®

Check for
updates

Multi-components System for Automatic
Arabic Diacritization

Hamza Abbad® and Shengwu Xiong®™)

Wuhan University of Technology, Wuhan, Hubei, China
{hamza.abbad,xiongsw}@whut.edu.cn

Abstract. In this paper, we propose an approach to tackle the problem
of the automatic restoration of Arabic diacritics that includes three com-
ponents stacked in a pipeline: a deep learning model which is a multi-layer
recurrent neural network with LSTM and Dense layers, a character-level
rule-based corrector which applies deterministic operations to prevent
some errors, and a word-level statistical corrector which uses the con-
text and the distance information to fix some diacritization issues. This
approach is novel in a way that combines methods of different types and
adds edit distance based corrections.

We used a large public dataset containing raw diacritized Arabic text
(Tashkeela) for training and testing our system after cleaning and nor-
malizing it. On a newly-released benchmark test set, our system outper-
formed all the tested systems by achieving DER of 3.39% and WER of
9.94% when taking all Arabic letters into account, DER of 2.61% and
WER of 5.83% when ignoring the diacritization of the last letter of every
word.

Keywords: Arabic - Diacritization - Diacritics restoration - Deep
learning - Rule-based - Statistical methods + Natural Language
Processing

1 Introduction

Arabic is the largest Semitic language today, used by more than 422 millions
persons around the world, as a first or second language, making it the fifth most
spoken language in the world.

The Arabic language uses a writing system consisted of 28 letters but repre-
sented by 36 characters due to 2 letters which have more than one form'. Unlike
Latin, Arabic is always written in a cursive style where most of the letters are
joined together with no upper case letters, from right to left (RTL).

The writing system is composed of letters and other marks representing pho-
netic information, known as diacritics, which are small marks that should be
placed above or below most of the letters. They are represented as additional

! The letter & has another form represented as 3, and the letter | has the following
forms: b b b s 5 & S, depending on its pronunciation and position in the word.

© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12035, pp. 341-355, 2020.
https://doi.org/10.1007/978-3-030-45439-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45439-5_23&domain=pdf
http://orcid.org/0000-0003-0547-8006
https://doi.org/10.1007/978-3-030-45439-5_23

342 H. Abbad and S. Xiong

Arabic characters in UTF-8 encoding. There are eight diacritics in the Modern
Standard Arabic (MSA), arranged into three main groups:

Short vowels. Three marks: Fatha, Damma, Kasra.

Doubled case endings (Tanween). Three marks: Tanween Fath (Fathatan),
Tanween Damm (Dammatan), Tanween Kasr (Kasratan).

Syllabification marks. Two marks: Sukoon and Shadda [46].

Shadda is a secondary diacritic indicating that the specified consonant is
doubled, rather than making a primitive sound. The Tanween diacritics can
appear only at the end of the word, and Sukoon cannot appear in the first
letter. Besides, short vowels can be placed in any position. Furthermore, some
characters cannot accept any diacritics at all (ex: &), and some others cannot
do that in specified grammatical contexts (ex: the definitive J" at the beginning
of the word). The diacritics are essential to indicate the correct pronunciation
and the meaning of the word. They are all presented on the letter > in Table 1.

Table 1. The diacritics of the Modern Standard Arabic

Diacritic|Arabic name|Transliteration||Diacritic|Arabic name| Transliteration
3 FIEH Fatha 3 e Damma
> Xy Kasra 3 :)y’(..: Sukoon
3 25 Ls% | Tanween Fath 3 e & 45 |Tanween Damm
> A5 065 | Tanween Kasr 3 55 Shadda

These marks are dropped from almost all the written text today, except
the documents intolerant to pronunciation errors, such as religious texts and
Arabic teaching materials. The native speakers can generally infer the correct
diacritization from their knowledge and the context of every word. However, this
is still not a trivial task for a beginner learner or NLP applications [12].

The automatic diacritization problem is an essential topic due to the high
ambiguity of the undiacritized text and the free word order nature of the gram-
mar. Table 2 illustrates the differences made by the possible diacritizations of the

Table 2. The diacritizations of (& and their meanings

Diacritized form of (Lr- Meaning ||Diacritized form of (L; Meaning
E He knew A flag (nominative)
He taught A flag (genitive)

It was known A science (nominative)

Ratoacey

\ \ \ \
A T
~ ~ \

It was taught A science (genitive)

Multi-components System for Automatic Arabic Diacritization 343

word ?l; . As one might see, the diacritization defines many linguistic features,
such as the part-of-speech (POS), the active/passive voice, and the grammatical
case.

The full diacritization problem includes two sub-problems: morphological dia-
critization and syntactic diacritization. The first indicates the meaning of the
word, and the second shows the grammatical case.

Two metrics are defined to calculate the quantitative performance of an auto-
mated diacritics restoration system: Diacritization Error Rate (DER) and
Word Error Rate (WER). The first one measures the ratio of the number of
incorrectly diacritized characters to the number of all characters. The second
metric applies the same principle considering the whole word as a unit, where a
word is considered incorrect if any of its characters has a wrong diacritic. Both
metrics have two variants: One includes the diacritics of all characters (DER1
and WERI), and another excludes the diacritics of the last character of every
word (DER2 and WER2).

We propose a new approach to restore the diacritics of a raw Arabic text
using a combination of deep learning, rule-based, and statistical methods.

2 Related Works

Many works were done in the automatic restoration of the Arabic diacritics using
different techniques. They can be classified into three groups.

Rule-based approaches. The used methods include cascading Weighted
Finite-State Transducers[33], lexicon retrieval and rule-based morphological
analysis [7]. One other particular work [9] used diacritized text borrowing
from other sources to diacritize a highly cited text.

Statistical approaches. This type of approaches includes using Hidden Markov
Models both on word level and on character level [8,18,21], N-grams models
on word level and on character level as well [10], Dynamic Programming
methods [24-26], classical Machine learning models such as Mazimum-entropy
classifier [46], and Deep Learning methods like the Deep Neural Networks,
both the classical Multi-Layer Perceptron and the advanced Recurrent Neural
Networks|[6,14,32,36].

Hybrid approaches. They are a combination of rule-based methods and sta-
tistical methods in the same system. They include hybridization of rules
and dictionary retrievals with morphological analysis, N-grams, Hidden
Markov Models, Dynamic Programming and Machine Learning methods
[5,15,17,20,23,31,35,37-39,42]. Some Deep Learning models improved by
rules [2,3] have been developed as well.

Despite a large number of works done on this topic, the number of available
tools for Arabic diacritization is still limited because most researchers do not
release their source code or provide any practical application. Therefore, we will
compare the performance of our system to these available ones:

344 H. Abbad and S. Xiong

Farasa [4] is a text processing toolkit which includes an automatic diacritics
restoration module, in addition to other tools. It is based on the segmentation
of the words based on separating the prefixes and suffixes using SVM-ranking
and performing dictionary lookups.

MADAMIRA [34] is a complete morphological analyser that generates possible
analyses for every word with their diacritization and uses an SVM and n-gram
language models to select the most probable one.

Mishkal [44] is an application which diacritize a text by generating the possi-
ble diacritized word forms through the detection of affixes and the use of a
dictionary, then limiting them using semantic relations, and finally choosing
the most likely diacritization.

Tashkeela-Model [11] uses a basic N-gram language model on character level
trained on the Tashkeela corpus [45].

Shakkala [13] is a character-level deep learning system made of an embedding,
three bidirectional LSTM, and dense layers. It was trained on Tashkeela cor-
pus as well. To the best of our knowledge, this is the system that achieves
state-of-the-art results.

3 Dataset

In this work, the Tashkeela corpus [45] was mainly used for training and testing
our model. This dataset is made of 97 religious books written in the Classical
Arabic style, with a small part of web crawled text written in the Modern Stan-
dard Arabic style. The original dataset has over 75.6 million words, where over
67.2 million are diacritized Arabic words.

The structure of the data in this dataset is not consistent since its sources
are heterogeneous. Furthermore, it contains some diacritization errors and some
useless entities. Therefore, we applied some operations to normalize this dataset
and keep the necessary text:

1. Remove the lines which do not contain any useful data (empty lines or lines
without diacritized Arabic text).

2. Split the sentences at XML tags and end of lines, then discard these symbols.
After that, split the new sentences at some punctuation symbols: dots, com-
mas, semicolons, double dots, interrogation, and exclamation marks without
removing them.

3. Fix some diacritization errors, such as removing the extra Sukoon on the
declarative J | reversing the | + Tanween Fath and diacritic + Shadda com-
binations, removing any diacritic preceded by anything other than Arabic
letter or Shadda, and keeping the latest diacritic when having more than one
(excluding Shadda + diacritic combinations).

4. Any sentence containing undiacritized words or having less than 2 Arabic
words is discarded.

After this process, the resulted dataset will be a raw text file with one sen-
tence per line and a single space between every two tokens. This file is further

Multi-components System for Automatic Arabic Diacritization 345

shuffled then divided into a training set containing 90% of the sentences, and
the rest is distributed equally between the validation and the test sets?. After
the division, we calculated some statistics and presented them in Table 3.

Table 3. Statistics about the processed Tashkeela dataset

Train Val Test
All tokens 31774001 | 1760397 | 1766844
Numbers only 80417 4462 4396
Arabic words only 27657285 | 1532625 | 1537878
Unique undiacritized Arabic words | 351816 | 100799 | 101263
Unique diacritized Arabic words 626693 | 152752 | 153311

We note that the train-test Out-of-Vocabulary ratio for the unique Arabic
words is 9.53% when considering the diacritics and 6.83% when ignoring them.

4 Proposed Method

Our approach is a pipeline of different components, where each one does a part
of the process of the diacritization of the undiacritized Arabic text of the input
sentence. Only a human-readable, fully diacritized Arabic text is needed to train
this architecture, without any additional morphological or syntactic information.

4.1 Preprocessing

At first, only the necessary characters of the sentence which affect the diacritiza-
tion are kept. These are Arabic characters, numbers, and spaces. The numbers
are replaced by 0 since their values will most likely not affect the diacritization
of the surrounding words. The other characters are removed before the diacriti-
zation process and restored at the end.

Every filtered sentence is then separated into an input and an output. The
input is the bare characters of the text, and the output is the corresponding
diacritics for every character. Considering that an Arabic letter can have up to
two diacritics where one of them is Shadda, the output is represented by two
vectors; one indicates the primary diacritic corresponding to every letter, and
the other indicates the presence or the absence of the Shadda. Figure 1 illustrates
this process.

The input is mapped to a set of 38 numeric labels representing all the Arabic
characters in addition to 0 and the white space. It is transformed into a 2D
one-hot encoded array, where the size of the first dimension equals the length
of the sentence, and the size of the second equals the number of the labels.

2 Dataset available at https://sourceforge.net/projects,/tashkeela-processed, .

https://sourceforge.net/projects/tashkeela-processed/

346 H. Abbad and S. Xiong

\J:\AA uls O;‘j-33431362863136303035 176

\ w4 - ls ° ‘ Undiacritized sentence Input indexes

e U=)

Diacritized sentence 0000000000100
zw-s - - o - l First output indexes

Diacritics \1340101021350

Second output indexes

Fig. 1. Transformation of the diacritized text to the input and output labels

After that, this array is extended to 3 dimensions by inserting the time steps
dimension as the second dimension and moving the dimension of the label into
the third position. The time steps are generated by a sliding window of size 1 on
the first dimension. The number of time steps is fixed to 10 because this number
is large enough to cover most of the Arabic words, along with a part of their
previous words. The output of the primary diacritics is also transformed from
a vector of labels to a 2D one-hot array. The output of Shadda marks is left as
a binary vector. Figure 2 shows a representation of the input array and the two
output arrays after the preprocessing of the previous example. The & represents
a padding vector (all zeros), and the numbers in the input and the second output
indicate the indexes of the cells of the one-hot vectors set to 1.

sy
&

ISERSERSERSERSERSEES]

[SERSERSERSERSEESERSERS]

7%}
@
IS
[
s
@
>
N
©
o
[
s
@
>

Sentence dimension

4
31
36
28

w
=
w
[o2]
N
©
[<2]
w
=
W
2}
W
=]
W
=]

w
[e2]
N
©
[<2]
w
=

36/30[3035
36/30[30[35[17
30/3035[17| 6

N
©
[<2]
w
=

[o[o]r[o]o]o]o]o]o]o]o]o]o])

Q
OImlwI'*INIOIPIOIPIOI#IMP\

INIINE
HENARREEREREREE

[

w

o

@

=

w

[o2]

N

®

[<2]

w

=

w

[o2]

w

)

[<2]
W
=
W
2}

Fig. 2. Input and output arrays after the transformations

4.2 Deep Learning Model

The following component in this system is an RNN model, composed from a
stack of two bidirectional LSTM [22,28] layers of 64 cells in each direction, and
parallel dense layers of sizes 8 and 64. All of the previous layers use hyperbolic
tangent (Tanh) as an activation function. The first parallel layer is connected
to a single perceptron having the sigmoid activation function, while the second

Multi-components System for Automatic Arabic Diacritization 347

is connected to 7 perceptrons having softmax as an activation function. The
first estimates the probability that the current character has a Shadda, and the
second generates the probabilities of the primary diacritics for that character.
A schema of this network is displayed in Fig. 3. The size, type, and number of
layers were determined empirically and according to the previous researches that
used deep learning approaches [2,13,14,27,32].

LSTM (64) LSTM (64)

LSTM (64) LSTM (64)

Dense (64)

Output 1 Output 2

Fig. 3. Architecture of the Deep Learning model

4.3 Rule-Based Corrections

Rule-based corrections are linked to the input and output of the RNN to apply
some changes to the output. These rules can select the appropriate diacritic for
some characters in some contexts, or exclude the wrong choices in other contexts
by nullifying their probabilities. Different sets of rules are applied to the outputs
to eliminate some impossible diacritizations according to Arabic rules.

Shadda Corrections. The first output of the DL model representing the prob-
ability of the Shadda diacritic is ignored by nullifying its value if any of these
conditions are met for the current character:

— It is a space, 0 or one of the following: % Ll bhe & s

— It is the first letter of the Arabic word.

— It has Sukoon as a predicted primary diacritic.

Primary Diacritics Corrections. The probabilities of the second output of
the DL model are also altered by these rules when their respective conditions
are met for the current character:

— If it is 5, set the current diacritic to Kasra, by setting the probability of its
class to 1 and the others to 0.

348 H. Abbad and S. Xiong

— If it is & or 3, set the diacritic of the previous character to Fatha.

— If it is | and the last letter of the word, allow only Fatha, Fathatan, or no-
diacritic choices by zeroing the probabilities of the other classes.

— Ifit is'and not the last letter of the word, set Fatha on the previous character.

— If it is the first letter in the word, forbid Sukoon.

— If it is not the last character of the word, prohibit any Tanween diacritic from
appearing on it.

— If it is the last letter, prohibit Fathatan unless this character is ¢ or 3.

— If it is a space, 0 or any of the following characters: L s 1 set the choice to
no-diacritic.

4.4 Statistical Corrections

The output and the input of the previous phase are transformed and merged to
generate a standard diacritized sentence. The sentence is segmented into space-
delimited words and augmented by unique starting and ending entities. Every
word in the sentence is checked up to 4 times in the levels of correction using the
saved training data. If any acceptable correction is found at any level, the word
will be corrected. Otherwise, it will be forwarded to the next level. In the case
where many corrections get the same score in a single level, the first correction
is chosen. If no correction is found, the predicted diacritization of the previous
component is not changed.

Word Trigram Correction. In the first stage, trigrams are extracted from
the undiacritized sentence and checked whether a known diacritization for its
core word is available. The core word is the second one in the trigram, while the
first and the third are considered previous and following contexts, respectively. If
such a trigram is found, the most frequent diacritization for the core word in that
context is selected. Despite its high accuracy, especially for the syntactic part,
this correction rarely works since having the exact surrounding words in the test
data is not common. This correction is entirely independent of the output of the
DL model and the rule-based corrections. An example is shown in Fig. 4.

2 %

S [2 22
29 %

,“Lt.us..j > 5 - s) A.t.us...\
2:~J°.,

Fig. 4. Selecting the diacritization using the trigrams

Multi-components System for Automatic Arabic Diacritization 349

Word Bigram Correction. In the second stage, the same processing as the
previous one is applied for the remaining words but considering bigrams where
the core word is the second one, and the first one represents the previous context.
This correction works more often than the trigram-based one since it depends
only on the previous word. Similarly, it does not depend on the output of the
previous components.

Word Minimum Edit Distance Correction. In the third stage, when the
undiacritized word has known compatible diacritizations, the Levenshtein dis-
tance [29] is calculated between the predicted diacritization and every saved
diacritization for that word. The saved diacritization corresponding to the min-
imal edit distance is chosen, as shown in Fig. 5. Most predictions are corrected
at this stage when the vocabulary of the test set is relatively similar to the
training set.

Fig. 5. Selecting the diacritization according to the minimal edit distance

Pattern Minimum Edit Distance Correction. Finally, if the word was
never seen, the pattern of the predicted word is extracted and compared against
the saved diacritized forms of that pattern. To generate the word pattern, the

following substitutions are applied: L) & Tareall replaced by :. S is replaced

by I. The rest of the Arabic characters except 5 and the long vowels (" > &) are
substituted by the character C. The diacritics and the other characters are not
affected. The predicted diacritized pattern is compared to the saved diacritiza-
tion forms of this pattern when available, and the closest one, according to the
Levenshtein distance, is used as a correction, following the same idea of the pre-
vious stage. This correction is effective when the test data contains many words
not seen in the training data.

350 H. Abbad and S. Xiong

5 Experiments

5.1 Implementation Details

The described architecture was developed using Python [41] 3.6 with NumPy
[40] 1.16.5 and TensorFlow [1] 1.14.

The training data was transformed into NumPy arrays of input and output.
The DL model was implemented using Keras, and each processed sentence of text
is considered a single batch of data when fed into the DL model. The optimizer
used for adjusting the model weights is ADADELTA [43] with an initial learning
rate of 0.001 and p of 0.95.

The rule-based corrections are implemented as algebraic operations working
on the arrays of the input and the output.

The statistical corrections use dictionaries as data structures, where the keys
are the undiacritized n-grams/patterns, and the values are lists of the possible
tuples of the diacritized form along with their frequencies in the training set.

5.2 System Evaluation

The DL model is trained for a few iterations to adjust its weights, while the
dictionaries of the statistical corrections are populated while reading the training
data in the first pass.

We report the accuracy of our system using the variants of the metrics DER
and WER as explained in the introduction. These metrics do not have an agreed
exact definition, but most of the previous works followed the definition of Zitouni
et al. [46] which takes non-Arabic characters into account, while some of the
new ones tend to follow the definition of Alansary et al. [7] and Fadel et al. [19]
which excludes these characters. In our work, we chose the latter definition since
the former can be significantly biased, as demonstrated in [19]. The calculation
of these metrics should include the letters without diacritics, but they can be
excluded as well, especially when the text is partially diacritized.

First, we used our testing set to measure the performances of our system.
We got DER1=4.00%, WER1 =12.08%, DER2 = 2.80%, and WER2 =6.22%.

Table 4. Comparison of the performances of our system to the available baselines

System Include no-diacritic letters Exclude no-diacritic letters
DER1 | WER1 | DER2 | WER2 | DER1 | WER1 | DER2 | WER2
Farasa 21.43% | 58.88% | 23.93% | 53.13% | 24.90% | 57.28% | 27.55% | 51.84%
MADAMIRA 34.38% | 76.58% | 29.94% | 59.07% | 40.03% | 75.39% | 33.87% | 57.22%
Mishkal 16.09% | 39.78% | 13.78% | 26.42% | 17.59% | 35.63% | 14.22% | 21.92%
Tashkeela-Mode | 49.96% | 96.80% | 52.96% | 94.16% | 58.50% | 96.03% | 60.92% | 92.45%
Shakkala 3.73% |11.19% | 2.88% | 6.53% |4.36% |10.89% |3.33% |6.37%
Ours 3.39% | 9.94% | 2.61% | 5.83% | 3.34% | 7.98% | 2.43% | 3.98%

Multi-components System for Automatic Arabic Diacritization 351

The same testing data and testing method of Fadel et al. [19] were used as
well in order to compare our system to the others evaluated in that work. The
results are summarized in Table 4.

Results show that our system outperforms the best-reported system
(Shakkala). These results can be justified as Shakkala does not perform any
corrections on the output of the deep learning model, while ours includes a cas-
cade of corrections that fix many of its errors.

When training and testing our system on the text extracted from the LDC’s
ATB part 3 [30], it archives DER1 = 9.32%, WER1 = 28.51%, DER2 = 6.37%
and WER2 = 12.85%. Its incomplete diacritization mainly causes the higher
error rates for this dataset in a lot of words, in addition to its comparatively
small size, which prevents our system from generalizing well.

5.3 Error Analysis

To get a deeper understanding of the system performances, we study the effect
of its different components and record the errors committed at each level. We
performed the tests taking all and only Arabic characters into account on our
test part of the Tashkeela dataset.

Contribution of the Components. In order to show the contribution in error
reduction of every component, two evaluation setups were used.

Firstly, only the DL model and the static rules are enabled at first, then the
following component is enabled at every step, and the values of the metrics are
recalculated. Table 5a shows the obtained results.

Secondly, all the components are enabled except one at a time. The same
calculations are done and displayed in Table 5b.

Table 5. Reduction of the error rates according to the enabled components

(a) Incremental enabling (b) One disabled at a time
Ie ts Metrics Components Metrics
OHPONCIS 'SERT [WER1| DER2 [WER2 P DERI[WERI [DER2[WER2

DL + rules [23.20%|59.32%(23.75%(51.52%| |No trigrams [4.38%13.39%2.97%| 6.65%
+Trigrams [12.99%|32.25%|13.19%|27.46%| | No bigrams [6.44%(19.53%|4.88%]11.46%
+Bigrams | 7.09% [17.54%| 6.69% [13.20%| [No unigrams|6.51%[16.57%5.88% |11.87%
+Unigrams | 4.06% |12.18%| 2.87% | 6.35% No patterns [4.06%(12.18%2.87%| 6.35%
All enabled | 4.00% [12.08%| 2.80% | 6.22% All enabled [4.00%|12.08%2.80%| 6.22%

The contributions of the unigram and bigram corrections are the most impor-
tant considering their effect on the error rates in both setups. The effect of the
trigram correction is more visible on the syntactic diacritization rather than the
morphological diacritization since the former is more dependant on the context.

352 H. Abbad and S. Xiong

The contribution of the pattern corrections is not very noticeable due to the
position of this component in the pipeline, limiting its effect only to the OoV
words.

Error Types. We use our system to generate diacritization for a subset of the
sentences of our testing set. We limit our selection to 200 sentences where there
is at least one word wrongly diacritized. We counted and classified a total of 426
errors manually. We present the results in Table 6.

Table 6. Diacritization errors count from 200 wrong test sentences

Error | Syntactic | Replacement | Non-existence | Prediction missing | Label missing | Total

Count | 224 103 48 26 25 426

We found that 52.58% of the mistakes committed by our diacritization system
are caused by the syntactic diacritization, which specify the role of the word in
the sentence. The syntactic diacritization is so hard that even the Arabic native
speakers often commit mistakes of this type when speaking. Since this is manual
verification, we do not just suppose that the diacritic of the last character of the
Arabic word is the syntactic one as what is done in the calculations of DER2
and WER2, but we select the diacritics which have a syntactic role according to
Arabic rules, no matter where they appear.

A replacement error is when the system generates a diacritization that makes
a valid Arabic word, but it is wrong according to the test data. 24.18% of the
errors of our system are considered in this type.

Non-existence error happens when the diacritization system generates a dia-
critization making a word that does not exist in the standard Arabic. 11.27% of
our system’s errors are in this type.

The remaining error types are prediction missing and label missing, which
indicate that the system has not predicted any diacritic where it should do,
and the testing set has missing/wrong diacritics, respectively. These types are
generally caused by the mistakes of diacritization in training and testing sets.

6 Conclusion

In this work, we developed and presented our automatic Arabic diacritization
system, which follows a hybrid approach combining a deep learning model,
rule-based corrections, and two types of statistical corrections. The system was
trained and tested on a large part of the Tashkeela corpus after being cleaned and
normalized. On our test set, the system scored DER1 = 4.00%, WER1 = 12.08%,
DER2=2.80% and WER2 =6.22%. These values were calculated when taking
all and only Arabic words into account.

Multi-components System for Automatic Arabic Diacritization 353

Our method establishes new state-of-the-art results in the diacritization of

raw Arabic texts, mainly when the classical style is used. It performs well even
on the documents that contain unseen words or non-Arabic words and symbols.
We made our code publicly available as well?.

In the next work, we will focus on improving the generalization of the sys-

tem to better handle the out-of-vocabulary words, while reducing the time and
memory requirements.

Acknowledgments. To Dr. Yasser Hifny for his help concerning the train and the
test of our system on the diacritized text of the ATB part 3 dataset.

References

10.

11.

Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 265283 (2016)

Abandah, G., Arabiyat, A., et al.: Investigating hybrid approaches for Arabic text
diacritization with recurrent neural networks. In: 2017 IEEE Jordan Conference on
Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1-6.
IEEE (2017)

Abandah, G.A., Graves, A., Al-Shagoor, B., Arabiyat, A., Jamour, F., Al-Taee,
M.: Automatic diacritization of Arabic text using recurrent neural networks. Int.
J. Doc. Anal. Recogn. (IJDAR) 18(2), 183-197 (2015)

Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: a fast and furi-
ous segmenter for Arabic. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstra-
tions, pp. 11-16 (2016)

Al-Badrashiny, M., Hawwari, A., Diab, M.: A layered language model based hybrid
approach to automatic full diacritization of Arabic. In: Proceedings of the Third
Arabic Natural Language Processing Workshop, pp. 177-184 (2017)

Al Sallab, A., Rashwan, M., Raafat, H.M., Rafea, A.: Automatic Arabic diacritics
restoration based on deep nets. In: Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing (ANLP), pp. 65-72 (2014)

Alansary, S.: Alserag: an automatic diacritization system for Arabic. In: Hassanien,
A.E., Shaalan, K., Gaber, T., Azar, A.T., Tolba, M.F. (eds.) AISI 2016. AISC,
vol. 533, pp. 182-192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
48308-5_18

Alghamdi, M., Muzaffar, Z., Alhakami, H.: Automatic restoration of Arabic dia-
critics: a simple, purely statistical approach. Arab. J. Sci. Eng. 35(2), 125 (2010)
Alosaimy, A., Atwell, E.: Diacritization of a highly cited text: a classical Arabic
book as a case. In: 2018 IEEE 2nd International Workshop on Arabic and Derived
Script Analysis and Recognition (ASAR), pp. 72-77. IEEE (2018)
Ananthakrishnan, S., Narayanan, S., Bangalore, S.: Automatic diacritization of
Arabic transcripts for automatic speech recognition. In: Proceedings of the 4th
International Conference on Natural Language Processing, pp. 47-54 (2005)
Anwar, M.: Tashkeela-model (2018). https://github.com/Anwarvic/Tashkeela-
Model

3 Available at https://github.com/Hamza5/Pipeline-diacritizer.

https://doi.org/10.1007/978-3-319-48308-5_18
https://doi.org/10.1007/978-3-319-48308-5_18
https://github.com/Anwarvic/Tashkeela-Model
https://github.com/Anwarvic/Tashkeela-Model
https://github.com/Hamza5/Pipeline-diacritizer

354

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

H. Abbad and S. Xiong

Azmi, A M., Almajed, R.S.: A survey of automatic Arabic diacritization tech-
niques. Nat. Lang. Eng. 21(3), 477-495 (2015)

Barqawi, A., Zerrouki, T.: Shakkala, Arabic text vocalization (2017). https://
github.com/Barqawiz/Shakkala

Belinkov, Y., Glass, J.: Arabic diacritization with recurrent neural networks. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 2281-2285 (2015)

Chennoufi, A., Mazroui, A.: Morphological, syntactic and diacritics rules for auto-
matic diacritization of Arabic sentences. J. King Saud Univ. Comput. Inf. Sci.
29(2), 156-163 (2017)

Darwish, K., Magdy, W., et al.: Arabic information retrieval. Found. Trends®) Inf.
Retrieval 7(4), 239-342 (2014)

Darwish, K., Mubarak, H., Abdelali, A.: Arabic diacritization: stats, rules, and
hacks. In: Proceedings of the Third Arabic Natural Language Processing Work-
shop, pp. 9-17 (2017)

Elshafei, M., Al-Muhtaseb, H., Alghamdi, M.: Statistical methods for automatic
diacritization of Arabic text. In: The Saudi 18th National Computer Conference.
Riyadh, vol. 18, pp. 301-306 (2006)

Fadel, A., Tuffaha, I., Al-Jawarneh, B., Al-Ayyoub, M.: Arabic text diacritization
using deep neural networks. arXiv preprint arXiv:1905.01965 (2019)

Fashwan, A., Alansary, S.: Shakkil: an automatic diacritization system for modern
standard Arabic texts. In: Proceedings of the Third Arabic Natural Language
Processing Workshop, pp. 84-93 (2017)

Gal, Y.: An hmm approach to vowel restoration in Arabic and Hebrew. In: Proceed-
ings of the ACL-02 Workshop on Computational Approaches to Semitic Languages,
pp. 1-7. Association for Computational Linguistics (2002)

Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks 18(5-6), 602-610
(2005)

Habash, N., Rambow, O.: Arabic diacritization through full morphological tagging.
In: Human Language Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics; Companion Volume,
Short Papers, pp. 53-56 (2007)

Hadj Ameur, M.S., Moulahoum, Y., Guessoum, A.: Restoration of Arabic diacritics
using a multilevel statistical model. In: Amine, A., Bellatreche, L., Elberrichi, Z.,
Neuhold, E.J., Wrembel, R. (eds.) Computer Science and Its Applications, pp.
181-192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19578-0_15
Hifny, Y.: Open vocabulary arabic diacritics restoration. IEEE Signal Process. Lett.
26(10), 1421-1425 (2019). https://doi.org/10.1109/LSP.2019.2933721

Hifny, Y.: Higher order n-gram language models for Arabic diacritics restoration.
In: The Twelfth Conference on Language Engineering (2012)

Hifny, Y.: Hybrid LSTM/MaxEnt networks for Arabic syntactic diacritics restora-
tion. IEEE Signal Process. Lett. 25(10), 1515-1519 (2018)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10, 707 (1966)

Maamouri, M., Bies, A., Buckwalter, T., Jin, H., Mekki, W.: Arabic treebank:
Part 3 (full corpus) v 2.0 (mpg+ syntactic analysis). Linguistic Data Consortium,
Philadelphia (2005)

https://github.com/Barqawiz/Shakkala
https://github.com/Barqawiz/Shakkala
http://arxiv.org/abs/1905.01965
https://doi.org/10.1007/978-3-319-19578-0_15
https://doi.org/10.1109/LSP.2019.2933721

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Multi-components System for Automatic Arabic Diacritization 355

Metwally, A.S., Rashwan, M.A., Atiya, A.F.: A multi-layered approach for Arabic
text diacritization. In: 2016 IEEE International Conference on Cloud Computing
and Big Data Analysis (ICCCBDA), pp. 389-393. IEEE (2016)

Moumen, R., Chiheb, R., Faizi, R., El Afia, A.: Arabic diacritization with gated
recurrent unit. In: Proceedings of the International Conference on Learning and
Optimization Algorithms: Theory and Applications, p. 37. ACM (2018)

Nelken, R., Shieber, S.M.: Arabic diacritization using weighted finite-state trans-
ducers. In: Proceedings of the ACL Workshop on Computational Approaches to
Semitic Languages, pp. 79-86. Association for Computational Linguistics (2005)
Pasha, A., et al.: MADAMIRA: a fast, comprehensive tool for morphological anal-
ysis and disambiguation of Arabic. LREC 14, 1094-1101 (2014)

Rashwan, M.A., Al-Badrashiny, M.A., Attia, M., Abdou, S.M., Rafea, A.: A
stochastic Arabic diacritizer based on a hybrid of factorized and unfactorized tex-
tual features. IEEE Trans. Audio Speech Lang. Process. 19(1), 166-175 (2011)
Rashwan, M.A., Al Sallab, A.A., Raafat, H.M., Rafea, A.: Deep learning framework
with confused sub-set resolution architecture for automatic Arabic diacritization.
IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 23(3), 505-516 (2015)
Said, A., El-Sharqwi, M., Chalabi, A., Kamal, E.: A hybrid approach for Arabic
diacritization. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera,
S. (eds.) NLDB 2013. LNCS, vol. 7934, pp. 53-64. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38824-8_5

Shaalan, K., Abo Bakr, H.M., Ziedan, I.. A hybrid approach for building
Arabic diacritizer. In: Proceedings of the EACL 2009 Workshop on Computational
Approaches to Semitic Languages, pp. 27-35. Association for Computational Lin-
guistics (2009)

Shahrour, A., Khalifa, S., Habash, N.: Improving Arabic diacritization through
syntactic analysis. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 1309-1315 (2015)

Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13(2), 22 (2011)

Van Rossum, G., Drake, F.L.: The Python Language Reference Manual. Network
Theory Ltd., Network (2011)

Zayyan, A.A., Elmahdy, M., binti Husni, H., Al Ja’am, J.M.: Automatic diacritics
restoration for modern standard Arabic text. In: 2016 IEEE Symposium on Com-
puter Applications & Industrial Electronics (ISCAIE), pp. 221-225. IEEE (2016)
Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

Zerrouki, T.: Mishkal, Arabic text vocalization software (2014). https://github.
com/linuxscout/mishkal

Zerrouki, T., Balla, A.: Tashkeela: novel corpus of Arabic vocalized texts, data for
auto-diacritization systems. Data Brief 11, 147 (2017)

Zitouni, I., Sorensen, J.S., Sarikaya, R.: Maximum entropy based restoration of
Arabic diacritics. In: Proceedings of the 21st International Conference on Compu-
tational Linguistics and the 44th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 577-584. Association for Computational Linguistics (2006)

https://doi.org/10.1007/978-3-642-38824-8_5
http://arxiv.org/abs/1212.5701
https://github.com/linuxscout/mishkal
https://github.com/linuxscout/mishkal

	Multi-components System for Automatic Arabic Diacritization
	1 Introduction
	2 Related Works
	3 Dataset
	4 Proposed Method
	4.1 Preprocessing
	4.2 Deep Learning Model
	4.3 Rule-Based Corrections
	4.4 Statistical Corrections

	5 Experiments
	5.1 Implementation Details
	5.2 System Evaluation
	5.3 Error Analysis

	6 Conclusion
	References

