Skip to main content

Bayesian Optimization Improves Tissue-Specific Prediction of Active Regulatory Regions with Deep Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

The annotation and characterization of tissue-specific cis-regulatory elements (CREs) in non-coding DNA represents an open challenge in computational genomics. Several prior works show that machine learning methods, using epigenetic or spectral features directly extracted from DNA sequences, can predict active promoters and enhancers in specific tissues or cell lines. In particular, very recently deep-learning techniques obtained state-of-the-art results in this challenging computational task. In this study, we provide additional evidence that Feed Forward Neural Networks (FFNN) trained on epigenetic data and one-dimensional convolutional neural networks (CNN) trained on DNA sequence data can successfully predict active regulatory regions in different cell lines. We show that model selection by means of Bayesian optimization applied to both FFNN and CNN models can significantly improve deep neural network performance, by automatically finding models that best fit the data. Further, we show that techniques applied to balance active and non-active regulatory regions in the human genome in training and test data may lead to over-optimistic or poor predictions. We recommend to use actual imbalanced data that was not used to train the models for evaluating their generalization performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ENCODE Data at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC.

  2. 2.

    ENCODE Data at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC; ENCODE fold-change values are described here https://sites.google.com/site/anshulkundaje.

  3. 3.

    https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/.

  4. 4.

    https://genome.ucsc.edu/.

  5. 5.

    https://github.com/LucaCappelletti94/ucsc_genomes_downloader.

  6. 6.

    For computing Multiple Correspondence Analysis we used the python package available at https://github.com/esafak/mca.

  7. 7.

    https://scikit-optimize.github.io/.

References

  1. Latchman, D.S.: Transcription factors: an overview. Int. J. Exp. Pathol. 74, 417–422 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mora, A., Sandve, G.K., Gabrielsen, O.S., Eskeland, R.: In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform. 17, 980–995 (2016)

    CAS  PubMed  Google Scholar 

  3. Lambert, S.A., et al.: The human transcription factors. Cell 172, 650–665 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Schubach, M., Re, M., Robinson, P.N., Valentini, G.: Imbalance-aware machine learning for predicting rare and commondisease-associated non-coding variants. Sci. Rep. 7(1), 1–2 (2017)

    Article  CAS  Google Scholar 

  5. Rentzsch, P., Witten, D., Cooper, G., Shendure, J., Kircher, M.: CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Javierre, B., et al.: Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein, B., et al.: The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunham, I., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)

    Article  CAS  Google Scholar 

  9. Shen, Y., et al.: A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, J., et al.: Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noguchi, S., et al.: FANTOM5 CAGE profiles of human and mouse samples. Sci. Data 4, 170112 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lizio, M., et al.: Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518, 317 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9(3), 215–216 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffman, M.M., Buske, O.J., Wang, J., Weng, Z., Bilmes, J.A., Noble, W.S.: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9, 473 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwasnieski, J.C., Fiore, C., Chaudhari, H.G., Cohen, B.A.: High-throughput functional testing of encode segmentation predictions. Genome Res. 24, 1595–1602 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yip, K.Y., et al.: Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol. 13, R48 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, Y., Qu, W., Shan, G., Zhang, C.: DELTA: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS ONE 10, e0130622 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kleftogiannis, D., Kalnis, P., Bajic, V.: DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res. 43(1), e6 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Min, X., Zeng, W., Chen, S., Chen, N., Chen, T., Jiang, R.: Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics 18, 478 (2017). https://doi.org/10.1186/s12859-017-1878-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Y., Shi, W., Wasserman, W.W.: Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics 19, 202 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  PubMed  Google Scholar 

  24. Park, Y., Kellis, M.: Deep learning for regulatory genomics. Nat. Biotechnol. 33, 825 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Yang, B., et al.: BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics 33(13), 1930–1936 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Liu, F., Li, H., Ren, C., Bo, X.C., Shu, W.: PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersson, R., et al.: An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  PubMed  Google Scholar 

  29. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980). https://doi.org/10.1007/BF00344251

    Article  CAS  PubMed  Google Scholar 

  30. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  31. Hierlemann, A., Schweizer-Berberich, M., Weimar, U., Kraus, G., Pfau, A., Göpel, W.: Pattern recognition and multicomponent analysis. Sens. Update 2, 119–180 (1996)

    Article  CAS  Google Scholar 

  32. Chollet, F., et al.: Keras (2018). https://github.com/fchollet/keras

  33. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  34. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    Google Scholar 

  35. Swersky, K., Snoek, J., Adams, P.: Multi-task Bayesian optimization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 2004–2012. Curran Associates, Inc., Red Hook (2013)

    Google Scholar 

  36. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  37. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  38. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2012, pp. 2951–2959. Curran Associates, Inc., Red Hook (2012)

    Google Scholar 

  39. Dozat, T.: Incorporating Nesterov momentum into Adam. In: International Conference on Learning Representations, Workshop (ICLRW), pp. 1–6 (2016)

    Google Scholar 

  40. Bewick, V., Cheek, L., Ball, J.R.: Statistics review 13: receiver operating characteristic curves. Crit. Care 8, 508–512 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and confidence intervals. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 451–466. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_29

    Chapter  Google Scholar 

  42. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  43. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21, 1263–1284 (2009)

    Article  Google Scholar 

  44. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, 1–21 (2015)

    Google Scholar 

  45. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1, 80–83 (1945)

    Article  Google Scholar 

  46. Pratt, J.W.: Remarks on zeros and ties in the Wilcoxon signed rank procedures. J. Am. Stat. Assoc. 54, 655–667 (1959)

    Article  Google Scholar 

  47. Derrick, B., Paul W.: Comparing two samples from an individual Likert question. Int. J. Math. Stat. 18(3) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Valentini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappelletti, L. et al. (2020). Bayesian Optimization Improves Tissue-Specific Prediction of Active Regulatory Regions with Deep Neural Networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics