ⇒ ct−1

8 · ct′8 = Λs2 · m−1Λ−s′
2 · m = Λs2−s′

2

⇒ct−1
8 · ct′8 = e(K1,K2)s2−s′

2 = e(K1,K
s2
2 ) · e(K−1

1 ,K
s′
2

2 ) =

e(K1,K2) · e(K−1
1 ,K′

1)

And to prove that ct1 = gs2 and ct8 = λ−s2 · m, we add the following equation:

e(ct1,K1) = e(g,K1), e(ct′1,K1) = e(g,K′
1)

So we have the following system of equations for one single ciphertext.

Ect :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(ct2, g) = e(h,S1), e(ct′2, g) = e(h,S ′
1)

e(ĉt2, ĝ) = e(ĥ, Ŝ1), e(ĉt
′
2, ĝ) = e(ĥ, Ŝ ′

1)
e(ct3,i, g) · e(F1,i, ct1)−1 = e(W1,i,S1) · e(U1,Xi)
e(ct′3,i, g) · e(F1,i, ct

′
1)

−1 = e(W1,i,S ′
1) · e(U ′

1,Xi)
e(ct4,i, g) · e(F2,i, ct1)−1 = e(W2,i,S1) · e(U2,Xi)
e(ct′4,i, g) · e(F2,i, ct

′
1)

−1 = e(W2,i,S ′
1) · e(U ′

2,Xi)
e(ct5,i, g) · e(H1,i, ct2)−1 = e(T1,i,S1) · e(V1,Xi)
e(ct′5,i, g) · e(H1,i, ct

′
2)

−1 = e(T1,i,S ′
1) · e(V1,Xi)

e(ct6,i, g) · e(H2,i, ct2)−1 = e(T2,i,S1) · e(V2,Xi)
e(ct′6,i, g) · e(H2,i, ct

′
2)

−1 = e(T2,i,S ′
1) · e(V2,Xi)

ct7 = e(S3,S4), ct′7 = e(S ′
3,S4), ĉt7 = e(Ŝ3, Ŝ4), ĉt

′
7 = e(Ŝ ′

3, Ŝ4)
ct−1

8 · ct′8 = e(K1,K2) · e(K−1
1 ,K′

1), ĉt
−1
8 · ĉt′8 = e(K̂1, K̂2) · e(K̂−1

1 , K̂′
1)

e(ct1,K1) = e(g,K1), e(ct′1,K1) = e(g,K′
1)
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Now we need to provide a proof that two ciphertexts ct, ĉt are the encryption of
a single message m and a single attribute x:

Xi = gxi , X̂i = ĝxi ⇒ e(Xi, ĝ) = e(g, X̂i) ⇒ e(Xi, ĝ) · e(g, X̂i)−1 = 1GT

Notice that ct8, ct
′
8 are the only components of the ciphertext which are related

to the message, m, so we have:(
ct8 = Λ−s2m, ĉt8 = Λ̂−ŝ2m

)
⇒ ct8ĉt

−1
8 = Λ−s2 · Λ̂ŝ2 =

e(Ks2
1 ,K−1

2 ) · e(K̂ ŝ2
1 , K̂2) == e(K1,K

−1
2 ) · e(K̂1, K̂2) = e(K−1

1 ,K2) · e(K̂1, K̂2)

So the prover has to provide a proof for the following system of equations:

Ect−ĉt :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ct8ĉt

−1
8 = e(K1,K

−1
2 , ) · e(K̂1, K̂2)

ct8ĉt
−1
8 = e(K−1

1 ,K2) · e(K̂1, K̂2)
e(g,K1) = e(ct1,K1) , e(ĝ, K̂1) = e(ĉt1, K̂1)
e(Xi, ĝ) · e(g, X̂i)−1 = 1GT

Summing up, to provide the NIWI-proof system for encryption algorithm the
prover uses Groth-Sahai proof-system for the system of equations, ECT = Ect ∧
Ect−ĉt.

6 Conclusion

Our main contribution is the first efficient verifiable (attribute-hiding) IPE
scheme from bilinear groups. The privacy of our scheme is based on the standard
DLIN assumption whereas its verifiability is unconditional. Towards this goal,
we also constructed the first perfectly correct inner product encryption scheme
for plaintexts of arbitrary length. Our VIPE scheme is selectively secure only;
we leave as an interesting open problem the construction of a fully secure one.
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