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Abstract. Automatically recognizing an existing semantic relation
(such as “is a”, “part of”, “property of”, “opposite of” etc.) between
two arbitrary words (phrases, concepts, etc.) is an important task affect-
ing many information retrieval and artificial intelligence tasks includ-
ing query expansion, common-sense reasoning, question answering, and
database federation. Currently, two classes of approaches exist to clas-
sify a relation between words (concepts) X and Y: (1) path-based and
(2) distributional. While the path-based approaches look at word-paths
connecting X and Y in text, the distributional approaches look at sta-
tistical properties of X and Y separately, not necessary in the proximity
of each other. Here, we suggest how both types can be improved and
empirically compare them using several standard benchmarking datasets.
For our distributional approach, we are suggesting using an attention-
based transformer. While they are known to be capable of supporting
knowledge transfer between different tasks, and recently set a number
of benchmarking records in various applications, we are the first to suc-
cessfully apply them to the task of recognizing semantic relations. To
improve a path-based approach, we are suggesting our original neural
word path model that combines useful properties of convolutional and
recurrent networks, and thus addressing several shortcomings from the
prior path-based models. Both our models significantly outperforms the
state-of-the-art within its type accordingly. Our transformer-based app-
roach outperforms current state-of-the-art by 1–12% points on 4 out of 6
standard benchmarking datasets. This results in 15–40% error reduction
and is closing the gap between the automated and human performance by
up to 50%. It also needs much less training data than prior approaches.
For the ease of re-producing our results, we make our source code and
trained models publicly available.

1 Introduction

During the last few years, Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) have resulted in major breakthroughs and are behind
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the current state-of-the-art algorithms in language processing, computer vision,
and speech recognition [9]. Meanwhile, modeling higher level abstract knowledge
still remains a challenging problem even for them. This includes classification of
semantic relations: given a pair of concepts (words or word sequences) to iden-
tify the best semantic label to describe their relationship. The possible labels
are typically “is a”, “part-of”, “property-of”, “made-of”, etc. This information
is useful in many applications. For example, knowing that London is a city is
needed for a Question Answering system to answer the question What cities does
the River Thames go through? Information retrieval benefits from query expan-
sion with more specific words, e.g. transportation disasters → railroad disasters.
For the task of database federation, an attribute in one database (e.g. with val-
ues France, Germany, and UK ) often needs to be automatically matched with
an attribute called country in another database. Knowing the semantic relations
allows large-scale knowledge base construction [11,23,33], automated inferenc-
ing [6,29], query understanding [31], post-search navigation [7], and personalized
recommendation [34]. The connection between word meanings and their usage
is prominent in the theories of human cognition [12] and human language acqui-
sition [2]. While manually curated dictionaries exist, they are known to be out-
of-date, not covering specialized domains, designed to be used by people, and
exist for only a few well resourced languages (English, German, etc.). Therefore,
here we are interested in methods for automated discovery (knowledge acquisi-
tion, taxonomy mining, etc.). As our Sect. 2 elaborates, this problem has been
a subject of extensive exploration for more than three decades. Our results here
suggest that knowledge transfer, that was recently demonstrated to be useful for
the other tasks, can be also successfully applied to recognizing semantic rela-
tions leading to substantial performance improvements and needing much less
training data.

The automated approaches to detecting semantic relations between concepts
(words or phrases) can be divided into two major groups: (1) path-based and
(2) distributional methods. Path-based approaches (e.g. [25]) look for certain
patterns in the joint occurrences of words (phrases, concepts, etc.) in the corpus.
Thus, every word pair of interest (x,y) is represented by the set of word paths that
connect x and y in a raw text corpus (e.g. Wikipedia). Distributional approaches
(e.g. [30]) are based on modeling the occurrences of each word, x or y, separately,
not necessary in the proximity to each other. Our goal here is to improve and
compare both classes of approaches.

Attention-based transformers (e.g. [28]) have been recently shown more
effective than convolutional and recurrent neural models for several natural
text applications, leading to new state-of-the-art results on several benchmarks
including GLUE, MultiNLI, and SQuAD [4,8]. At the same time, we are not
aware of any applications of attention-based transformers to the task of recog-
nizing semantic relations, so we are the first to successfully apply them to this
task. Thus, our contributions are as follows:

(1) We develop a novel neural path-based model that combines useful prop-
erties of convolutional and recurrent networks. Our approach resolves several
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shortcomings of the prior models within that type. As a result, it outperforms
the state-of-the art path-based approaches on 3 out of 6 well known benchmark-
ing datasets, and on par on the other 3. (2) Our distributional approach worked
better than our neural path-based model and outperformed current state-of-the-
art by 1–12% points (15–40% error reduction) on 4 out of 6 (same) standard
datasets, and on par on the remaining 2. (3) We show that the datasets that are
not improved are those where we have already reached the human performance.
(4) We illustrate that even our best model still has certain limitations which are
not always revealed by the standard datasets.

We make our code and data publicly available.1 The next section overviews
the prior related work. It is followed by the description of the models, followed
by our empirical results.

2 Related Work

The approaches to automatically classifying semantic relations between words
can be divided into two major groups: (1) path-based and (2) distributional.
Path-based approaches look for certain patterns in the joint occurrences of words
(phrases, concepts, etc.) in some validation text corpus. Thus, every word pair
of interest (x,y) is represented by the set of word paths that connect x and y in
a raw text corpus (e.g. Wikipedia). The earliest path-based approach is typically
attributed to “Hearst Patterns” [5] – a set of 6 regular expressions to detect
“is-a” relations (e.g. Y such as X ). Later works successfully involved trainable
templates and larger texts (e.g. [18,27]). However, a major limitation in relying
on patterns in the word paths is the sparsity of the feature space [14]. Distributed
representation do not have such limitations, thus with deep neural representa-
tions (“embeddings”, e.g. [13,17]) becoming popular, a number of successful
models were developed that used word embeddings as features (concatenation,
dot product or difference) and surpassed the path-based methods in performance
[15,20], to the point that the path-based approaches were perceived not be adding
anything to the distributional ones.

However, [10] noted that supervised distributional methods tend to perform
“lexical memorization:” instead of learning a relation between the two terms,
they learn an independent property of a single term in the pair. For example, if
the training set contains pairs such as (dog, animal), (cat, animal), and (cow,
animal), the algorithm learns to classify any new (x, animal) pair as true, regard-
less of x. Shwartz et al. [24,25] (one of our baselines) successfully combined dis-
tributional and path-based approaches to improve the state-of-the performance,
and thus proving that path-based information is also crucial for that. In their
approach, each word path connecting a pair of concepts (X, Y) is mapped by an
RNN into a context vector. Those vectors are averaged across all existing paths
and fed to a two-layer fully connected network.

There have been several related studies following [24]: [26] did extensive com-
parison of supervised vs. unsupervised approaches to detecting “is-a” relation.
1 https://github.com/dminus1/meta-cats.

https://github.com/dminus1/meta-cats
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Fig. 1. Our path-based neural approach to semantic relationship classification.

[32] looked at how additional word paths can be predicted even if they are not
in the corpus [19] also looked at “is-a” relation and confirmed the importance
of modeling word paths in addition to purely distributional methods. Still, the
results in [24,25] remain unsurpassed within the class of word-path models. Our
baseline for distributional approaches is [30], who suggested using hyperspherical
relation embeddings and improved the results of [24] on 3 out of 4 datasets.

3 Compared Models for Semantic Relations

3.1 Path-Based Neural Model

Intuitive Description. Our proposed path-based neural model combines use-
ful properties of convolutional and recurrent networks, while resolving several
shortcomings of the current state-of-the-art model [25] as we explain below.
Figure 1 presents an informal intuitive illustration. We jointly train our seman-
tic classification along with an unsupervised language modeling (LM) task.

The output of LM is the probability of occurrence of any input word sequence.
We use some of those probabilities as features for our relation classification
model. Inspired by the success of convolutional networks (CNNs), we use a fixed
set of trainable filters (also called kernels), which learn to respond highly to
certain patterns that are indicative of specific semantic relations. For example,
a specific filter fi can learn to respond highly to is a (and similar) patterns. At
the same time, our recurrent LM may suggest that there is a high probability of
occurrence of the sequence green is a color in raw text corpus. Combining those
two facts suggests that green belongs to the category color (true is-a relation
between them). Figure 1 shows only three convolutional filters (and the proba-
bilities of the sequences P1, P2, P3), while in our current study we used up to 16.

Thus, the LM probabilities act as approximate (“soft”) pattern matching
scores: (1) similar patterns receive similar scores with the same filter and (2)
similar filters produce similar scores for the same pattern. LM also reduces the
need for using many filters as explained by the following intuitive example: While
training, LM can encounter many examples of sequences like green is a popular
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color and green is a relaxing color. By modeling the properties of a language,
LM learns that removing an adjective in front of a noun does not normally result
in a large drop of the probability of occurrence, so the sequence green is a color
also scores highly even if it never occurs in the corpus.

Since the current state-of-the art path-based approach [25] aggregates the
word paths connecting each target pair by averaging the context vectors repre-
senting all the paths, we believe their approach has two specific drawbacks that
our approach does not: (1) when averaging is applied, the different occurrences
of word patterns are forced to compete against each other, so the more rare
occurrences can be dominated by more common ones and their impact on classi-
fication decision neglected as a result. By using LM we avoid facing the question
how to aggregate the context vectors representing each path existing in the cor-
pus. (2) The other relative strength of our approach over the baseline comes
from the fact that our model does not “anonymize” the word paths unlike [25],
which uniformly uses “x” and “y” for the path ends regardless of which words
the target pair (x,y) actually represents. Without the use of LM, this anonymiz-
ing is unavoidable to generalize to the previously unseen (x,y) pairs, but it also
misses the opportunity for the model to transfer knowledge from similar words.

Formal Definitions. Language Model (LM) is a probability distribution over
sequences of words: p(w1, ..., wm), where w1, ..., wm is any arbitrary sequence of
words in a language. We train LM jointly with our semantic relation classifica-
tion task by minimizing cross-entropy costs, equally weighted for both tasks. As
nowadays de-facto standard for a LM, we use a recurrent neural network (specif-
ically a GRU variation [3], which works as well as LSTM while being faster to
train). Thus, the probability of a word wm in the language to follow a sequence
of words w1, ..., wm−1 is determined by using the RNN to map the sequence
w1, ..., wm−1 into its context vector:

−→v w1,...,wm−1 = RNN(w1, ..., wm−1) (1)

and then applying a linear mapping and the softmax function:

p(wm|w1, ..., wm−1) =
softmax (W · −→v w1,...,wm−1 + b) (2)

where W is a trainable matrix, b is a trainable bias, and softmax is a standard
function to scale any given vector of scores to probabilities.

As any typical neural LM, our LM also takes distributed representations
of words as inputs: all the words are represented by their trainable embedding
vectors v1, ..., vm.2 This is important for our model and allows us to treat LM
as a function defined over arbitrary vectors p(vm|v1, ..., vm−1) rather than over
words.

To classify semantic relations, we only look at the word paths that con-
nect the target word pairs. Thus, we only make use of probabilities of the form
2 We deliberately do not use the arrow over the word vectors to simplify the notation.



566 D. Roussinov et al.

p(vy|vx, v1, ..., vk), where (x, y) is one of the target pairs of words - those in the
dataset that are used in training or testing the semantic relations, (vx, vy) are
their embedding vectors. The sequence of vectors v1, ..., vk defines a trainable
filter, and k is its size. While vectors v1, ..., vk have the same dimensions as the
word embeddings, they are additional parameters in the model that we introduce.
They are trained with the other ones (word embeddings + RNN matrices + the
decision layer) by back propagation. It is possible since due to the smoothness
of a neural LM, the entire model is differentiable.

Thus, we formally define the score of each of our convolutional filters (kernels)
the following way:

fi = log p(vy|vx, vi
1, ..., v

i
k) (3)

where p() is determined by our language model as the probability of the word
with the embedding vector vy to follow the sequence of words with the vectors
vx, v

i
1, ..., v

i
k. We apply log in order to deal with high variation in the orders of

magnitude of p(). Finally, we define the vector of filter scores by concatenating
the individual scores:

−→
f = [f1, f2, f3, ..fN ], where N is the total number of filters

(16 in our study here).
Filter scores

−→
f are mapped into a semantic relation classification decision

by using a neural network with a single hidden layer. Thus, we define:

−→
h1 = tanh(W2 · −→

f + b2) (4)

where W2 is a trainable matrix and b2 is a trainable “bias” vector. The classifi-
cation decision is made based on the output activations:

c = argmax (W3 · −→
h1 + b3) (5)

where W3 and b3 are also trainable parameters. As traditional with neural net-
works, we train to minimize the cross-entropy cost:

cost = − log((softmax (W3 · −→
h1 + b3))[cl]) (6)

where cl is the correct (expected) class label. We used stochastic gradient descent
for cost minimization.

3.2 Distributional Model: Attention-Based Transformer

The diagram on Fig. 2 illustrates how attention-based transformer [28] operates.
Instead of recurrent units with “memory gates” essential for RNN-s, attention-
based transformers use additional word positional embeddings which allows them
to be more flexible and parallelizable than recurrent mechanisms which have to
process a sequence in a certain direction. The conversions from the inputs to the
outputs are performed by several layers, which are identical in their architecture,
varying only in their trained parameters. In order to obtain the vectors on the
layer above, the vectors from layer immediately below are simply weighted and
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Fig. 2. Attention-based transformer used in our distributional approach to semantic
relationship classification.

added together. After that, they are transformed by a standard nonlinearity
function. We use tanh:

−→vi ′ = tanh(W ·
k∑

t=1

αt
−→vt ) (7)

here, −→vi ′ is the vector in the i-th position on the upper layer, −→vt is the vector
in the t-th position on the lower layer, W is a trainable matrix (same regardless
of i but different at different layers), and αt is a trainable function of vectors −→vi
and −→vt , such as the weights for all −→vt add up to 1. We use a scaled dot product
of the vectors −→vi and −→vt :

αt = −→vi · W ′ · −→vt (8)

where W ′ is a trainable matrix (also same regardless of i and t at the same
layer but different at different layers). The normalization to 1 is accomplished
by using a softmax function.

This mechanism allows rich vector representations to be formed at the highest
layers that can capture the entire content of a word sequence (e.g. a sentence or
a word pair) so it can be effectively used for any AI applications such as text
classification or generation. As it is commonly done with the transformers, we
make our output classification decision based on the first vector on the top level.
We do not use a hidden layer here, so we apply our formula 5 above to h1 defined
as the following: −→

h1 =
−→
vu
0 (9)

where {−→
vu
t } is the vector sequence produced by the transformer for the top level.



568 D. Roussinov et al.

Table 1. The relation types and statistics in each dataset.

Dataset Dataset relations #inst. #uniq. X #uniq. Y

Hypenet Lexical is a 20335 16044 5148

Hypenet Random is a 49475 38020 12600

K& H+N is a, part of 57509 1551 16379

BLESS is a, part of, event, attribute 26546 201 8089

ROOT09 is a 12762 1218 3436

EVALution is a, part of, attribute, opposite,
made of

7378 1631 1497

4 Empirical Evaluation

4.1 The Datasets

Table 1 summarizes general statistics of the datasets. We used the same datasets
as our baselines: the first two are from [25] and were built using a similar method-
ology: the relations used in them have been primarily taken from various sources
including WordNet, DBPedia, Wikidata and Yago. Thus, their x-s are primar-
ily named entities (places, films, music albums and groups, people, companies,
etc.). The important difference is that in order to create the split between train-
ing, testing and validation sets for HypeNet Lexical, the lexical separation pro-
cedure was followed [10], so that there is no overlap in words (neither x nor
y) between them. This reduces “lexical memorization” effect mentioned above.
The last four datasets are from [24], which originate from various preceding
studies: K&H+N [15], BLESS [1], ROOT09 [20], EVALution [21]. Most of the
relations for them were also taken WordNet. BLESS dataset also contains event
and attribute relations, connecting a concept with a typical activity/property,
e.g. (alligator, swim) and (alligator, aquatic). EVALution dataset contains the
largest number of semantic relations including antonyms, e.g. (good, bad). To
make our comparison more direct, we used exactly the same splits into train-
ing, development (validation) and testing subsets as in the baselines. We also
used exactly the same word paths data, as it is made publicly available by the
authors.

4.2 Experimental Setups

Since we sought to keep the number of hyper-parameters to the minimum, we set
the word embedding size, the RNN context vector size, and the hidden layer size
to be the same within all our path-based models. We tested their values in the
{50,100,500,1000} set. This size is the only hyper-parameter that was varied in
our experiments. We used the static learning rate of 0.01. As it is commonly done,
we report the results computed on the test sets with the hyper-parameter and the
number of training iterations that maximize the F1 scores on the validation sets,
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Table 2. F1 scores of our tested models compared to the state-of-the-art baselines.
Datasets: HyperNet Lexical (HL), Hypenet Random (HR), BLESS (B), ROOT09 (R),
EVALution(E).

Model HL HR K&H B R E

Prior Shwartz et al. (2016) 0.660 0.890 0.983 0.889 0.788 0.595

Word path models:

Shwartz et al. (2016) 0.700 0.901 0.985 0.893 0.814 0.600

Our neural model 0.740 0.899 0.990 0.927 0.832 0.602

Distributional:

Wang et al. (2019) N/A N/A 0.990 0.938 0.861 0.620

Our transformer-based 0.821 0.905 0.987 0.950 0.905 0.701

Human 0.90 0.90 0.98 0.96 0.95 0.82

thus using exactly the same metrics and procedures as were used to obtained the
baseline results: scikit-learn [16] with the “weighted” set-up, which computes the
metrics for each relation, and reports their average, weighted by support (the
number of true instances for each relation). For HypeNet datasets, that was
accordingly set to “binary”. We also verified through personal communications
with the authors of [24] that our metrics are numerically identical for the same
sets of predicted labels.

For our path-based models, all the trainable parameters were initialized by
a normal distribution around 0 average and standard deviation of 1. We used
the same transformer architecture and hyper-parameters as in [4] (BERT mono-
lingual English uncased version) which has 12 layers and the output vector size of
768, resulting in the total number of trainable parameters of 110 million. As it is
commonly done when using a pre-trained transformer, we initialize our weights
to those that were already trained by [4] for a language model and next sentence
prediction tasks on a copy of English Wikipedia text and the BookCorpus. For
consistency with the data used during pre-training, we add the same special
markers before, between and after our input word sequences x and y.

4.3 Comparing Against the Baselines

Table 2 presents our results. For additional comparison, we also include “Before
Baseline” row, which lists the baselines used in [24,25]. For HypeNet Random
and Evalution datasets, we put the larger values that we obtained in our re-
implementation of the distributional methods that they used rather than their
reported values. The following can be observed:

(1) Our neural word path model has been able to improve the state-of-the-
art on three (3) out of six (6) datasets: Hypenet L, Bless and Root09. The
differences are statistically significant at the level of .01. On the remaining
three (3) datasets (HypeNet Random, K&H+N and Evalution), our results
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Fig. 3. Visual illustration of the error reduction relatively to the baseline and human
performance on the tasks.

are the same as with the baseline performance (no statistically significant
difference at the level .05). The baseline did not improve on those datasets
over the prior work either. The scores for HypeNet Random and K&H+N
are already high due to “lexical memorization” mentioned above. Since the
compared models used exactly the same data, the obtained results clearly
suggest that our neural model is better than the current state-of-the-art
word-path model [24,25].

(2) Our transformer-based model has also demonstrated tangible gains over
state-of-the-art baselines regardless of the class of the approach (both path-
based and distributional) on four (4) out of six (6) datasets by 1–12% points
(15–40% error reduction). Those differences are statistically significant at
the level of .01. There are no statistically significant differences on HypeNet
Random and K&H+N. This suggests that an attention-based transformer
is a very powerful mechanism for modeling semantic relations. Although
they have been shown to be very effective in many other applications where
knowledge transfer between tasks is essential, this is the first study that has
used them for semantic relations.

(3) On four (4) out of six (6) datasets, our distributional model worked
better than our neural word path model. The differences are statistically
significant at the level of .01. There are no statistically significant differences
on the remaining two.

We estimated the human performance on our datasets by giving 100 ran-
domly selected word pairs to 3 independent graders, who were allowed to look up
the meanings online (last row). It can be seen that the state-of-the-art approaches
have already achieved the human level on the datasets where no improvement
was detected (HypeNet Random and K&H+N), so this may explain why our
approaches did not substantially improve them any further. Fig. 3 illustrates the
effect of error reduction on the four datasets on which our approaches improved
the state-of-the-art. For comparison, we plot the semantic relation classification
error calculated as 100 − F1 score rounded to the nearest integer. It can be seen
that our approaches have approximately reduced the errors on those “unsolved”
datasets half-way from the baseline to the human level. We believe that this
result is truly remarkable!
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Table 3. Average Precision (AP) scores of our tested models compared to other recent
strong baselines on binary category verification (“is-a” relation only).

Model BLESS EVALution

Chang et al. 2018 0.186 0.364

Roller et al. 2018 0.760 0.480

Nguyen et al. 2017 0.454 0.538

Yin and Roth 2018 0.595 0.623

Our path-based 0.939 0.603

Our transformer 0.986 0.739

0 50 100
0.7
0.8
0.9

% of training set used

F
1 Our Transformer

Our Path-based

Fig. 4. Using only portion of Root dataset for training.

For additional comparison, we also include our results along with the results
of other recent works that looked at semantic relations classification even though
those works did not claim to exceed the state-of-the-art approaches presented in
[24,25]. We report the metric of Average Precision (AP) used in those studies
and the results on the two datasets (Bless and Evalution) also commonly used
in them. We did not use the other datasets for comparison since they are much
smaller and relying on manual part of speech tags (nouns, verbs, adjectives etc.).
As Table 3 illustrates, our path-based model outperforms all but one, and our
transformer-based model sizably exceeds all of those results reported.

We have also tested the influence of training size on the model by comparing
its performance with 5%, 10%, 25%, 50% and 75% of randomly selected training
subsets. Due to the size limit, we show only the results on Root09 (Fig. 4). The
results suggest the importance of the dataset size and the possibility of further
improvements when more training data is available for the path-based. At the
same time, out transformer-based model needs much less training to reach its top
possible performance. We also verified that all the components of our path-based
model here are essential to exceed the baselines, specifically: using a hidden layer,
using all the available word paths, using all 16 filters. Larger number of filters
did not result in any gains, but increased the training time.

We also tried to play an adversarial role and fed more challenging pairs to
the trained models to see when they are starting to fail. Our attention-based
transformer model trained for HypeNet Lexical dataset (named entities mostly)
erroneously classified all the 100 examples created by combining random general
words and the word “air” (e.g. “car air”, “circle air”, “new air”) as “airline.”
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It also erroneously classified all the 30 correct airline names that we tried as
“airports” in addition to correctly classifying them as “airline.” The proportion
of correct airline names classified as “recording label” was 60%, which is lower
than for the correct category, but still alarmingly high. Meanwhile, general words
(like “car”, “book”, “new”, etc.) are very rarely classified as members of any
categories in this dataset since the model correctly sees that they are not named
entities. Those observations suggest that what the transformer actually learns
for this datasets is to use the combined properties of a word sequence (n-gram)
to check if it can possibly be a named entity, and then if it topically fits the
category (e.g. “aviation” in general). Those two conditions are sufficient to make
a positive classification and to obtain high scores since very few test categories
in the dataset are closely related (e.g. “airport” and “airline”). While our neural
path models don’t make such mistakes, their mistakes are primarily due to no
word paths existing between the candidates in the training corpus, which was
already noted in the related prior work. This suggests that a combination of
those two approaches may provide additional gains over each. We have left more
formal exploration of those observations for future studies.

5 Conclusions

We have considered the task of automatically recognizing semantic relations
between words (phrases, concepts, etc.) such as “is a”, “part of”, “property
of”, “opposite of” etc., which is an important task affecting many applications
including knowledge base construction, inference, query understanding, person-
alized recommendation and post-search navigation. Using six standard datasets,
we have demonstrated that both distributional and word path state-of-the-art
approaches can be tangibly improved. Out of those two approaches that we sug-
gested, the transformer-based distributional approach worked significantly bet-
ter. It has decreased the gap between the current strong baselines and human
performance by roughly 50% for those datasets that still had room for improve-
ment. We are not aware of any other work applying a pre-trained attention-based
transformer (ABT) for this task. Since ABT-s are currently known to be the first
practically useful mechanism for knowledge transfer between natural language
tasks, our work paves the way to making knowledge transfer to be a default
feature in any modern NLP tool.

It will also lead to integrating training of the transformer with the semantic
classification task on a deeper level, which can be accomplished by customizing
its pre-training (weight-initialization) algorithm to include word semantic infor-
mation available from existing taxonomies, which we are planning to undertake
in future, along with experimenting with cross-lingual knowledge transfer (e.g.
[22]), when a model uses English data to predict semantic relations in other, less
resourced, languages.
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