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Abstract. A substantial portion of the query volume for e-commerce
search engines consists of infrequent queries and identifying user intent
in such tail queries is critical in retrieving relevant products. The intent of
a query is defined as a labelling of its tokens with the product attributes
whose values are matched against the query tokens during retrieval. Tail
queries in e-commerce search tend to have multiple correct attribute
labels for their tokens due to multiple valid matches in the product cat-
alog. In this paper, we propose a latent variable generative model along
with a novel data dependent regularisation technique for identifying mul-
tiple intents in such queries. We demonstrate the superior performance
of our proposed model against several strong baseline models on an edi-
torially labelled data set as well as in a large scale online A/B experiment
at Flipkart, a major Indian e-commerce company.

1 Introduction

E-commerce companies offer a wide selection of products from many categories
and the number of unique queries submitted to their search engines can be of the
order of millions per month. A substantial portion of these queries are infrequent;
we observed that approximately 35% of the unique queries at Flipkart, a major
Indian e-commerce company occur less than 50 times a month. Such tail queries
[11,24] lack sufficient click-through data and tend to have poor retrieval perfor-
mance [11,14,17]. Improving performance on these queries has a large business
impact from the long term benefits of greater customer satisfaction [2,7].

E-commerce search is a faceted search on a structured catalog of products
defined by a set of specifications represented as key-value pairs. Two products
from the Jewellery and Home Furnishing categories at Flipkart are shown in
Fig. 1 along with some of their specifications. Specifications like ‘plating’ and
‘shape’ are product attributes that take values ‘silver’ and ‘rectangle’ respec-
tively. The intent of a search query is defined as a labelling of its tokens with the
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Fig. 1. Specifications of products from Jewellery and Home Furnishing.

product attributes whose values are matched against the query tokens during
retrieval. The intent of two search queries is illustrated in Table 1.

Queries in e-commerce search can have multiple correct intents due to mul-
tiple valid matches between their tokens and the values of product attributes.
An example of this is shown in Table 1 where the attributes ‘color’, ‘plating’,
and ‘base material’ are all correct labels for the token ‘silver’ in the query ‘silver
oxidised earring’. This phenomenon is particularly prevalent in tail queries; an
analysis of an editorially labelled sample of tail queries at Flipkart revealed that
approximately 42% of tail queries had multiple correct intents. Existing tech-
niques for identifying user intent in search queries are either supervised [17,19] or
semi-supervised [11,19] and require labelled or partially labelled queries. Extend-
ing them to identify multiple intents in tail queries is difficult due to a lack of
sufficient click-through data from which labels can be derived [14,17,25]. We
address this shortcoming of existing techniques in our current work.

We start with an empirical study of the product catalog and search query logs
at Flipkart and base our current work on its conclusions. We propose a latent
variable generative model for the observed ordered pairs of query tokens that has
the corresponding ordered pairs of attribute labels as the latent variables. This
addresses the lack of labelled data for tail queries. We observed that tail queries
tend to have multiple intents due to multiple attributes having similar high

Table 1. Labellings of multi-intent queries ‘silver oxidised earring’ and ‘rectangle room
mat’ by the baselines and our proposed model (RIM) which identifies all correct intents.

silver oxidised earring rectangle room mat

Correct intent color, plating, material model store shape, pattern place-of-use store

LR color, store model store type type store

CRF color, store, model model store store place-of-use store

Bi-LSTM-1 model model store key-features model model

Bi-LSTM-2 color model store key-features place-of-use store

UMM color, store model store type place-of-use store

RIM color, plating, material model store shape, pattern place-of-use store
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empirical probabilities of generating the same tokens. We propose a similarity
measure between attribute pairs and use it to regularize our model in a way that
the learnt posterior distributions have similar probabilities for similar attribute
pairs. This addresses the problem of identifying multiple intents in tail queries.
We finally demonstrate the superior performance of our proposed model against
several strong baselines on an editorially labelled data set and in a large scale
online A/B experiment at Flipkart where we achieved statistically significant
improvements of 3.03% in click-through rate and 15.45% in add-to-cart ratio.

2 Definitions and Preliminaries

E-commerce product catalogs are typically divided into various categories where
every product belongs to a single category. Examples of such categories are
Jewellery, Furniture, and Home Furnishing (bed sheets, table covers, curtains,
etc.). Sample products from Jewellery and Home Furnishing are shown in Fig. 1.
We define tail queries as queries that occur less than 50 times a month.

The attributes that describe the products within a category are denoted by
A and the values these attributes can take are denoted by V. Every product can
thus be represented by a set of attribute-value pairs (a, v) where v may consist
of multiple tokens. For example, some of the values that the attribute ‘material’
can take in the Jewellery category are ‘rose gold’, ‘silver’, ‘bronze’, ‘stainless
steel’, etc. The vocabulary of tokens that constitute all the attribute values is
denoted by W. A query is denoted by x and is defined as a sequence of n tokens
(x1, x2, . . . , xn). The intent of this query is denoted by z and is defined as a
corresponding assignment of n attribute sets (z1, z2, . . . , zn), where zi ⊆ A. We
let zi be a set so that a query can have multiple intents. In our current work, we
focus on intent identification within a category and assume a query to category
mapping is available; a fairly standard assumption in vertical search engines [3].

Constructing Intent Labels from Click Logs: Manual intent labelling of
queries is a laborious task requiring significant domain expertise. However, for
queries that occur sufficiently often in the click logs, matches between the query
tokens and the attribute-values of the clicked products provide a natural means
of obtaining the attribute labels. Following [19], for a particular query we find
matches between its tokens and the tokens of the attribute-values of every
product that is clicked for this query. We then aggregate these matches across
attributes to construct intent labels for every token in the query. This process is
applied to queries that occur at least 500 times in a month with a click-through
rate of at least 40%. Using such frequent queries with high click-through rates
lets us construct reliable and fairly noise-free attribute labels for them. Applying
this process to tail queries will result in fairly noisy attribute labels [11,14,17].
The labelled data set thus constructed is denoted by DL and is referred to as the
click-log labelled data in this paper. The average number of such labelled queries
DL for the Jewellery, Furniture, and Home Furnishing categories is ≈5k while
the average number of unique queries D that occur at least 10 times a month in
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these categories is ≈50k. The labelled queries are much fewer than the unique
queries which shows the limitations of constructing intent labels from click logs.

3 Empirical Data Analysis

Query intent understanding on a large scale product catalog presents unique
challenges and we discuss two distinct characteristics here. The fraction of unique
queries with a particular attribute pattern in the click-log labelled data has a
long-tailed distribution as shown in Fig. 2a. Two example attribute patterns for
the query ‘silver oxidised earring’ are ‘color, model name, store name’ and ‘plat-
ing, model name, store name’ as shown in Fig. 1. From Fig. 2a, it is noteworthy
that the most frequent attribute pattern represents on average only 5% of the
unique queries in the three categories. This makes supervised learning difficult
since most attribute patterns have very few example queries. Moreover, this
analysis is for the relatively frequent queries DL and we expect this distribution
to have an even longer tail for tail queries.

(a) The proportion of unique
queries in 100 most frequent at-
tribute patterns in the labelled
data.

(b) Each point in the heat map is the normalized
overlap between the vocabularies of a pair of at-
tributes. Each graph visualises a random set of 30
attribute pairs.

Fig. 2. Empirical data analysis

The average number of attributes A for the three categories is ≈130 while
the average size of the vocabulary W is ≈20k. Many pairs of attributes have
a significant degree of overlap between their vocabularies. We illustrate this in
Fig. 2b where the non-zero entries in the heat map indicate an overlap between
the vocabularies of a particular pair of attributes. For example, the attributes
‘plating’ and ‘base material’ in the Jewellery category have an overlap of ≈30%
in their vocabularies. This overlap indicates the possibility of multiple attributes
being the correct labels for a token in a query and thus the query having multiple
correct intents. We use this characteristic to develop a regularisation technique
that improves our model’s ability to capture multiple intents in queries.
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4 The Latent Variable Generative Model

Tail queries have very few clicks and thus the click log mining technique of
Sect. 2 can not be used to derive labels for them. Generative models are naturally
suited to an unsupervised setting where labels are absent. The authors of [5]
propose a simple generative process for queries which generates query tokens
independently by first sampling an attribute and then sampling a token from
that attribute’s vocabulary. However, modelling dependence is important since
the attribute label for a token depends on the other tokens in a query. For
example, consider the queries ‘cotton sofa cushion’ and ‘cotton bed sheets double
bed’. The correct label for ‘cotton’ in the first query is ‘filling material’ while
in the second query is ‘fabric’. This highlights the need for a richer generative
model that captures token interactions and attribute co-occurrences in a query.

We propose a latent variable generative model for queries where the observed
variables are ordered pairs of tokens and the latent variables are the correspond-
ing ordered pairs of attribute labels. The generative process is defined over all
ordered pairs of tokens in a query and not just the adjacent ones. For example,
there are 3 ordered pairs of tokens in the query ‘silver oxidised earring’: (‘silver’,
‘oxidised’), (‘oxidised’, ‘earring’), and (‘silver’, ‘earring’).

Let cx be the set of all ordered pairs of tokens in a query x. We define
ψ as a |A| × |A| matrix of parameters specifying the attribute co-occurrence
probabilities, i.e.,

∑
a ψa,a′ = 1 for each a′. We similarly define φ as a |W| × |A|

matrix of parameters specifying the probability of generating a token from an
attribute, i.e.,

∑
w φw,a = 1 for each a. We assume that the ith ordered token

pair xi = (xi1, xi2) is generated from a corresponding ordered attribute pair
zi = (zi1, zi2) as follows: Sample an attribute zi1 uniformly at random and then
sample the attribute zi2 ∼ Mult(ψ·,zi1) conditioned on zi1. The token pair xi is
then generated by sampling xi1 ∼ Mult(φ·,zi1) and xi2 ∼ Mult(φ·,zi2). The joint
probability of xi and zi is thus given by

p(xi, zi) = p(xi1|zi1) p(xi2|zi2) p(zi2|zi1) p(zi1) = φxi1,zi1 φxi2,zi2 ψzi2,zi1
1

|A| .

Therefore, our model represents queries as a set of all ordered pairs of its tokens
and we assume all pairs to be independent to get p(x) ≈ p(cx) =

∏
i

∑
zi

p(xi, zi).
This assumption is critical for computational tractability while still capturing
the interactions between the tokens as well as the co-occurrences between the
attributes. The observed log-likelihood which we optimize using the standard
Expectation Maximization (EM) algorithm is

lo(q, φ, ψ) =
∑

i

[

Eqi

[

log
(

p(xi, zi)
qi(zi)

)]

+ KL(qi ‖ p(zi|xi))
]

. (1)

Via a standard derivation, the E-Step update for the token pair xi is given by

qi((zi1 = a, zi2 = a′)) =
φxi1,aφxi2,a′ψa,a′

∑
(a,a′) φxi1,aφxi2,a′ψa,a′

, (2)
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where qi((zi1 = a, zi2 = a′)) is the posterior probability of the attribute pair
(zi1, zi2) being (a, a′) given the token pair (xi1, xi2). Via a standard derivation,
the M-Step updates for the parameters φ and ψ are given by

φ
(o)
w,a =

∑
i

[
1[xi1=w] qi((a,·))+1[xi2=w] qi((·,a))

]

∑
i

[
qi((a,·))+qi((·,a))

] , ψ
(o)
a,a′ =

∑
i qi((a,a′))

∑
i qi((·,a′)) , (3)

where qi((·, a)) =
∑

a′ qi((zi1 = a′, zi2 = a)) and qi((a, ·)) is defined similarly.
Since our model is defined over pairs of tokens, computing the attribute

assignments for each token in a query during posterior inference requires an
approximation. We follow [18] and approximate the posterior distribution of the
attribute assignments by decomposing it over pairs of tokens as follows

p(z|x) ≈ p((z1, z2)|(x1, x2))
n−1∏

i=3

p((zi−1, zi)|(xi−1, xi)).

We compute multiple attribute assignments at each position in the query using
a standard forward-backward algorithm to obtain multiple intents per token.

5 Regularisation for Learning Multiple Intents

Queries with multiple intents have multiple attribute labels for one or more of
their tokens, for example, the token ‘silver’ in the query ‘silver oxidised earring’
shown in Table 1. As illustrated in Fig. 2b, certain attributes have a significant
overlap between their vocabularies. We use this observation to define a simi-
larity measure between attributes using background estimates of the generative
model’s parameters. We then use this similarity measure to devise a data depen-
dent regularisation technique that distributes the generative model’s posterior
across attributes with significantly overlapping vocabularies which improves its
ability to detect multiple intents.

5.1 Background Parameter Estimates

We use the product catalog and the click-log labelled data to derive background
estimates for the generative model’s parameters. To derive the estimates for φ,
we first iterate over all products in a category and construct the set {(a, v, κv,a)},
where a is an attribute, v is an attribute value and κv,a is the number of products
with v as the attribute-value for the attribute a. We then define the estimate

˜φw,a =
C(w, a) + ϕa

∑

w C(w, a) + ϕa|W| ,

where C(w, a) = CU (w,a)+CL(w,a)
2 , CU (w, a) =

∑
v

1[w∈v] log κv,a

|v| , CL(w, a) is the
number of times the token w is labelled with the attribute a in the click-log
labelled data set DL, and ϕa = ϕ

maxw C(w,a) is a smoothing factor with ϕ > 0
being a hyper-parameter.
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To derive the estimates for ψ, we first iterate over all products in a category
and construct the set {(a, a′, κa,a′)}, where a and a′ are attributes and κa,a′ is
the number of products having both attributes a and a′. We then define the
estimate

˜ψa,a′ =
C(a, a′) + ωa′

∑

a C(a, a′) + ωa′ |A| ,

where C(a, a′) = CU (a,a′)+CL(a,a′)
2 , CU (a, a′) = log κa,a′ , CL(a, a′) is the number

of times the attribute pair (a, a′) co-occur in the click-log labelled data set DL,
and ωa′ = ω

maxa C(a,a′) is a smoothing factor with ω > 0 being a hyper-parameter.

5.2 Attribute Similarity Regularisation

The probability of the model generating the token w from the attribute a is
given by the model parameter φw,a and its background estimate is φ̃w,a. Thus,
if φ̃w,a ≈ φ̃w,b and both background estimates are high, then the model should
pick both attributes a and b as relevant labels for the token w. Analogously,
if two attribute pairs (a, a′) and (b, b′) have similar high background estimated
probabilities of generating the token pair (w,w′), then the model should pick
both attribute pairs (a, a′) and (b, b′) as relevant labels for the token pair (w,w′).
We quantify this notion by defining

g(w,w′)((a, a′), (b, b′)) = (φ̃w,aφ̃w,b)2(φ̃w′,a′ φ̃w′,b′)2.

Note that g is high when φ̃w,a ≈ φ̃w,b, φ̃w′,a′ ≈ φ̃w′,b′ and the individual φ̃’s
are high. We use this notion of attribute similarity to define a regularisation
term that distributes the generative model’s posterior across attribute pairs with
similar vocabularies. Let g(w,w′) denote a square positive matrix of size |A|2×|A|2
over the attribute pairs. Alternating normalization of the rows and columns
(the Sinkhorn-Knopp algorithm [23]) of g(w,w′) will generate a doubly stochastic
matrix ḡ(w,w′) that we will use instead of g(w,w′) as the measure of similarity. For
a token pair x, the regularisation term penalizes large differences in the posterior
probabilities p((a, a′)|x) and p((b, b′)|x) if ḡx((a, a′), (b, b′)) is high and is given
in the following regularised log-likelihood

lo(q, φ, ψ) − α
∑

i

[
1
2

∑

z,z̄

ḡxi
(z, z̄)

(
p(z|xi) − p(z̄|xi)

)2
]

, (4)

where xi = (xi1, xi2) is the ith token pair, z and z̄ are attribute pairs, and
α ∈ (0, 1) is a hyper-parameter. Unfortunately, maximizing the above regularised
log-likelihood becomes intractable due to a coupling of the model parameters
in the M-step optimization. So we establish the following upper bound on the
regularisation term in (4) that gives us a lower bound on the regularised log-
likelihood that is tractable to maximize.

Theorem 1. Let z and x be discrete random variables and ḡx be a |z| × |z|
doubly stochastic matrix. Then, for any distribution qx, we have

1
2

∑
z,z̄ ḡx(z, z̄)

(
p(z|x) − p(z̄|x)

)2 ≤ 1
2

∑
z,z̄ ḡx(z, z̄)

(
qx(z) − qx(z̄)

)2 + min
[
1, 5

√
2KL(qx ‖ p(z|x))

]
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Applying this bound on the posterior distribution p(zi|xi) and the approximate
posterior distribution qi gives the following lower bound on (4)

Eqi

[

log
(

p(xi, zi)
qi(zi)

)]

− α

[
1
2

∑

z,z̄

ḡxi
(z, z̄)

(
qi(z) − qi(z̄)

)2
]

− 5α

4
. (5)

Proof. See Online Supplementary Material.

Thus, the regularised E-step optimization is

max
qi

Eqi

[

log
(

p(xi, zi)
qi(zi)

)]

− α

[
1
2

∑

z,z̄

ḡxi
(z, z̄)

(
qi(z) − qi(z̄)

)2
]

, (6)

subject to
∑

zi
qi(zi) = 1, where we have dropped the constant term involving

α. The optimization in (6) can be done via projected gradient descent [21]. In
our experiments, we observed that 3 to 4 iterations were usually sufficient for
convergence and that our method results in the posterior distribution being
distributed over similar attribute pairs instead of being concentrated on one of
them. The M-step updates for this model are exactly the same as in (3).

6 Experiments and Analysis

We evaluated our proposed model against several strong baseline models on data
sets proprietary to Flipkart. To the best of our knowledge, there are no publicly
available data sets for evaluating query intent algorithms for e-commerce search
or similar domains and all previous related work [11,16,18,19,24] has been eval-
uated on such proprietary data sets. We selected the Jewellery, Home Furnishing,
and Furniture categories for experimental evaluation. These categories at Flip-
kart have a high business value in spite of low query volume and thus very sparse
click data leading to more tail queries as compared to more popular categories
like Electronics or Lifestyle. The click-log labelled data set DL and the unlabelled
data set D used to train all models were obtained from one month of query logs.
We restricted D to queries with at least 10 occurrences over that month to filter
out queries with misspellings.

6.1 Baseline Models

There is little prior work on understanding the intent of e-commerce search
queries, especially in our setting where we have access to labelled as well as
unlabelled query logs in addition to data from the product catalog. Prior work
on intent understanding can be broadly classified into supervised and unsuper-
vised methods. The unsupervised baseline model we compare against is UMM
[5] described in Sect. 4. The supervised baseline models we compare against are
Multinomial Logistic Regression (LR), the Linear Chain CRF from the query
intent understanding work in [11,19], and the Bi-LSTM-CRF from [10]. The
recent work [26] on understanding intent in Google shopping queries is not

https://drive.google.com/file/d/1GH-5_Z6YQHtwBEGm7qpf0wgk1pyaZikU/view?usp=sharing
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applicable in our setting since it focuses on a different problem of understand-
ing overall query intent and not token level attribute labelling as ours. These
supervised baseline models were trained on the click-log labelled data set DL

with elastic-net regularisation whose hyper-parameters were selected by 3-fold
cross-validation with F1 score as the performance metric.

Multinomial LR and Linear Chain CRF: Each training instance consisted
of a query token xi at position i and its attribute label zi taken from the queries
in DL. We extended the features from [19] by defining additional catalog features
in terms of matches between the query tokens and the catalog attributes and
additional syntactic features in terms of the surface form of the tokens. The
catalog features were unigram and bigram TF-IDF matches with the vocabulary
of each attribute in a category. The syntactic features were whether a unigram
is a stopword, is a short word with less than 4 characters, or is alphanumeric.

Bi-LSTM-CRF: We implemented two variants of the Bi-LSTM-CRF from [10].
The first, Bi-LSTM-1, used 100-dimensional word embeddings trained on the
product descriptions from the catalog (using fastText [13]) as its features. The
second, Bi-LSTM-2, additionally used the catalog features described above. It
is important to note that we have a much stronger set of features compared to
the standard implementations of a Bi-LSTM-CRF since we incorporate where a
unigram or a bigram matches in the attribute space.

We evaluated all baseline models against the all pairs mixture model (PMM)
described in Sect. 4 and the all pairs mixture model with attribute similarity
regularisation (RIM) described in Sect. 5.2.

6.2 Evaluation of Intent Labellings

A team of search quality experts at Flipkart labelled a random sample of tail
queries from the query logs using their domain expertise. We randomly selected
900 queries with multiple intents (300 queries per category) from this labelled
set on which to evaluate all models and refer to it as the golden set. We further
created 5 randomized 80/20 splits of the golden set to get multiple test and
validation sets. We computed marginal distributions at each token position in
a query for all models and considered only those labellings that were above a
threshold tuned on a validation set. We chose F1 score as the performance metric
and since we are interested in queries with multiple intents, we follow [8] and get
the overall F1 score per query by micro-averaging the F1 score per query token.
We used the same validation and test sets for all models in each run.

The performance of all models on the test sets is summarized in Fig. 3 and
Table 2. RIM outperforms PMM as well as all baseline models with an aver-
age improvement of 12.5% in F1 score over UMM, the best performing baseline
model. RIM achieves an average improvement of 13.4%, 15.2%, and 8.6% in
F1 score over UMM for the Furniture, Home Furnishing, and Jewellery cate-
gories. Moreover, RIM and PMM together outperform all baseline models which
demonstrates the effectiveness of modelling pairwise dependencies between the
query tokens. All the supervised baseline models including Bi-LSTM-CRF, a
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Fig. 3. Box plots of F1 scores on the held-out test splits of the golden set for all models.

state-of-the-art model for slot-tagging problems, perform much worse than the
unsupervised baseline model UMM due to a lack of sufficient labelled data. RIM’s
performance improvements over PMM demonstrate the effectiveness of our data
dependent attribute similarity regularisation for queries with multiple intents.
An example of this is illustrated in Table 3 where RIM’s posterior is distributed
over the correct attribute labels whereas that of PMM is distributed over the
correct and incorrect attribute labels.

Table 2. Average F1 scores on the held-out test splits of the golden set for all models.
The results for RIM are statistically significant against all baselines with p-value < 0.01.

LR CRF [11,19] Bi-LSTM-1 [10] Bi-LSTM-2 [10] UMM [5] PMM RIM

Jewellery 0.45 0.46 0.40 0.42 0.58 0.59 0.63

Home Furnishing 0.44 0.44 0.42 0.42 0.59 0.64 0.68

Furniture 0.29 0.36 0.29 0.35 0.52 0.53 0.59

Average 0.39 0.42 0.37 0.39 0.56 0.59 0.63

Table 3. The marginal posterior distributions for the token ‘silver’ in the query ‘silver
oxidised earring’ returned by PMM and RIM. Here, δ < 10−4 and the correct attribute
labels are color, plating, and base material.

color plating base material store model ideal for body material

PMM 0.381 0.148 0.121 0.143 0.059 0.033 0.015

RIM 0.693 0.135 0.081 δ δ δ δ

6.3 Performance in an Online A/B Experiment

The intent inferred for a search query plays a major role in determining and
retrieving the most relevant products for that query at Flipkart as is standard
in e-commerce search [15]. Thus, the quality of the inferred intent very strongly
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influences a user’s propensity to click and add-to-cart the products retrieved for
a search query. Hence, we measure the click-through rate (CTR) and the add-to-
cart ratio as the relevant metrics in the online A/B experiment. The add-to-cart
ratio (i.e., search conversion) is defined as the fraction of searches leading to
a product being added to the shopping cart. We deployed RIM and UMM in
the production search system at Flipkart and compared the performance of the
models against each other in a standard A/B experiment configuration where
we treated UMM as the control condition. More than 10 million users visit
Flipkart daily and we randomly assigned 15% of the users to each condition and
conducted the test over 10 days. Since the models were trained for the Jewellery,
Home Furnishing, and Furniture categories, only those queries belonging to these
categories were considered for comparison. The query to category mapping was
obtained by a separate production system at Flipkart. We would have ideally
liked to restrict the experiment to tail queries with multiple intents only in order
to better demonstrate the capabilities of RIM. However, in practice it is difficult
to determine on the fly if a query has multiple intents. Thus, we conducted the
experiment on all tail queries. The query volume affected by the experiment was
≈75k tail queries (with ≈ 36k unique queries). The results of this online A/B
experiment are summarized in Table 4.

Table 4. Results of the online A/B experiment comparing RIM against the best base-
line model UMM. Statistical significance with p-value < 0.01 is denoted by ∗ and that
with p-value < 0.001 is denoted by ∧.

Tail CTR (%) Tail Add-to-Cart (%)

Jewellery +2.78∗ +10.22∗

Home Furnishing +2.13∧ +13.46∧

Furniture +4.19∧ +22.67∧

Average +3.03 +15.45

RIM significantly improves both the CTR and the add-to-cart ratio for tail
queries across all categories. The average improvement in CTR is 3.03% while
that in add-to-cart ratio is 15.45%. The results for all categories were statistically
significant as measured by a paired sample t-test with p-value < 0.01. The much
larger improvement in add-to-cart ratio as compared to CTR is noteworthy. On
further analysis, we found that most tail queries express a very specific product
need and when the search system is able to infer the correct query intent and
retrieve the relevant products, the customers are satisfied, as indicated by add-
to-cart, with fewer clicks. We are thus able to demonstrate the effectiveness of
the proposed model in a large scale real world setting. We finally illustrate the
retrieval quality with intents inferred by RIM compared to the existing produc-
tion system for two queries in Figs. 4 and 5. Both queries are tail queries drawn
from the online A/B experiment and RIM correctly identifies their intents.
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Fig. 4. Top retrieved products for the query ‘small pillow cover pack’ by the exist-
ing production system (left) and with intents inferred by RIM (right). The produc-
tion system retrieves irrelevant bed sheets. RIM correctly identifies ‘pillow cover’ as
‘store/model’ and ‘small’ as ‘size/shape’.

Fig. 5. Top retrieved products for the query ‘glass top wooden dining table 6 seater’
by the existing production system (left) and with intents inferred by RIM (right). The
products highlighted in red are wooden top tables and thus irrelevant for the query.
RIM correctly identifies ‘glass’ as ‘top material’. (Color figure online)

7 Related Work

The existing work on query understanding has mainly focused on learning query
intent in a supervised manner by using click-through data [6,9,12,22] and this
restricts their generalization to combinations of frequent attribute patterns only.
However, tail queries exhibit tail attribute patterns and this is the focus of our
current work. The existing methods for understanding intent of tail queries can
be broadly divided into two major types: (a) Those that identify a mapping
between tail queries and similar frequent queries [11,24], and (b) Those that
learn query intent from partially labelled queries [16,17,19]. Fusing the results
of a tail query with those of a similar frequent query as a way of improving
retrieval metrics is suggested in [11]. However, the underlying assumption that
a tail query is a frequent query that is expressed differently does not hold in our
case. Transferring the intent of frequent queries to tail queries using an external
knowledge base is studied in [24]. However, building domain specific knowledge
bases is difficult. Learning query intent from partially labelled queries along with
side-supervision in the form of derived attributes for some query tokens is stud-
ied in [19]. However, it is difficult to obtain partial labellings for tail queries
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because most tokens in tail queries will be marked as ‘unknown’ due to the
sparsity of the click-through data as observed in [17]. A hidden-unit linear-chain
CRF that allows for non-linearities is introduced in [16]. However, its formula-
tion too requires partially labelled queries. The availability of derived labelled
data by performing rule-based labelling of unlabelled sequences is assumed in
[4]. However, the rule-based labelling is domain specific and is difficult to extend.
The CRF auto-encoder [1] and its application to tasks like POS tagging [20] is
promising especially since it does not require labelled data. However, the CRF
auto-encoder has difficulty scaling to the label space for query intent under-
standing that is much larger than that for POS tagging. The most recent work
on understanding intent of e-commerce search queries is described in [26] for
Google shopping. However, it is not applicable in our setting since it focuses on
a different problem of understanding overall query intent and not token level
attribute labelling.

8 Conclusion and Future Work

In this paper, we investigated the problem of discovering multiple intents in
tail queries for e-commerce search. We introduced a latent variable generative
model for queries to overcome the lack of sufficient labelled data. To improve
this model’s ability to identify multiple intents, we then introduced a novel data
dependent regularisation technique derived from empirical evidence of overlap in
attribute vocabularies. We finally demonstrated the superior performance of our
regularised intent model against several strong baseline models on an editorially
labelled data set as well as in a large scale online A/B experiment at Flipkart,
a major Indian e-commerce company. In the future, we plan to investigate deep
generative intent models and knowledge graph representation of the product
catalog to further improve intent understanding.
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