Skip to main content

Variant Analysis from Bacterial Isolates Affirms DnaK Crucial for Multidrug Resistance

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

Next-generation sequencing and associated computational analyses have become powerful tools for comparing the whole genomes and detecting the single nucleotide polymorphisms (SNPs) within the genes. In our study, we have identified specific mutations within the plausible drug resistant genes of eight multidrug resistant (MDR) bacterial species. Essentially, we have unearthed few proteins, involved in folding and enabling survival under stress, to be the most crucial ones from the network of the whole genome protein interactome (PIN) of these species. To confirm the relevance of these proteins to antibiotic resistance, variant analyses were performed on all the selected MDR species, isolated from patients’ samples in PATRIC database, against their respective reference genomes. The SNPs found in the patient isolates revealed the nucleotide changes from C to A on DnaK, thereby altering a single amino acid change that might lead to misfolding of proteins. Thus, we propose DnaK to be the best characterized bacterial chaperone having implications in multidrug resistance. To this end, to provide an alternative solution to tackle MDR, docking studies were performed with a phenaleno-furanone derivative which revealed the highest binding energy and inhibition against DnaK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, S., Rizvi, M., Vidhani, S., Sharma, V.K.: Changing face of septicaemia and increasing drug resistance in blood isolates. Indian J. Pathol. Microbiol. 47(3), 441–446 (2004)

    PubMed  Google Scholar 

  2. Jain, A., Awasthi, A.K., Kumar, M.: Etiological and antimicrobial susceptibility profile of nosocomial blood stream infections in neonatal intensive care unit. Indian J. Med. Microbiol. 25(3), 299 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Solomon, S.L., Oliver, K.B.: Antibiotic resistance threats in the United States: stepping back from the brink. Am. Fam. Physician 89(12), 938 (2014)

    PubMed  Google Scholar 

  4. US Department of Health and Human Services: Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention, pp. 1–113 (2013)

    Google Scholar 

  5. World Health Organization: Antimicrobial resistance: global report on surveillance. World Health Organization (2014)

    Google Scholar 

  6. Chatterjee, A., et al.: Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis. 18, e368–e378 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Davies, S.C., Fowler, T., Watson, J., Livermore, D.M., Walker, D.: Annual Report of the Chief Medical Officer: infection and the rise of antimicrobial resistance. Lancet 381(9878), 1606–1609 (2013)

    Article  PubMed  Google Scholar 

  8. Sydnor, E.R., Perl, T.M.: Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 24(1), 141–173 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. World Health Organization: Annual report of the Regional Director for 2010 and progress reports (No. EM/RC58/R. 1) (2011)

    Google Scholar 

  10. Grisaru-Soen, G., Lerner-Geva, L., Keller, N., Berger, H., Passwell, J.H., Barzilai, A.: Pseudomonas aeruginosa bacteremia in children: analysis of trends in prevalence, antibiotic resistance and prognostic factors. Pediatr. Infect. Dis. J. 19(10), 959–963 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Fujitani, S., Sun, H.Y., Victor, L.Y., Weingarten, J.A.: Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest 139(4), 909–919 (2011)

    Article  PubMed  Google Scholar 

  12. Snyder, L.A., et al.: Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. Eurosurveillance 18(42), 1–9 (2013)

    Article  Google Scholar 

  13. Metzker, M.L.: Sequencing technologies—the next generation. Nat. Rev. Genet. 11(1), 31 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Sabat, A.J., et al.: Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance 18(4), 20380 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Octavia, S., Lan, R.: Single-nucleotide-polymorphism typing and genetic relationships of Salmonella enterica serovar Typhi isolates. J. Clin. Microbiol. 45(11), 3795–3801 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis, T., et al.: High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J. Hosp. Infect. 75(1), 37–41 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Gooderham, W.J., Hancock, R.E.: Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 33(2), 279–294 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Dettman, J.R., Rodrigue, N., Aaron, S.D., Kassen, R.: Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 110(52), 21065–21070 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeukens, J., et al.: Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS ONE 9(2), e87611 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lister, P.D., Wolter, D.J., Hanson, N.D.: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22(4), 582–610 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turton, J.F., Turton, S.E., Yearwood, L., Yarde, S., Kaufmann, M.E., Pitt, T.L.: Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 16(8), 1111–1116 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, E.R., Walker, T.M., Pallen, M.J.: Genomics and outbreak investigation: from sequence to consequence. Genome Med. 5(4), 36 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aguilar-Rodea, P., et al.: Identification of extensive drug resistant Pseudomonas aeruginosa strains: new clone ST1725 and high-risk clone ST233. PLoS ONE 12(3), e0172882 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Martin, K., et al.: Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. J. Med. Microbiol. 62(7), 988–1000 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Mujawar, S., Mishra, R., Pawar, S., Gatherer, D., Lahiri, C.: Delineating the plausible molecular vaccine candidates and drug targets of multidrug-resistant acinetobacter baumannii. Front. Cell. Infect. Microbiol. 9, 203 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 33(suppl_1), D54–D58 (2005)

    CAS  PubMed  Google Scholar 

  28. UniProt Consortium: UniProt: a hub for protein information. Nucleic Acids Res. 43(D1), D204–D212 (2014)

    Article  CAS  Google Scholar 

  29. Wattam, A.R., et al.: PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42(D1), D581–D591 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2016). https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozgur, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13), i277–i285 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pavlopoulos, G.A., et al.: Using graph theory to 221ytosca biological networks. BioData Min. 4(1), 10 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cline, M.S., et al.: Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2(10), 2366 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, Y., Li, M., Wang, J., Pan, Y., Wu, F.X.: CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 127, 67–72 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Oliveros, J.C.: Venny 2.1.0. An interactive tool for comparing lists with Venn’s diagrams. BioinfoGP of CNB-CSIC (2015)

    Google Scholar 

  36. Kumar, S., Nei, M., Dudley, J., Tamura, K.: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9(4), 299–306 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. Kearse, M., et al.: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discovery 3(11), 935 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bertelsen, E.B., Chang, L., Gestwicki, J.E., Zuiderweg, E.R.: Solution conformation of wild-type E.coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. 106(21), 8471–8476 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poole, K.: Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56(1), 20–51 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Alekshun, M.N., Levy, S.B.: Molecular mechanisms of antibacterial multidrug resistance. Cell 128(6), 1037–1050 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Hocquet, D., et al.: MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 47(4), 1371–1375 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vogne, C., Aires, J.R., Bailly, C., Hocquet, D., Plésiat, P.: Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 48(5), 1676–1680 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garneau-Tsodikova, S., Labby, K.J.: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm 7(1), 11–27 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Arita-Morioka, K.I., Yamanaka, K., Mizunoe, Y., Ogura, T., Sugimoto, S.: Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob. Agents Chemother. 59(1), 633–641 (2015)

    Article  PubMed  CAS  Google Scholar 

  48. Takaya, A., Tomoyasu, T., Matsui, H., Yamamoto, T.: The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect. Immun. 72(3), 1364–1373 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, J., Ficht, T.A.: Protein synthesis in Brucella abortus induced during macrophage infection. Infect. Immun. 63(4), 1409–1414 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrajit Lahiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mujawar, S., Abd El-Aal, A.A.A., Lahiri, C. (2020). Variant Analysis from Bacterial Isolates Affirms DnaK Crucial for Multidrug Resistance. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics