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Abstract. Exploiting users’ implicit feedback, such as clicks, to learn
rankers is attractive as it does not require editorial labelling effort, and
adapts to users’ changing preferences, among other benefits. However,
directly learning a ranker from implicit data is challenging, as users’
implicit feedback usually contains bias (e.g., position bias, selection bias)
and noise (e.g., clicking on irrelevant but attractive snippets, adversarial
clicks). Two main methods have arisen for optimizing rankers based on
implicit feedback: counterfactual learning to rank (CLTR), which learns
a ranker from the historical click-through data collected from a deployed,
logging ranker; and online learning to rank (OLTR), where a ranker is
updated by recording user interaction with a result list produced by mul-
tiple rankers (usually via interleaving).

In this paper, we propose a counterfactual online learning to rank
algorithm (COLTR) that combines the key components of both CLTR
and OLTR. It does so by replacing the online evaluation required by tra-
ditional OLTR methods with the counterfactual evaluation common in
CLTR. Compared to traditional OLTR approaches based on interleav-
ing, COLTR can evaluate a large number of candidate rankers in a more
efficient manner. Our empirical results show that COLTR significantly
outperforms traditional OLTR methods. Furthermore, COLTR can reach
the same effectiveness of the current state-of-the-art, under noisy click
settings, and has room for future extensions.

1 Introduction

Traditional learning to rank (LTR) requires labelled data to permit the learning
of a ranker: that is, a training dataset with relevance assessments for every query-
document pair is required. The acquisition of such labelled datasets presents a
number of drawbacks: they are expensive to construct [5,25], there may be ethical
issues in privacy-sensitive tasks like email search [37], and they cannot capture
changes in user’s preferences [19].

The reliance on users implicit feedbacks such as clicks is an attractive alter-
native to the construction of editorially labelled datasets, as this data does not
present the aforementioned limitations [15]. However, this does not come with-
out its own drawbacks and challenges. User implicit feedback cannot be directly
treated as (pure) relevance labels because it presents a number of biases, and
part of this implicit user signal may actually be noise. For example, in web
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search, users often examine the search engine result page (SERP) from top to
bottom. Thus, higher ranked documents have a higher probability to be exam-
ined, attracting more clicks (position bias), which in turn may infer these results
as relevant even when they are not [7,18,24]. Other types of biases may affect this
implicit feedback including selection and presentation bias [2,16,40]. In addition,
clicks on SERP items may be due to noise, e.g., sometimes users may click for
unexpected reasons (e.g., clickbaits and serendipity), and these noisy clicks may
hurt the learnt ranker. Hence, in order to leverage the benefits of implicit feed-
back, LTR algorithms have to be robust to these biases and noises. There are two
main categories of approaches to learning a ranker from implicit feedback [14]:

(1) Offline LTR: Methods in this category learn a ranker using historical click-
through log data collected from a production system (logging ranker). A
representative method in this category is Counterfactual Learning to Rank
(CLTR) [18], where a user’s observation probability (known as propensity)
is adopted to construct an unbiased estimator which is used as the objective
function to train the ranker.

(2) Online LTR (OLTR): Methods in this category interactively optimize a
ranker given the current user’s interactions. A representative method in this
category is Dueling Bandit Gradient Descent (DBGD) [39], where multiple
rankers are used to produce an interleaved1 results list to display to the user
and collect clicks. This signal is used to unbiasedly indicate which rankers
that participated in the interleaving process are better (Online Evaluation)
and to trigger an update of the ranker in production.

The aim of the counterfactual and the online evaluations is similar: they both
attempt to unbiasedly evaluate the effectiveness of a ranker and thus can provide
LTR algorithms with reliable updating information.

In this paper, we introduce Counterfactual Online Learning to Rank
(COLTR), the first online LTR algorithm that combines the key aspects of
both CLTR and OLTR approaches to obtain an effective ranker that can learn
online from user feedback. COLTR uses the DBGD framework from OLTR to
interactively update the ranker used in production, but it uses the counterfac-
tual evaluation mechanism of CLTR in place of online evaluation. The main
challenge we address is that counterfactual evaluation cannot be directly used
in online learning settings because the propensity model is unknown. This is
resolved by mirroring solutions developed for learning in the bandit feedback
problem (and specifically the Self-Normalized Estimator [34]) within the con-
sidered ranking task – this provides a position-unbiased evaluation of rankers.
Our empirical results show that COTLR significantly improves the traditional
DBGD baseline algorithm. In addition, because COTLR does not require inter-
leaving or multileaving, which is the most computationally expensive part in
online evaluation [28], COLTR is more efficient than DBGD. We also find that
COLTR performance is at par with the current state-of-the-art OLTR method

1 Two rankers: interleaving [12,26]; more than two rankers: multileaving[28,30].
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[22] under noisy click settings, while presenting a number of avenues for further
improvement.

2 Related Work

The goal of counterfactual learning to rank (CLTR) is to learn a ranker from
historical user interaction logs obtained with the ranker used in production. An
advantage of this approach is that candidate rankers are trained and evaluated
offline, i.e., before being deployed in production, thus avoiding exposing users
to rankers of lesser quality compared to that currently in production. However,
unlike traditional supervised LTR methods [20], users interaction data provides
only partial feedback which cannot be directly treated as absolute relevance
labels [14,16]. This is because clicks may have not been observed on some results
because of position or selection bias, and clicks may have instead been observed
because of noise or errors. As a result, much of the prior work has focused on
removing these biases and noise.

According to position bias, users are more likely to click on top-ranked search
results than those at the bottom of the SERP [2,16,18]: in CLTR this probabil-
ity is referred to as propensity. Joachims et al. [18] developed an unbiased (with
respect to position) LTR that relies on clicks using a modified SVMRank app-
roach that optimizes the empirical risk computed using the Inverse Propensity
Scoring (IPS) estimator. The IPS is an unbiased estimator which can indicate
the effectiveness of a ranker given propensity (the probability that the user will
examine a document) and click data [18]. However, this approach requires a
propensity model to compute the IPS score. To estimate this, randomization
experiments are usually required when collecting the interaction data and the
propensity model is estimated under offline setting [37,38].

Aside from position bias, selection bias is also important, and it dominates
problems in other ranking tasks such as recommendation and ad placement.
Selection bias refers to the fact that users can only interact with items presented
to them. Typically, in ad placement systems, the assumption is made that users
examine the displayed ads with certainty if only one item is shown: thus no
position bias. However, users are given the chance to click on the displayed item
only, so clicks are heavily biased due to selection. User interactions with this kind
of systems are referred to as bandit feedback [17,33,34]. The Counterfactual
Risk Minimization (CRM) learning principle [33] is used to remove the bias
from bandit feedback. Instead of a deterministic ranker, this group of methods
assume the system relies on the hypothesis that a probability distribution is
available over the candidate items, which is used to sample items to show to
users. Importance sampling [3] is commonly used to remove selection bias.

Online Learning to Rank aims to optimize the production ranker interactively
by exploiting user clicks [10,22,23,29]. Unlike CLTR, OLTR algorithms do not
require a propensity model to handle position or selection bias. Instead, they
assume that relevant documents are more likely to receive more clicks than non-
relevant documents and exploits clicks to identify the gradient’s direction.
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Dueling Bandit Gradient Descent (DBGD) based algorithms [39] are com-
monly used in OLTR. The traditional DBGD uses online evaluation to unbias-
edly compare two or more rankers given a user interaction [12,29]. Subsequent
methods developed more reliable or more efficient online evaluation methods,
including Probabilistic Interleaving (PIGD) which has been proven to be unbi-
ased [12]. The Probabilistic Multileaving extension (PMGD) [28], compares mul-
tiple rankers at each interaction, resulting in the best DBGD-based algorithm,
which reaches a better convergence given less training impressions [23]. How-
ever, this method suffers from a high computational cost because it requires
sampling ranking assignments to infer outcomes. Further variations that reuse
historical interaction data to accelerate the learning in DBDG have also been
investigated [10].

The current state-of-the-art OLTR algorithm is Pairwise Differentiable Gra-
dient Descent (PDGD) [22], which does not require sampling candidate rankers
to create interleaved results lists for online evaluation. Instead, PDGD creates
a probability distribution over the document set and constructs the result list
by sampling documents from this distribution. Then the gradients are estimated
from pairwise documents preferences based on user clicks. This algorithm pro-
vides much better performance than traditional DBGD-based methods in terms
of final convergence and user online experience.

3 Counterfactual Online Learning to Rank

3.1 Counterfactual Evaluation for Online Learning to Rank

The proposed COLTR method uses counterfactual evaluation to estimate the
effectiveness of candidate rankers based on the click data collected by the logging
ranker. This is unlike DBGD and other OLTR methods that use interleaving.
In the counterfactual learning to rank setting, the IPS estimator is used to
eliminate position bias [18], providing an unbiased estimation. However, the
IPS estimator requires that the propensities of result documents are known.
The propensity of a document is the probability that the user will examine
the document. In offline LTR settings, propensities are estimated using offline
click-through data, via a randomization experiment [38]. Offline click-through
data is not available in the online setting we consider, and thus the use of IPS
in such an online setting becomes a challenge. To overcome this, we adapt the
counterfactual estimator used in batch learning from logged bandit feedback [32,
34]. This type of counterfactual learning treats rankers as policies and samples
documents from a probability distribution to create the result list. This allows
us to use importance sampling to fix the distribution mismatch between policies
and to use Monte Carlo approximation to estimate the risk function R(fθ′ ):

R(fθ′ ) =
1
k

k∑

i=1

δi
p(di|fθ′ ,D)
p(di|fθ,D)

(1)
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Where k is the number of documents in the result list, θ is the feature weights
of the logging ranker, θ

′
is the new ranker’s feature weights which need to be

estimated, and δ is the reward function. Following the Counterfactual Risk Min-
imization (CRM) learning principle [33], we set:

δi =

{
0, if the user clicked or did not examine di

1, if the user examined but did not click di

(2)

In counterfactual learning to rank, the user examination is modelled as
propensity. In learning from logged bandit feedback, only the examined doc-
uments are considered. In the online setting, however, it is unclear how to deter-
mine which documents the user has examined (e.g. a user may have considered
a snippet, but did not click on it). We make the assumption that users always
examine documents from top to bottom, and thus consider the documents ranked
above the one that was clicked last as having been examined. With this in place,
the reward function described in Eq. 2 can be used to assign rewards to docu-
ments in the result list.

Unlike traditional DBGD-based OLTR which ranks documents according to
the scores assigned by the ranking function (i.e., deterministically), COLTR cre-
ates the result list to be provided to the user for gathering feedback by sampling
documents from a known probability distribution. That is, document di is drawn
from a distribution p(di|fθ,D) computed by the logging ranker θ. We use softmax
to convert document scores into a probability distribution:

p(di|fθ,D) =
e

fθ(di)
τ

∑
d∈D e

fθ(d)
τ

(3)

where τ is the temperature parameter, which is commonly used in the field
of reinforcement learning to control the sharpness of the probability distribu-
tion [31]. For high values of τ (τ → ∞), the distribution becomes uniform. For
low values (τ → 0), the probability of the document with the highest score
tends to 1. After a document has been picked, the probability distribution will
be renormalized to avoid sampling duplicates. This kind of probabilistic ranker
has been used in previous works [4,14,22].

While it has been proved that the risk estimator in Eq. 1 is an unbiased
estimator, it does suffer from the propensity overfitting problem [34], i.e., the
learning algorithm may learn a ranker that assigns small probability values over
all the documents di in the result list, as this can minimize the risk function.
To address this problem, we use the self-normalized risk estimator RSN (fθ′ )
(similar to [34]):

RSN (fθ′ ) =
R(fθ′ )
S(fθ′ )

(4)

where:

S(fθ′ ) =
1
k

k∑

i=1

p(di|fθ′ ,D)
p(di|fθ,D)

(5)
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Algorithm 1. Counterfactual Online Learning to Rank (COLTR).
1: Input: Initial weights θ1, ranking function f , reward function δ, number of candi-

date ranker n, learning rate α, step size η, variance control λ;
2: for t ← 1....∞ do
3: qt ← recive query(t)
4: Dt ← get canditate set(qt)
5: Lt ← sample list(fθt , Dt) // Eq.3
6: δt ← recive clicks(Lt) // Eq.2
7: C ← [ ] // create an empty candidate ranker pool
8: for i ← 1....n do
9: ui ← sample unit vector()

10: θi ← θt + ηui // create a candidate ranker
11: append(C, θi) // add the new ranker to the candidate pool
12: end for
13: W ← infer winners(δt, θt, C, Lt, Dt, λ) //counterfactual evaluation, see Alg.2
14: θt+1 ← θt + α 1

|W |
∑

j∈W uj //update θt to the mean of winners’ unit vector
15: end for

Intuitively, if propensity overfitting does occur, S(fθ′ ) will be small, giving a
penalty to RSN (fθ′ ).

Following the CRM principle, the aim of the learning algorithm is to find a
ranker with feature weights θ that can optimize the self-normalized risk estima-
tor, as well as its empirical standard deviation; formally:

θCRM = argmin

⎛

⎝RSN (f
′
θ) + λ

√
V ar(RSN (f

′
θ))

k

⎞

⎠ (6)

The V ar(RSN (f
′
θ)) is the empirical variance of RSN (fθ′ ), to compute which we

use an approximate variance estimation [27], where λ = 1 controls the impact
of empirical variance:

V ar(RSN (f
′
θ)) =

∑k
i=1

(
δi − RSN (fθ′ )

)2(p(di|fθ
′ ,D)

p(di|fθ,D

)2

( ∑k
i=1

p(di|fθ
′ ,D)

p(di|fθ,D)

)2 (7)

3.2 Learning a Ranker with COLTR

The previous section described the counterfactual evaluation that can be used
in an online learning to rank setting. Next, we introduce the COLTR algorithm
that can leverage the counterfactual evaluation to update the current ranker
weights θt. COLTR uses the DBGD framework to optimize the current produc-
tion ranker, but it does not rely on interleaving or multileaving comparisons.
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Algorithm 2. Counterfactual Evaluation (infer winners(δt, θt, C, Lt,Dt, λ)).
1: Input: rewards δt, logging ranker θt candidate ranker set C, result list �Lt, candidate

document set Dt, variance control λ;
2: R ← [θt], k ← length(Lt)
3: for θi in C do
4: ri ← 0, si ← 0
5: for dj in Lt do
6: p ← p(dj |fθt , Dt) // compute the logging probability using Eq.3

7: p
′ ← p(dj |fθi , Dt) // compute the new ranker probability using Eq.3

8: ri ← ri + δi
p

′

p
//compute the R(θi) using Eq.1

9: si ← si + p
′

p
//compute the S(θi) using Eq.5

10: end for
11: rSN

i ← ri

si
, vi ← V ar(rSN

i ) //Eq.4 and Eq.7

12: append(R, rSN
i + λ

√
vi

k
) //Eq.6

13: end for
14: return where(R < R[0]) − 1 // indexes of candidate ranker that has lower risk

Algorithm 1 describes the COLTR updating process: similar to DBGD, it
requires the initial ranker weights θ1, the learning rate α which is used to control
the update speed, and the step size η which controls the gradient size. At each
timestamp t, i.e., at each round of user interactions (line 2), the search engine
receives a query qt issued by a user (line 3). Then the candidate document set
Dt is generated given qt (line 4), and the results list Lt is created by sampling
documents di without replacement from the probability distribution computed
by Eq. 3 (line 5). The results list is then presented to the user and clicks observed.
Then the reward label vector δt is generated according to Eq. 2 (line 6)2. Next,
an empty candidate ranker pool C is created (line 7) and candidate rankers are
generated and added to the pool (lines 8–12). Counterfactual evaluation is used
to compute the risk associated to each ranker, as described in Algorithm2. The
rankers with a risk lower than the logging ranker are said to win and are placed
in the set W (line 13). Finally, the current ranker weights are updated by adding
the mean of the winners’ unit vector (line 14) modulated by the learning rate α.

The method COLTR uses for computing gradients is similar to that of DBGD
with Multileaving (PMGD) [29]. However, COLTR is more efficient. In fact, it
does not need to generate an interleaved or multileaved result list for exploring
user preferences. When the length of the result list is large, the computational
cost for multileaving becomes considerable. In addition, using online evaluation
to infer outcomes is very expensive, especially for probabilistic multileaving eval-
uation [28]: this type of evaluation requires sampling a large number of ranking
assignments to decide which ones are the winner rankers – a computationally
expensive operation. In contrast, the time complexity for counterfactual evalu-
ation increases linearly with the number of candidate rankers (the for loop in
2 Note that the length of δt is equal to the length of Lt.
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Algorithm 2, line 33). To compute the probabilities of sampling documents for
the logging and new rankers (Algorithm 2, line 6 and 7), the document scores
in Eq. 3 need to be renormalized after each rank: this attracts additional com-
putational cost. For efficiency reasons, we approximate these probabilities by
assuming independence, so that we can compute the probabilities only once4.
As a result, COLTR can efficiently compare a large number of candidate rankers
at each interaction.

4 Empirical Evaluation

Datasets. We used four publicly available web search LTR datasets to evalu-
ate COLTR. Each dataset contains query-document pair features and (graded)
relevance labels. All feature values are normalised using MinMax at the query
level. The datasets are split into training, validation and test sets using the splits
according to the datasets. The smallest datasets in our experiments are MQ2007
(1,700 queries) and MQ2008 (800 queries) [25], which are a subset of LETOR
4.0. They rely on the Gov2 collection and the query set from the TREC Mil-
lion Query Track [1]. Query-document pairs are represented with respect to 46
features and 3-graded relevance (from 0, not relevant, to 2, very relevant). In
addition to these datasets, we use the larger MLSR-WEB10K [25] and Yahoo!
Learning to Rank Challenge datasets [5]. Data for these datasets comes from
commercial search engines (Bing and Yahoo, respectively), and relevance labels
are assigned on a five-point scale (0 to 4). MLSR-WEB10K contains 10,000
queries and 125 retrieved documents on average, which are represented with
respect to 136 features; while, Yahoo! is the largest dataset we consider, with
29,921 queries and 709,877 documents, represented using 700 features.

Simulating User Behaviour. Following previous OLTR work [9,11,22,23,29,
41], we use the cascade click model (CCM) [6,8] to generate user clicks. This click
model assumes users examine documents in the result list from top to bottom
and decide to click with a probability p(click = 1|R), where R is the relevance
grade of the examined document. After a document is clicked, the user may stop
examining the remainder of the list with probability p(stop = 1|R). In line with
previous work, we study three different user behaviours and the corresponding
click models. The perfect model simulates the user who clicks on every relevant
document in the result list and never clicks on non-relevant documents. The
navigational model simulates the user looking for a single highly relevant doc-
ument and thus is unlikely to continue after finding the first relevant one. The
informational model represents the user that searches for topical information
and that exhibits a much nosier click behaviour. We use the settings used by
previous work for instantiating these click behaviours, e.g., see Table 1 in [23].
In our experiments, the issuing of queries is simulated by uniformly sampling

3 The length of the results list Lt is fixed.
4 We empirically observed that this assumption does not deteriorate the effectiveness

of the method.
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(a) Offline performance for 10,000 impres-
sions, for COLTR under different settings
of n and the baselines.

(b) Long term offline performance
(100,000 impressions). For clarity, only
n = 499 is reported for COLTR.

Fig. 1. Offline performance on the MQ2007 with the informational click model.

from the training dataset (line 3 in Algorithm1). Then a result list is generated
in answer to the query and the list is then displayed to the user. Finally, user’s
clicks on displayed results are simulated using CCM.

Baselines. Three baselines are considered for comparison with COLTR. The
traditional DBGD with probabilistic interleaving (PIGD) [12] is used as a rep-
resentative OLTR method – note that COLTR also uses DBGD, but with coun-
terfactual evaluation in place of the interleaving method. For PIGD, only one
candidate ranker is sampled at each interaction; sampling occurs by randomly
varying feature weights on the unit sphere with step size η = 1, and updating the
current ranker with learning rate α = 0.01. The Probabilistic Multileaving Gra-
dient Descent method (PMGD) [23] is also used in our experiments, as it is the
DBGD-based method that has been reported to achieve the highest performance
so far for this class of approaches [21]. For this baseline, we use the same parame-
ters settings reported in previous work [22], where the number of candidates was
set to n = 49, step size to η = 1 and learning rate to α = 0.01. The third base-
line we consider is the Pairwise Differentiable Gradient Descent (PDGD) [22],
which is the current state-of-the-art OLTR method. We set PDGD’s parameters
according to Oosterhuis et al. [22], and specify learning rate α = 0.1 and use zero
initialization. For COLTR, we use η = 1. We use a learning rate decay for α: in
this case, α starts at 0.1 and decreases according to α = α ∗ 0.99966 after each
update. We set the temperature parameter τ = 0.1 when sampling documents
and test different numbers of candidate rankers from n = 1 to n = 999. For
all experiments, we only display k = 10 documents to the user, and all meth-
ods are used to optimize a linear ranker. Note, we do not directly compared
with Counterfactual LTR approaches like that of Joachims et al. [18] because
we consider an online setup (while counterfactual LTR requires a large datasets
of previous interactions, and the estimation of propensity, which is unfeasible to
be performed in an online setting).
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(a) MQ2007 dataset (b) MSLR-WEB10K

Fig. 2. Offline performance under three different click models

Evaluation Measures. The Effectiveness of the considered OLTR methods is
measured with respect to both offline and online performance. For offline per-
formance, we average the nDCG@10 scores of the production ranker over the
queries in the held-out test set. This measure indicates the effectiveness of the
learned ranker. The offline performance of each method is measured for 10,000
impressions, and the final offline performance is also recorded. Online perfor-
mance is computed as the nDCG@10 score produced by the result list displayed
to the user during the training phase [13]. This measure indicates the quality of
the user experience during training. A discount factor γ is used to ensure that
long-term impressions have less impact, i.e.

∑
t=1 nDCG(Lt) · γt−1. Following

previous work [21–23], we choose γ = 0.9995 so that impressions after the hori-
zon of 10,000 have less than a 1% impact. We repeated each experiment 125
times, spread over different training folds. The evaluation results are averaged
and statistically significant differences between system pairs are computed using
a two-tailed t-test.

5 Results Analysis

5.1 Offline Performance: Final Ranker Convergence

We first investigate how the number of candidate rankers impacts offline perfor-
mance. Figure 1(a) displays the offline nDCG of COLTR and the baselines under
the informational click setting when a different number of candidate rankers is
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used by COLTR (recall that PIGD uses two rankers and PMGD uses 49 rankers).
Consider COLTR with one candidate ranker in addition to the production ranker
(n = 1) and PIGD: both are considering a single alternative ranker to that in
production. From the figure, it is clear that PIGD achieves a better offline per-
formance than COLTR. However, when more candidate rankers are considered,
e.g., n is increased to 49, the offline performance of COLTR becomes significantly
higher than that of PIGD. Furthermore, COLTR is also better than PMGD when
the same number of candidate rankers are considered. Moreover, COLTR allows
to efficiently compare a large number of candidate rankers at each interaction
(impression), and thus can test with a larger set of candidate rankers. We find
that increasing the number of candidate rankers can help boosting the offline per-
formance of COLTR and achieve a higher final converge. When n = 499, COLTR
can reach significantly better (p < 0.01) offline performance than PDGD, the
current state-of-the-art OLTR method. However, beyond n = 499 there are only
minor improvements in offline performance, achieved at a higher computational
cost – thus, in the remaining experiments, we consider only n = 499.

We also consider long-term convergence. Figure 1(b) displays the results for
COLTR (with n = 499) and the baselines after 100,000 impressions. Because
a learning rate decay is used in COLTR, the learning rate becomes insignifi-
cant after 30,000 impressions. In order to prevent this to happen, we stop the
learning rate decay when α < 0.01, and we leave α = 0.01 constant for the
remaining impressions. The figure shows that, contrary to the results in Fig. 1(a),
PMGD can reach much higher performance than PIGD when enough impres-
sions are considered – this finding is consistent with previously reported obser-
vations [22]. Nevertheless, both COLTR and PDGD are still significantly better
than PIGD and PMGD, and have similar convergence: their offline performance
is less affected by the long term impressions.

Figure 2 displays the offline performance across datasets of varying dimen-
sions (small: MQ2007, and large: MSLR-WEB10K) under three different click
models and for 10,000 impressions. The results show that PDGD and COLTR
outperform PIGD and PMGD for all click models. We also find that, overall,
COLTR and the current state-of-the-art online LTR approach, PDGD have very
similar learning curves across all click models and datasets, apart for the per-
fect click model on the MSLR-WEB10K dataset, for which COLTR is severely
outperformed by PDGD. Note, the trends observed in Fig. 2 found also for the
majority of the remaining datasets. For space reasons, we omit these results from
the paper, but we make them available as an online appendix at http://ielab.
io/COLTR. Table 1 reports the final convergence performance for all datasets
and click models (including statistical significance analysis), displaying similar
trends across the considered datasets.

http://ielab.io/COLTR
http://ielab.io/COLTR
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Table 1. Offline nDCG performance obtained under different click models. Significant
gains and losses of COLTR over PIGD, PMGD and PDGD are marked by �, � (p <
0.05) and �, � (p < 0.01) respectively.

MQ2007 MQ2008 MSLR10K Yahoo!

Perfect PIGD 0.488 0.684 0.333 0.677

PMGD 0.495 0.689 0.336 0.716

PDGD 0.511 0.699 0.427 0.734

COLTR, n= 499 0.495� � 0.682 � � 0.388� � � 0.718 � � �

Navig. PIGD 0.473 0.670 0.322 0.642

PMGD 0.489 0.681 0.330 0.709

PDGD 0.500 0.696 0.410 0.718

COLTR, n= 499 0.508 � � � 0.689� � � 0.405� � � 0.718 � �

Inform. PIGD 0.421 0.641 0.296 0.605

PMGD 0.426 0.687 0.317 0.677

PDGD 0.492 0.693 0.375 0.709

COLTR, n= 499 0.500 � � � 0.686� � 0.374� � 0.706 � � �

5.2 Online Performance: User Experience

Along with the performance obtained by rankers once training is over, the user
experience obtained during training should also be considered. Table 2 reports
the online performance of all methods, for all datasets and click models. The
state-of-the-art PDGD has the best online performance across all conditions.
COLTR outperforms PIGD and PMGD when considering the perfect click
model. For other click models, COLTR is better than PIGD but it does pro-
vide less cumulative online performance than PMGD, even if it achieves a better
offline performance. We posit that this is because PMGD uses a deterministic
ranking function to create the result list the user observes, and via multileav-
ing it guarantees that the interleaved result list is not worse than that of the
worst candidate ranker. COLTR instead uses a probabilistic ranking function,
and if the document sampling distribution is too similar to a uniform distri-
bution, the result list may incorrectly contain many non-relevant documents:
this results in a bad online performance. A uniform sampling distribution is
obtained because noisy clicks result in some candidate rankers randomly winning
the counterfactual evaluation and thus slowing down the gradient convergence
and achieving an “elastic effect”, where the weight vectors go forward in one
interaction, and backwards in the next. This will cause the margins between the
documents’ scores assigned by the ranking function to become too small and
thus the softmax function will not generate a “deterministic” distribution. This
also explains why the online performance is much better when clicks are perfect:
the gradient directions corresponding to the winning candidates are likely sim-
ilar, leading the current ranker moving fast through large gradient updates (no
elastic effect).
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Table 2. Online cumulative nDCG performance under different click models. Signifi-
cant gains and losses of COLTR over PIGD, PMGD and PDGD are marked by �, �

(p < 0.05) and �, � (p < 0.01) respectively.

MQ2007 MQ2008 MSLR10K Yahoo!

Perfect PIGD 795.6 1184.8 549.8 1202.0

PMGD 824.8 1225.6 587.6 1284.7

PDGD 936.1 1345.5 718.5 1407.8

COLTR, n = 499 933.0� � 1344.2 � � 641.7� � � 1370.0 � � �

Navig. PIGD 766.3 1152.1 533.6 1174.1

PMGD 796.4 1195.9 581.3 1258.4

PDGD 883.0 1309.0 642.8 1358.9

COLTR, n = 499 790.7 � � � 1112.0 � � � 542.9� � � 1194.8� � �

Inform. PIGD 681.8 1068.3 483.8 1149.6

PMGD 745.7 1188.3 575.8 1237.9

PDGD 859.5 1297.5 600.6 1325.4

COLTR, n = 499 780.9 � � � 1138.7 � � � 522.1 � � � 1186.5 � � �

6 Conclusion

In this paper, we have presented a novel online learning to rank algorithm that
combines the key aspects of counterfactual learning and OLTR. Our method,
counterfactual online learning to rank (COLTR), replaces online evaluation,
which is the most computational expensive step in the traditional DBGD-style
OLTR methods, with counterfactual evaluation. COLTR does not derive a gra-
dient function and use it to optimise an objective, but still samples different
rankers, akin to the online evaluation practice. As a result, COLTR can evaluate
a large number of candidate rankers at a much lower computational expense.

Our empirical results, based on publicly available web search LTR datasets,
also show that the COLTR can significantly outperform DBGD-style OLTR
methods across different datasets and click models for offline performance. We
also find that COLTR achieves the same offline performance as the state-of-
the-art OLTR model, the PDGD, across all datasets under noisy click settings.
This means COLTR can provide a robust and effective ranker to be deployed
into production, once trained online. However, due to the uniform sampling
distribution employed by COLTR to select among candidate documents, COLTR
has worse online performance than PMGD and PDGD.

Future work will investigate the difference between gradients provided by
PDGD and COLTR, as they both use a probabilistic ranker to create the result
list. This analysis could provide further indications about the reasons why the
online performance of COLTR is limited. Other improvements could be imple-
mented for COLTR. First, instead of stochastically learning at each interaction,
historical user interaction data could be used to perform batch learning, which
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may provide even more reliable gradients under noisy clicks. Note that this exten-
sion is possible, and methodologically simple for COLTR, but not for PDGD.
Second, the use of the exploration variance reduction method [35,36] could be
investigated to reduce the gradient exploration space: this may solve the uniform
sampling distribution problem.
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