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Abstract. Visual re-ranking has received considerable attention in
recent years. It aims to enhance the performance of text-based image
retrieval by boosting the rank of relevant images using visual informa-
tion. Hypergraph has been widely used for relevance estimation, where
textual results are taken as vertices and the re-ranking problem is for-
mulated as a transductive learning on the hypergraph. The potential
of the hypergraph learning is essentially determined by the hypergraph
construction scheme. To this end, in this paper, we introduce a novel
data representation technique named adaptive collaborative representa-
tion for hypergraph learning. Compared to the conventional collabora-
tive representation, we consider the data locality to adaptively select
relevant and close samples for a test sample and discard irrelevant and
faraway ones. Moreover, at the feature level, we impose a weight matrix
on the representation errors to adaptively highlight the important fea-
tures and reduce the effect of redundant/noisy ones. Finally, we also add
a nonnegativity constraint on the representation coefficients to enhance
the hypergraph interpretability. These attractive properties allow con-
structing a more informative and quality hypergraph, thereby achieving
better retrieval performance than other hypergraph models. Extensive
experiments on the public MediaEval benchmarks demonstrate that our
re-ranking method achieves consistently superior results, compared to
state-of-the-art methods.

Keywords: Image retrieval · Visual re-ranking · Hypergraph
learning · Collaborative representation · Ridge regression

1 Introduction

Empowered by the ubiquitous access to computer devices and the Internet, an
ever-growing amount of digital images has been emerged [25]. In light of this,
image retrieval is considered as an active research topic that aims at retriev-
ing relevant images to a user query from a large database of digital images
[11,14,21,26]. Until recently, most of the popular search engines (e.g., Flickr)
are built upon the textual information associated with images [4,7,24]. Never-
theless, they cannot comprehensively describe the rich content of images since
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they totally ignore the visual information [10]. Besides, they suffer from the fact
that the textual information is often noisy, ambiguous and language-dependent
[8,12]. As a consequence, the retrieved results may be noisy and irrelevant which
may affect the retrieval performance [17,24]. To tackle those issues, visual re-
ranking has been introduced to refine the text-based retrieval results using the
visual information [4,19,32,35]. Namely, it attempts to boost the rank of relevant
images with respect to the textual query [24]. Recently, the hypergraph learning
has been widely used in many applications for its capability in capturing complex
relationships among samples [4,15,23]. In case of visual re-ranking, the textual
results are taken as vertices and the re-ranking problem is formulated as a trans-
ductive learning on the hypergraph [2,9]. The potential of the hypergraph learn-
ing is essentially determined by the hypergraph construction scheme [22]. Most
of previous hypergraph learning methods adopt a neighborhood-based strategy
to build the hypergraph, in which textual results are taken as vertices and each
vertex is linked to its k nearest neighbors by an hyperedge. While obvious, this
method suffers from the following drawbacks: (1) it is sensitive to noise (2) lacks
the ability to discover the real neighborhood structure (3) the parameter k is
fixed as global parameter for all samples regardless their local data distribution.
To tackle those issues, recent works have proposed to leverage the regularized
regression models, namely the sparse representation and the ridge regression for
hypergraph construction [22]. Compared to the neighborhood-based hypergraph,
the sparse hypergraph achieves superior performance in revealing the local data
structure and handling the noisy data. However, it cannot discover related sam-
ples to one hyperedge centroid as thoroughly as possible. Moreover, the sparse
constraint makes the hypergraph construction very expensive [41]. Recently, the
ridge regression has gained considerable attention not only for its effectiveness in
data representation but also for its computational efficiency [41]. In contrast to
sparse representation which aims at encouraging the competition between sam-
ples to represent a datum, the ridge regression attempt to include all samples
in the representation process. That’s why this framework is often called the col-
laborative representation. Owing to these desirable properties, in this paper, we
put a particular emphasis on the collaborative representation and we propose
an adaptive collaborative hypergraph learning for visual re-ranking. The pro-
posed data representation technique adaptively preserve the locality structure
and discard irrelevant/outlier samples with respect to a test sample by integrat-
ing a distance-regularizer on the representation coefficients. At the feature level,
we impose a weight matrix on the representation errors to adaptively highlight
the important features and reduce the effect of redundant/noisy ones. More-
over, to enhance the representation interpretability, a nonnegativity constraint
is added in such a way that the representation coefficients can directly reveal the
similarity among samples. This way, we obtain a more informative and quality
hypergraph which not only captures the grouping information but also reveal the
local neighborhood structure and exhibit more discriminative power and robust-
ness to noisy data. Extensive experiments on the public MediaEval benchmarks
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demonstrate that our re-ranking method achieves consistently superior results,
compared to state of-the-art methods.

2 Related Works

In recent years, many visual re-ranking methods have been proposed in the liter-
ature. According to the statistical analysis model used, they could be classified
as supervised and unsupervised methods. The former cast the re-ranking to a
classification problem that aims at separating relevant from irrelevant images
using data from the initial results as training samples. For instance, authors in
[30] built a supervised classification model using expert annotations to assign a
relevance score to each image. The latter assumes that relevant samples are prob-
ably to be close to each other than to irrelevant ones. It aims at discovering and
mining patterns using pair-wise similarities. Clearly, there are two paramount
ways. The first is to leverage clustering to group images with respect to their
visual closeness. For instance, a Hierarchical Clustering is applied in [1] and [29]
to cluster samples by relevance. Authors in [28] apply a graph-based cluster-
ing method where a similarity graph is initially built to represent relationships
among images. The second way is to adopt the graph-based learning for its effec-
tiveness in modeling the intrinsic structure within data. VisualRank proposed
by Jing and Baluja [20] is the most popular graph-based re-ranking method. It
applies a random walk on an affinity graph where images are taken as nodes and
their visual similarities as probabilistic hyper-links. In [39], a manifold ranking
process is applied over the data manifold, with the aim of naturally finding the
most relevant images. Although promising results are achieved, how to represent
complex and high-order relationships hidden in data still the performance bot-
tleneck for graph-based re-ranking. As a generalization of the graph learning, the
hypergraph learning is receiving increasing attention in recent years owing to its
ability in modeling complex data structure in a more flexible and elegant way
[3,23]. Considering the visual re-ranking, the hypergraph learning is widely used
for relevance estimation. For instance, in [2], authors construct a k-nearest neigh-
bor graphs based on the visual similarity between images. Then, a hypergraph
ranking is performed to learn the images’ relevance scores. Although efficient,
this method suffers from some drawbacks. First, the neighborhood strategy can-
not capture the local data distribution of each datum since it uses a fixed number
of neighbors k for all samples [35]. Second, the neighborhood strategy is very sen-
sitive to noisy data due to the use of the Euclidean distance as similarity measure
[22,37]. To address those limitations, some researchers have proposed to exploit
the regression models for data representation. The most widely used model is the
sparse representation (SR) in which each sample is represented as a linear com-
bination of the remaining samples [15,36]. Compared to the neighborhood-based
hypergraph, the sparse hypergraph achieves superior performance in revealing
the local data structure and handling the noisy data. However, it cannot dis-
cover related samples to one hyperedge centroid as thoroughly as possible. More-
over, the sparse constraint makes the hypergraph construction very expensive.
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Recently, the collaborative representation has gained considerable attention not
only for its effectiveness in data representation but also for its computational
efficiency [41]. Therefore, in this paper, we put a particular emphasis on the col-
laborative representation and we propose an adaptive collaborative hypergraph
learning for visual re-ranking.

3 The Proposed Hypergraph Model for Visual
Re-Ranking

3.1 Adaptive Collaborative Representation Representation

For clarity, we first introduce some important notations used throughout this
paper. The matrix X = [x1, ..., xN ] ∈ R

d×N is a collection of N data samples
where xi ∈ R

d denotes the i-th data sample. ||Z||F is the Frobenius norm of
matrix Z. 1 and 1 are a matrix and a vector whose elements are equal to
1, � denotes te element-wise multiplication. For a scalar v, we define (v)+ as
(v)+ = max(v, 0) [27].

Problem Formulation. Conventionally, the collaborative representation aims
to solve the following least square problem:

argmin
Z

‖X − XZ‖22 + λ ‖Z‖22 (1)

In this paper, we propose an adaptive collaborative representation formulated
as follows:

argmin
Z,W

∥
∥
∥W 1/2 � (X − XZ)

∥
∥
∥

2

F
+

β

2
‖W‖2F + λ ‖Z‖2F + γtr(DTZ)

s.t W ≥ 0,WT1 = 1, Z ≥ 0, diag(Z) = 0, Z1 = 1 (2)

Specifically, the objective function contains the following terms:

1. The self-representation term: It represents the reconstruction error between
the estimated and the real data. Many references have pointed out that
redundant/noisy features are likely to have large reconstruction errors [23,40].
Based on this assumption, we regularize the reconstruction errors by a non-
negative weight matrix W . Hence, we adaptively highlight the important
features while reducing the effect of redundant/noisy ones.

2. The �2−regularizer on the weight matrix: This term as well as the constraint
WT1 = 1 are imposed to avoid the trivial solution of W as in [42].

3. The regularization term on the representation matrix: It shrinks the repre-
sentation coefficients towards zero by imposing an �2−-regularizer on their
sizes. Indeed, all samples will collaborate during the representation process
of a test sample since their coefficients will never become exactly zero.
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4. The locality-preserving term: The collaborative representation does not con-
sider the data locality which has been observed to be critical for many learn-
ing tasks [34]. For this purpose, we incorporate a locality-preserving term
in our model so that (1) the local structure is preserved (i.e, close samples
will have close representation) and (2) irrelevant/outliers samples are dis-
carded. Mathematically, each element of the distance matrix D is defined as:
dij = ||xi − xj | |22.

5. Finally, we add the following constraints on the representation matrix Z:
– Z ≥ 0: A non-negative representation coefficient zij can directly reveal

the similarity between the samples xi and xj [45].
– diag(Z) = 0: this constraint is used to avoid that a sample is represented

as a linear combination of itself.
– Z1 = 1: the sum of each row of Z is set to be equal to 1 which ensure

that all samples are selected in the joint representation.

The ADMM-Based Optimization. There are two unknown variables in the
problem (2), e.g., Z and W . To make the problem (2) separable, some auxiliary
variables are added as follows:

argmin
Z,W

∥
∥
∥W 1/2 � E

∥
∥
∥

2

F
+

β

2
‖W‖2F + λ ‖J‖2F + γtr(DTZ)

s.t W ≥ 0,WT1 = 1, Z ≥ 0, diag(Z) = 0, Z1 = 1, E = X − XZ, J = Z (3)

Considering the problem (3) as a two-block optimization problem, we adopt
the alternating direction method (ADM) to solve it [38]. Thus, we define the
augmented Lagrangian function as:

L(Z,W,E, J, C1, C2) =
∥
∥
∥W 1/2 � E

∥
∥
∥

2

F
+

β

2
‖W‖2F + λ ‖J‖2F + γtr

(

DTZ
)

+
μ

2

(∥
∥
∥
∥
X − XZ − E +

C1

μ

∥
∥
∥
∥

2

F

+
∥
∥
∥
∥
Z − J +

C2

μ

∥
∥
∥
∥

2

F

)

(4)

where C1, C2 are the Lagrangian multipliers and μ is a penalty parameter.
Then, we solve each unknown variable while fixing the other variables in an

alternate way.

Step 1: The variable W is obtained by minimizing the following problem while
fixing the other variables:

min
W

∥
∥
∥W 1/2 � E

∥
∥
∥

2

F
+

β

2
||W ||2F s.t W ≥ 0,WT1 = 1 (5)

Solving the problem (5) is equivalent to solve:

min
wij≥0,

∑
j wij=1

∑

i,j

(

wij +
e2ij
β

)2

(6)
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The problem (6) can be written in the vector form since it is independent for
different i [27].

min
wi≥0,wT

i 1=1

∥
∥
∥
∥
wi +

hi

β

∥
∥
∥
∥

2

2

(7)

where H = E � E
The associated Lagrangian function is:

L(wi, c,mi) =
1
2

∥
∥
∥
∥
wi +

hi

β

∥
∥
∥
∥

2

2

− c(wT
i 1 − 1) − mT

i wi (8)

where c and mi are the Lagrangian multipliers associated to the boundary con-
straints on wi.

Given the fact that mijwij = 0 according to the KKT condition [42], we
have:

wij =
(

c − hij

β

)

+

(9)

Finally, we update the Lagrangian multiplier c according to the constraint
wT

i 1 = 1 as follows:

N∑

i=1

(c − hij

β
) = 1 ⇒ c =

1
N

+
1

Nβ

N∑

j=1

hij (10)

Step 2: We can obtain the error matrix E by solving the following problem:

min
E

||W 1/2 � E||2F +
μ

2
||E − G||2F where G = X − XZ +

C1

μ
(11)

The problem (11) is equivalent to :

∑

i,j

min
eij

(

eij − μgij
μ + 2wij

)2

(12)

Then, the optimal solution of each element eij is

eij =
μgij

μ + 2wij
(13)

Step 3: We can obtain the matrix J by solving the following problem:

min
J

λ ‖J‖2F +
μ

2
||Z − J +

C2

μ
||2F (14)
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The close-form of J can be obtained by setting the derivative of (14) w.r.t J
to zero:

J∗ =
μG

μ + 2λ
where G = Z +

C2

μ
(15)

Step 4: The variable Z can be obtained by solving the following problem:

min
Z

γtr(DTZ) +
μ

2
(||M1 − XZ||2F + ||Z − M2||2F

)

s.t Z ≥ 0, diag(Z) = 0, Z1 = 1 (16)

where M1 = X − E + C1
µ and M2 = J − C2

µ
Considering the following unconstrained problem:

argmin
Z

γtr(DTZ) +
μ

2
(||M1 − XZ||2F + ||Z − M2||2F

)

(17)

The problem (17) has a closed-form solution obtained by setting its derivative
equal to zero:

Ẑ =
(

XTX + I
)−1

(

XTM1 + M2 − γ

μ
D

)

(18)

Then, the optimal solution Z of the problem (16) can be obtained more
efficiently by solving the following problem:

min
Z≥0,diag(Z)=0,Z1=1

||Z − Ẑ||2F ⇔ min
zij≥0,zii=0,

∑
i zij=1

(zij − ẑij)
2 (19)

We obtain the optimal solution for each row zi as in problem (6):

zi =
(

ηiI
T
f + z̄i

)

+
(20)

where If is a column vector whose elements are equal to one expect the i−th is
set equal to zero. z̄i is defined as:

z̄i =
{

ẑij i �= j
0 otherwise

(21)

ηi is the Lagrangian multiplier which is calculated as:

ηi =
1 + z̄i1

N − 1
(22)

Step 5: We update the Lagrangian multipliers and the penalty parameter as
follows, respectively:

C1 = C1 + μ (X − XZ − E) (23)

C2 = C2μ (Z − J) (24)

μ = min(μmax, μρ) (25)
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Convergence and Computational Complexity. In this section, we first ana-
lyze the computational complexity of the proposed representation model. Clearly,
the most computationally-demanding step in the ADMM-based Optimization is
the step 4 which includes matrix multiplication and matrix inverse operations.
It costs O(N3) for N × N matrix. Fortunately, the term

(

XTX + I
)−1 can be

pre-calculated before the iteration loop since it is independent from all variables
and. The first two steps are efficiently calculated since they can be considered as
element-wise operations. The third step mainly involves matrix addition opera-
tion. Hence, their computational complexities can be ignored compared to the
fourth step.

3.2 The Proposed Hypergraph Construction Scheme

In this work, we assume that the representation vectors corresponding to two
similar samples should be close since they can be similarly represented using
remaining ones. More formally, we measure the similarity between two data
samples as follows:

A(i, j) = zi · zj (26)

In terms of hypergraph, such information is very useful to characterize the inci-
dence relations between hyperedges and their vertices:

h(vi, ej) =

{

A (i, j) , if zij ≥ θ

0, otherwise
(27)

Here, we set θ as the mean values of {zik}Nk=1 . According to this formulation,
each vertex vi is associated to hyperedge ej based on whether it has promi-
nently contributed in the representation of its centroid vj . Moreover, for each
centroid, the number of neighbors is adaptively selected. Hence, its distinctive
neighborhood structure is well preserved.

3.3 The Hypergraph-Based Re-Ranking

In this work, we formulate the visual re-ranking problem as a transductive learn-
ing framework on the adaptive collaborative hypergraph model G = (V,E, ω):

arg min
f

{Ω(f) + μRemp(f)} (28)

where the vector f is constituted of the relevance scores to be learned.
Following the Zhou’ works [44], the regularization term can be written as

follows:

Ω(f) = fT (I − Θ)f = fT
(

I − D−1/2
v HWD−1

e HTD−1/2
v

)

f (29)
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The empirical loss Remp(f) guarantees that final ranking scores are close to
the initial ones. It is defined as:

Remp(f) = ‖f − y‖2 =
∑

vi∈V

(f(vi) − f(vi))2 (30)

Where the initial ranking vector y is uniformly defined as:

yi = 1 − i

N
(31)

By substituting (29) and (30) into (28) and setting the derivative of (28)
with respect to f to 0, we have

f(I − Θ) + μ(f − y) = 0 ⇒ f =
μ

1 + μ
(I − Θ

1 + μ
)−1y (32)

Table 1. Description of databases

Database Description No. of images

Landmark-30 [16] 30 one-concept locations queries 8923

Landmark-123 [16] 123 one-concept locations queries 36452

General-65 [18] 65 complex and multi-concept queries 20000

General-70 [18] 70 complex and multi-concept queries 30000

4 Experiments

4.1 Experimental Settings

In this section, we have conducted visual re-ranking experiments on four pub-
lic databases designed within the MediaEval 2014 [16] and MediaEval 2016 [18]
competitions and listed in Table 1. In particular, the MediaEval 2014 bench-
mark consists of information for 153 one-concept location queries (e.g., build-
ings, museums, roads,bridges, sites, monuments, etc) with about 300 photos
per location [16]. The MediaEval 2016 benchmarks consists of 135 complex and
general-purpose multi-concept queries (e.g., animals at zoo, sunset in the city,
accordion player, etc)[18]. We choose those databases for the following reasons:
(1) they are consisted of real-world images (i.e. images are initially retrieved
from Flickr in response to a textual query) (2) they are publicly available and
(3) annotations are carried out by experts [17].

We use the convolutional neural networks based descriptors to represent
images of all databases for its impressive performance in image retrieval [43].
In all experiments, we followed the rules of the MediaEval competitions. Indeed,
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in evaluation, a photo is considered to be relevant if it is a common photo repre-
sentation of the query [16,18]. Experiments were carried out for different cut-off
points, X ∈ {5, 10, 20, 30, 40, 50}. For performance evaluation, we adopt the pre-
cision P@20 as the official ranking for both MediaEval 2014 and MediaEval 2016
benchmarks was set to a cut-off of 20 images [16,18]. For fair comparison, we con-
ducted all experiments on the same platform, i.e., Matlab platform running on
Windows7, with an Intel (R)-Core(TM) i7-4500U 3.40 GHz processor and 8 GB
memory. Moreover, we manually tuned the parameters of all other methods to
obtain their optimal results.

4.2 Performance Comparison with State-of-the-art Methods

This experiment is conducted in order to compare our method with other meth-
ods that achieved best performance during the MediaEval competitions. In this
experiment, we select only those visual-based methods. Comparison results are
reported in Table 2. First, it can be observed that our method achieves a con-
sistent improvement over the Flickr baseline on all databases. For examples,
at a cut-off point X = 20, the precision gains of ACR-HG over Flickr are
6.67%, 8.29%, 10.07% and 6.49% on Landmark-30, Landmark-123, General-65
and General-70 respectively. Second, our method almost always outperforms
other methods on all databases. For example, on Landmark-123, the precision
of our method is P@20 = 0.8894 while other methods achieve 0.769 (TUW)[28],
0.7561 (SocSens) [31] and 0.748 (PeRCeiVe)[29]. On the General-70 database,
which is a complex and general-purpose multi-concept database, we achieve a
P@20 = 0.7921 compared to P@20 = 0.5437 achieved by the best team (LAPI)
[6]. Our method, which not only models the complex and high-order relation-
ships among visual samples via hypergraph but also capture the overall contex-
tual information by the means of collaborative representation, achieves the best
performance among the compared methods. This clearly demonstrates the valid-
ity of our method for visual re-ranking not only on for landmark image retrieval
but also for multi-topic image retrieval.

Table 2. Performance comparison to state-of-the-art re-ranking methods.

Methods
P@20

Landmark-30 Landmark-123
Flickr 0.8333 0.8065

PeRCeiVe [29] 0.866 0.748
SocSens [31] 0.815 0.7561
TUW [28] 0.805 0.769

ACR-HG (ours) 0.9 0.8894

Methods
P@20

General-70 General-65
Flickr 0.6914 0.5531

UPMC [33] 0.631 0.5200
LAPI [6] 0.6514 0.5437

RECOD [13] 0.6821 0.5180
ACR-HG (ours) 0.7921 0.618
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Table 3. Performance comparison to graph/hypergraph-based methods

Methods P@20

Landmark30 Landmark-123 General-70 General-65

Flickr 0.8333 0.8065 0.6914 0.5531

VR [20] 0.8517 0.8314 0.74 0.5492

MR [5] 0.8251 0.8045 0.7293 0.5383

Knn-HG [2] 0.865 0.8537 0.7364 0.5461

SR-HG [36] 0.88 0.8541 0.6971 0.5531

CR-HG [41] 0.8883 0.8728 0.7564 0.5758

ACR-HG (ours) 0.9 0.8894 0.7921 0.618

4.3 Performance Comparison for Hypergraph Learning

In this experiment, we aim to validate the superiority of our hypergraph model
over the conventional graph/hypergraph models. Results are showed in Table 3.
From the results, the following observations can be drawn:

– Despite their ability in refining the initial retrieval results, graph-based re-
ranking methods are almost outperformed by the hypergraph-based ones.
This demonstrates that, in contrast to graph model, hypergraph model has
and inherent ability to capture the local group information and latent high-
order relationships among samples.

– The experimental results reveal also the good robustness and discriminative
power of representation based hypergraph learning compared to neighbor-
hood based hypergraph learning. On different databases, the representation
based hypergraph ranking achieves the highest precision compared to hyper-
graph ranking based on neighborhood relationships. In particular, our method
consistently and significantly achieves the best relevance improvement among
other representation based hypergraph ranking.

– The adaptive collaborative representation has bring more robustness and dis-
criminative power to the hypergraph than the collaborative representation.
For instance, the precision gains of ACR-HG over the CR-HG are 1.17%,
1.66%, 3.57% and 4.22% on Landmark-30, Landmark-123, General-70 and
General-65 respectively. One explanation is that the adaptive collaborative
representation impose a locality-preserving regularizer on the representation
coefficients which enable to capture the global and local structures of data
during the hypergraph learning.
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Fig. 1. Evolution curve of relevance for different landmark query topics

4.4 Performance Evaluation per Topic Class

The aim of this experiment is the investigate the performance stability of our
method for different query topics. Comparison results are presented in Figs. 1
and 2. We find that our method outperforms Flickr for almost all query topics.
The experimental results also reveal that, the relevance of retrieval results is
higher for landmarks queries compared to complex queries. One explanation is
that, non -relevant images were likely to be arisen when the query is ambiguous
or involve multiple topics. For example, the query ‘baby in stroller’ may give
rise to images that contain an empty stroller. Another interesting observations,
is that the retrieval performance is degraded for some queries (e.g. ‘baby in
stroller’). This can be attributed to the fact that a high relevance score for a
non-relevant image will be propagated to its visually similar neighbors since only
the visual information is used for building the hypergraph.

Fig. 2. Evolution curve of relevance for different general multi-concept query topics
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5 Conclusion

In this paper, we proposed a novel hypergraph-based visual re-ranking method
to enhance the performance of text-based image retrieval. At the core of our
method is the data representation. Particularly, we proposed a novel represen-
tation technique called adaptive collaborative representation to build a more
informative hypergraph. By constraining the self-representation term with an
weighted matrix, the effect of those redundant and useless features can be adap-
tively minimized so that a more robust hypergraph can be constructed. In addi-
tion, our data representation technique has the advantage of simultaneously
capturing both global and local structures of data during hypergraph learning
by introducing a locality-preserving term. Based on the obtained representa-
tion matrix, we showed how to generate consistent hyperedge connections and
hyperedge weights. Finally, a transductive learning is successfully performed
upon the constructed hypergraph to learn the images’ relevance scores. Exper-
imental results performed on public MediaEval benchmarks demonstrate that
our method achieves consistently superior results compared to state-of-the art
re-ranking methods.
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