Skip to main content

Kernel Based Approaches to Identify Hidden Connections in Gene Networks Using NetAnalyzer

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

The latest advances in biotechnology are increasing the size and number of biological databases, specially those related to “omics” sciences. This data can be used to generate complex interaction networks, which analysis allows to extract biological information. Network analysis comprises a current bioinformatics challenge and the implementation of kernels offers a potential procedure to perform this analysis. Kernel algebraic functions have been used to study interaction networks and they are of major interest in new applications to improve machine learning studies. To manage these interaction networks, the NetAnalyzer tool was developed with the purpose of analysing multi-layer networks, calculating different probabilistic indices to establish the association between pairs of nodes. In this study we implement different kernel operations using several programming languages to inspect their reliability to perform these operations in different scenarios. Best performances have been included as a kernel functional module into NetAnalyzer, and we used them over gene interactions networks and gene-disease knowledge to identify disease causing genes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bates, D., Maechler, M.: Matrix: Sparse and Dense Matrix Classes and Methods (2015). http://cran.r-project.org/package=Matrix

  2. Börnigen, D., et al.: An unbiased evaluation of gene prioritization tools. Bioinformatics 28(23), 3081–3088 (2012). https://doi.org/10.1093/bioinformatics/bts581

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, S., Cai, Z., Li, J., Gao, H.: Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans. Know. Data Eng. 29(4), 813–827 (2017). https://doi.org/10.1109/TKDE.2016.2645212

    Article  Google Scholar 

  4. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. Official J. Int. Neural Netw. Soc. 31, 53–72 (2012). https://doi.org/10.1016/j.neunet.2012.03.001

    Article  Google Scholar 

  5. Gomez-Cabrero, D., et al.: Data integration in the era of omics: current and future challenges. BMCSyst. Biol. 8, 11 (2014). https://doi.org/10.1186/1752-0509-8-S2-I1

    Article  Google Scholar 

  6. Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S.J., Ralser, M.: Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr. Opin Syst. Biol. 6, 37–45 (2017). https://doi.org/10.1016/j.coisb.2017.08.009

    Article  Google Scholar 

  7. Hériché, J.K.: Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation. Mol. Biol. Cell 25, 2522–2536 (2014). https://doi.org/10.1091/mbc.E13-04-0221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, S., Chaudhary, K., Garmire, L.X.: More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017). https://doi.org/10.3389/fgene.2017.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011). https://doi.org/10.1093/bioinformatics/btr500

    Article  CAS  PubMed  Google Scholar 

  10. Meunier, M., Guyard-Nicodème, M., Hirchaud, E., Parra, A., Chemaly, M., Dory, D.: Identification of novel vaccine candidates against campylobacter through reverse vaccinology. J. Immunol. Res 2016, 9 (2016). https://doi.org/10.1155/2016/5715790

    Article  CAS  Google Scholar 

  11. Pinu, F.R., et al.: Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 9(4), E76 (2019). https://doi.org/10.3390/metabo9040076

    Article  CAS  PubMed  Google Scholar 

  12. Rojano, E., Perkins, J.R., Sillitoe, I., Orengo, C., García Ranea, J.A., Seoane, P.: Associating protein domains with biological functions: a tripartite network approach. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019, Part II. LNCS, vol. 11466, pp. 155–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17935-9_15

    Chapter  Google Scholar 

  13. Rojano, E., Seoane, P., Bueno-Amoros, A., Perkins, J.R., Garcia-Ranea, J.A.: Revealing the relationship between human genome regions and pathological phenotypes through network analysis. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017, Part I. LNCS, vol. 10208, pp. 197–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_17

    Chapter  Google Scholar 

  14. Seoane, P., et al.: AutoFlow, a versatile workflow engine illustrated by assembling an optimised de novo transcriptome for a non-model species, such as Faba Bean (Vicia faba). Curr. Bioinform. 11(4), 440–450 (2016). https://doi.org/10.2174/1574893611666160212235117

    Article  CAS  Google Scholar 

  15. Si, S., Hsieh, C.J.: Memory Efficient Kernel Approximation. Technical report (2017). http://jmlr.org/papers/v18/15-025.html

  16. Szklarczyk, D., et al.: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D613 (2019). https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  17. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  18. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002). https://doi.org/10.1007/978-0-387-21706-2. http://www.stats.ox.ac.uk/pub/MASS4

    Book  Google Scholar 

  19. Virtanen, P., et al.: SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python, July 2019. http://arxiv.org/abs/1907.10121

  20. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep Kernel Learning, November 2015. http://arxiv.org/abs/1511.02222

  21. Zampieri, G., et al.: Scuba: Scalable kernel-based gene prioritization. BMC Bioinformatics 19(1), 23 (2018). https://doi.org/10.1186/s12859-018-2025-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [SAF2016-78041-C2-1-R], the Andalusian Government with European Regional Development Fund [CTS-486], the Ramon Areces foundation, which funds project for the investigation of rare disease (National call for research on life and material sciences, XIX edition) and the University of Malaga (Ayudas del I Plan Propio, Ramon y Cajal I3). The European Regional Development Fund (FEDER), Junta Andalucía, I+D+i, 2014–2020 Program (UMA18-FEDERJA-102). The CIBERER is an initiative from the Institute of Health Carlos III and provides the funding with project ACCI2018 (ER192P1AC741). James Richard Perkins holds a research grant from the Andalusian Government (Fundacion Progreso y Salud)[PI-0075-2017]. Elena Rojano is a researcher from the Plan de Formacion de Personal Investigador (FPI) supported by the Andalusian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Seoane-Zonjic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabato, F.M., Rojano, E., Perkins, J.R., Ranea, J.A.G., Seoane-Zonjic, P. (2020). Kernel Based Approaches to Identify Hidden Connections in Gene Networks Using NetAnalyzer. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics