Skip to main content

Medical Image Data Upscaling with Generative Adversarial Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

Super-resolution is one of the frequently investigated methods of image processing. The quality of the results is a constant problem in the methods used to obtain high resolution images. Interpolation-based methods have blurry output problems, while non-interpolation methods require a lot of training data and high computing power. In this paper, we present a supervised generative adversarial network system that accurately generates high resolution images from a low resolution input while maintaining pathological invariance. The proposed solution is optimized for small sets of input data. Compared to existing models, our network also provides faster learning. Another advantage of our approach is its versatility for various types of medical imaging methods. We used peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as the output image quality evaluation method. The results of our test show an improvement of 5.76% compared to optimizer Adam used in the original paper [10]. For faster training of the neural network model, calculations on the graphic card with the CUDA architecture were used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 31(7), 2727–2740 (2017). https://doi.org/10.1007/s00521-017-3225-z

    Article  Google Scholar 

  2. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, Honolulu, HI, USA, July 2017. https://doi.org/10.1109/CVPRW.2017.150, http://ieeexplore.ieee.org/document/8014884/

  3. Anuar, S., Sallehuddin, R., Selamat, A.: Implementation of artificial neural network on graphics processing unit for classification problems. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016, Part II. LNCS (LNAI), vol. 9876, pp. 303–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45246-3_29

    Chapter  Google Scholar 

  4. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649. IEEE, New York (2012). wOS:000309166203102

    Google Scholar 

  5. Gruber, M.: Implementation of SRGAN in Keras. Try at: www.fixmyphoto.ai: MathiasGruber/SRGAN-Keras, March 2019. https://github.com/MathiasGruber/SRGAN-Keras, original-date: 2018–04-08T13:19:38Z

  6. Iddan, G., Meron, G., Glukhovsky, A., Swain, P.: Wireless capsule endoscopy. Nature 405(6785), 417–417 (2000). https://doi.org/10.1038/35013140. http://www.nature.com/articles/35013140

    Article  CAS  PubMed  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs], December 2014

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386. wOS:000402555400026

    Article  Google Scholar 

  9. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2599–2613 (2018)

    Article  Google Scholar 

  10. Ledig, C., et al.: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv:1609.04802 [cs, stat], September 2016

  11. Mahapatra, D., Bozorgtabar, B.: Progressive Generative Adversarial Networks for Medical Image Super resolution. arXiv:1902.02144 [cs], February 2019

  12. Mambou, S.J., Maresova, P., Krejcar, O., Selamat, A., Kuca, K.: Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors 18(9), 2799 (2018). https://doi.org/10.3390/s18092799. https://www.mdpi.com/1424-8220/18/9/2799

    Article  CAS  Google Scholar 

  13. Manjón, J.V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., Robles, M.: Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010). https://doi.org/10.1016/j.media.2010.05.010. http://www.sciencedirect.com/science/article/pii/S1361841510000630

    Article  PubMed  Google Scholar 

  14. Mohammed, A., Farup, I., Yildirim, S., Pedersen, M., Hovde, O.: Variational approach for capsule video frame interpolation. EURASIP J. Image Video Process. 2018(1), 30 (2018). https://doi.org/10.1186/s13640-018-0267-9

    Article  Google Scholar 

  15. Mukkamala, M.C., Hein, M.: Variants of RMSProp and Adagrad with Logarithmic Regret Bounds. arXiv:1706.05507 [cs, stat] June 2017

  16. Nemethova, O., Ries, M., Zavodsky, M., Rupp, M.: PSNR-Based Estimation of Subjective Time-Variant Video Quality for Mobiles, p. 5 (2019)

    Google Scholar 

  17. Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E., Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115(6), 1301–1316 (2011). https://doi.org/10.1016/j.rse.2011.01.009

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs] September 2014

  19. Sun, Y., Chen, J., Liu, Q., Liu, G.: Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recognit. 98, 107051 (2020). https://doi.org/10.1016/j.patcog.2019.107051

    Article  Google Scholar 

  20. Wang, X., et al.: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. arXiv:1809.00219 [cs] January 2018

  21. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  22. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987. wOS:000417913600013

    Article  PubMed  Google Scholar 

  23. Wu, K., et al.: Image synthesis in contrast MRI based on super resolution reconstruction with multi-refinement cycle-consistent generative adversarial networks. J. Intell. Manuf. (2019). https://doi.org/10.1007/s10845-019-01507-7

  24. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462. wOS:000434302700006

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, F., et al.: Super resolution reconstruction for medical image based on adaptive multi-dictionary learning and structural self-similarity. Comput. Assist. Surg. 24, 81–88 (2019). https://doi.org/10.1080/24699322.2018.1560092. wOS:000486310400011

    Article  Google Scholar 

  26. Zhao, X., Zhang, Y., Zhang, T., Zou, X.: Channel splitting network for single MR image super-resolution. IEEE Trans. Image Process. 28(11), 5649–5662 (2019). https://doi.org/10.1109/TIP.2019.2921882

    Article  PubMed  Google Scholar 

  27. Zhou, Y., Chang, F.J., Chang, L.C., Kao, I.F., Wang, Y.S.: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 209, 134–145 (2019). https://doi.org/10.1016/j.jclepro.2018.10.243. wOS:000457351900013

    Article  CAS  Google Scholar 

  28. Zhu, Q., Ren, Y., Qiu, Z., Wang, W.: Robust MR image super-resolution reconstruction with cross-modal edge-preserving regularization. Int. J. Imaging Syst. Technol. 29(4), 491–500 (2019). https://doi.org/10.1002/ima.22327. wOS:000495457300009

    Article  Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflicts of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrovolny, M., Mls, K., Krejcar, O., Mambou, S., Selamat, A. (2020). Medical Image Data Upscaling with Generative Adversarial Networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics