
Curriculum Learning Strategies for IR

An Empirical Study on Conversation Response Ranking

Gustavo Penha(B) and Claudia Hauff

TU Delft, Delft, The Netherlands
{g.penha-1,c.hauff}@tudelft.nl

Abstract. Neural ranking models are traditionally trained on a series
of random batches, sampled uniformly from the entire training set. Cur-
riculum learning has recently been shown to improve neural models’
effectiveness by sampling batches non-uniformly, going from easy to dif-
ficult instances during training. In the context of neural Information
Retrieval (IR) curriculum learning has not been explored yet, and so it
remains unclear (1) how to measure the difficulty of training instances
and (2) how to transition from easy to difficult instances during training.
To address both challenges and determine whether curriculum learning is
beneficial for neural ranking models, we need large-scale datasets and a
retrieval task that allows us to conduct a wide range of experiments. For
this purpose, we resort to the task of conversation response ranking : rank-
ing responses given the conversation history. In order to deal with chal-
lenge (1), we explore scoring functions to measure the difficulty of con-
versations based on different input spaces. To address challenge (2) we
evaluate different pacing functions, which determine the velocity in which
we go from easy to difficult instances. We find that, overall, by just intelli-
gently sorting the training data (i.e., by performing curriculum learning)
we can improve the retrieval effectiveness by up to 2% (The source code
is available at https://github.com/Guzpenha/transformers cl.).

Keywords: Curriculum learning · Conversation response ranking

1 Introduction

Curriculum Learning (CL) is motivated by the way humans teach complex con-
cepts: teachers impose a certain order of the material during students’ educa-
tion. Following this guidance, students can exploit previously learned concepts
to more easily learn new ones. This idea was initially applied to machine learning
over two decades ago [8] as an attempt to use a similar strategy in the training
of a recurrent network by starting small and gradually learning more difficult
examples. More recently, Bengio et al. [1] provided additional evidence that cur-
riculum strategies can benefit neural network training with experimental results
on different tasks such as shape recognition and language modelling. Since then,
empirical successes were observed for several computer vision [14,49] and natural
language processing (NLP) tasks [36,42,60].
c© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12035, pp. 699–713, 2020.
https://doi.org/10.1007/978-3-030-45439-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45439-5_46&domain=pdf
https://github.com/Guzpenha/transformers_cl
https://doi.org/10.1007/978-3-030-45439-5_46

700 G. Penha and C. Hauff

In supervised machine learning, a function is learnt by the learning algo-
rithm (the student) based on inputs and labels provided by the teacher. The
teacher typically samples randomly from the entire training set. In contrast,
CL imposes a structure on the training set based on a notion of difficulty of
instances, presenting to the student easy instances before difficult ones. When
defining a CL strategy we face two challenges that are specific to the domain
and task at hand [14]: (1) arranging the training instances by a sensible measure
of difficulty, and, (2) determining the pace in which to present instances—going
over easy instances too fast or too slow might lead to ineffective learning.

We conduct here an empirical investigation into those two challenges in
the context of IR. Estimating relevance—a notion based on human cognitive
processes—is a complex and difficult task at the core of IR, and it is still unknown
to what extent CL strategies are beneficial for neural ranking models. This is the
question we aim to answer in our work.

Given a set of queries—for instance user utterances, search queries or ques-
tions in natural language—and a set of documents—for instance responses, web
documents or passages—neural ranking models learn to distinguish relevant from
non-relevant query-document pairs by training on a large number of labeled
training pairs. Neural models have for some time struggled to display signifi-
cant and additive gains in IR [53]. In a short time though, BERT [7] (released in
late 2018) and its derivatives (e.g. XLNet [56], RoBERTa [25]) have proven to be
remarkably effective for a range of NLP tasks. The recent breakthroughs of these
large and heavily pre-trained language models have also benefited IR [54,55,57].

In our work we focus on the challenging IR task of conversation response
ranking [50], where the query is the dialogue history and the documents are the
candidate responses of the agent. The set of responses are not generated on the
go, they must be retrieved from a comprehensive dialogue corpus. A number of
deep neural ranking models have recently been proposed for this task [43,50,
52,61,62], which is more complex than retrieval for single-turn interactions, as
the ranking model has to determine where the important information is in the
previous user utterances (dialogue history) and how it is relevant to the current
information need of the user. Due to the complexity of the relevance estimation
problem displayed in this task, we argue it to be a good test case for curriculum
learning in IR.

In order to tackle the first challenge of CL (determine what makes an instance
difficult) we study different scoring functions that determine the difficulty of
query-document pairs based on four different input spaces: conversation history
{U}, candidate responses {R}, both {U ,R}, and {U , R, Y}, where Y are rele-
vance labels for the responses. To address the second challenge (determine the
pace to move from easy to difficult instances) we explore different pacing func-
tions that serve easy instances to the learner for more or less time during the
training procedure. We empirically explore how the curriculum strategies per-
form for two different response ranking datasets when compared against vanilla
(no curriculum) fine-tuning of BERT for the task. Our main findings are that
(i) CL improves retrieval effectiveness when we use a difficulty criteria based on

Curriculum Learning Strategies for IR 701

a supervised model that uses all the available information {U , R, Y}, (ii) it is
best to give the model more time to assimilate harder instances during training
by introducing difficult instances in earlier iterations, and, (iii) the CL gains
over the no curriculum baseline are spread over different conversation domains,
lengths of conversations and measures of conversation difficulty.

2 Related Work

Neural Ranking Models. Over the past few years, the IR community has
seen a great uptake of the many flavours of deep learning for all kinds of IR
tasks such as ad-hoc retrieval, question answering and conversation response
ranking. Unlike traditional learning to rank (LTR) [24] approaches in which we
manually define features for queries, documents and their interaction, neural
ranking models learn features directly from the raw textual data. Neural rank-
ing approaches can be roughly categorized into representation-focused [17,38,47]
and interaction-focused [13,48]. The former learns query and document represen-
tations separately and then computes the similarity between the representations.
In the latter approach, first a query-document interaction matrix is built, which
is then fed to neural net layers. Estimating relevance directly based on interac-
tions, i.e. interaction-focused models, has shown to outperform representation-
based approaches on several tasks [16,27].

Transfer learning via large pre-trained Transformers [46]—the prominent
case being BERT [7]—has lead to remarkable empirical successes on a range
of NLP problems. The BERT approach to learn textual representations has
also significantly improved the performance of neural models for several IR
tasks [33,37,54,55,57], that for a long time struggled to outperform classic IR
models [53]. In this work we use the no-CL BERT as a strong baseline for the
conversation response ranking task.

Curriculum Learning. Following a curriculum that dictates the ordering and
content of the education material is prevalent in the context of human learn-
ing. With such guidance, students can exploit previously learned concepts to
ease the learning of new and more complex ones. Inspired by cognitive science
research [35], researchers posed the question of whether a machine learning algo-
rithm could benefit, in terms of learning speed and effectiveness, from a similar
curriculum strategy [1,8]. Since then, positive evidence for the benefits of cur-
riculum training, i.e. training the model using easy instances first and increasing
the difficulty during the training procedure, has been empirically demonstrated
in different machine learning problems, e.g. image classification [11,14], machine
translation [21,30,60] and answer generation [23].

Processing training instances in a meaningful order is not unique to
CL. Another related branch of research focuses on dynamic sampling strate-
gies [2,4,22,39], which unlike CL that requires a definition of what is easy and
difficult before training starts, estimates the importance of instances during the
training procedure. Self-paced learning [22] simultaneously selects easy instances

702 G. Penha and C. Hauff

to focus on and updates the model parameters by solving a biconvex optimiza-
tion problem. A seemingly contradictory set of approaches give more focus to
difficult or more uncertain instances. In active learning [4,6,44], the most uncer-
tain instances with respect to the current classifier are employed for training.
Similarly, hard example mining [39] focuses on difficult instances, measured by
the model loss or magnitude of gradients for instance. Boosting [2,59] techniques
give more weight to difficult instances as training progresses. In this work we
focus on CL, which has been more successful in neural models, and leave the
study of dynamic sampling strategies in neural IR as future work.

The most critical part of using a CL strategy is defining the difficulty metric
to sort instances by. The estimation of instance difficulty is often based on our
prior knowledge on what makes each instance difficult for a certain task and thus
is domain dependent (cf. Table 1 for curriculum examples). CL strategies have
not been studied yet in neural ranking models. To our knowledge, CL has only
recently been employed in IR within the LTR framework, using LambdaMart [3],
for ad-hoc retrieval by Ferro et al. [9]. However, no effectiveness improvements
over randomly sampling training data were observed. The representation of the
query, document and their interactions in the traditional LTR framework is dic-
tated by the manually engineered input features. We argue that neural ranking
models, which learn how to represent the input, are better suited for applying
CL in order to learn increasingly more complex concepts.

Table 1. Difficulty measures used in the curriculum learning literature.

Difficulty criteria Tasks

Sentence length Machine translation [30], language generation [42],
reading comprehension [58]

Word rarity Machine translation [30,60], language modeling [1]

External model confidence Machine translation [60], image
classification [14,49], ad-hoc retrieval [9]

Supervision signal intensity Facial expression recognition [12], ad-hoc
retrieval [9]

Noise estimate Speaker identification [34], image classification [5]

Human annotation Image classification [45] (through weak supervision)

3 Curriculum Learning

Before introducing our experimental framework (i.e., the scoring functions and
the pacing functions we investigate), let us first formally introduce the specific IR
task we explore—a choice dictated by the complex nature of the task (compared
to e.g. ad-hoc retrieval) as well as the availability of large-scale training resources
such as MSDialog [32] and UDC [26].

Curriculum Learning Strategies for IR 703

Conversation Response Ranking. Given a historical dialogue corpus and
a conversation, (i.e., the user’s current utterance and the conversation history)
the task of conversation response ranking [43,50,52] is defined as the ranking of
the most relevant response available in the corpus. This setup relies on the fact
that a large corpus of historical conversation data exists and adequate replies
(that are coherent, well-formulated and informative) to user utterances can be
found in it [51]. Formally, let D = {(Ui,Ri,Yi)}N

i=1 be an information-seeking
conversations data set consisting of N triplets: dialogue context, response candi-
dates and response labels. The dialogue context Ui is composed of the previous
utterances {u1, u2, ..., uτ} at the turn τ of the dialogue. The candidate responses
Ri = {r1, r2, ..., rk} are either the true response (uτ+1) or negative sampled can-
didates1. The relevance labels Yi = {y1, y2, ..., yk} indicate the responses’ binary
relevance scores, 1 if r = uτ+1 and 0 otherwise. The task is then to learn a rank-
ing function f(.) that is able to generate a ranked list for the set of candidate
responses Ri based on their predicted relevance scores f(Ui, r).

training step s = 0 ...
...

sample mini-batch B from fpace(s) fraction of sorted D

sort D by fscore

s = 500

s = T = 1000 ...

during training

before training

Fig. 1. Our curriculum learning framework is defined by two functions. The scoring
function fscore(instance) defines the instances’ difficulty (darker/lighter blue indicate
higher/lower difficulty). The pacing function fpace(s) indicates the percentage of the
dataset available for sampling according to the training step s. (Color figure online)

Curriculum Framework. When training neural networks, the common train-
ing procedure is to divide the dataset D into Dtrain,Ddev,Dtest and randomly
(i.e., uniformly—every sample has the same likelihood of being sampled) sample
mini-batches B = {(Ui,Ri,Yi)}k

i=1 of k instances from Dtrain where k � N ,
and perform an optimization procedure sequentially in {B1, ...,BM}. The CL
framework employed here is inspired by previous works [30,49]. It is defined by
two functions: the scoring function which determines the difficulty of instances
and the pacing function which controls the pace with which to transition from
easy to hard instances during training. More specifically, the scoring function
1 In a production setup the ranker would either retrieve responses from the entire

corpus or re-rank the responses retrieved by a recall-oriented retrieval method.

704 G. Penha and C. Hauff

fscore(Ui,Ri,Yi), is used to sort the training dataset. The pacing function
fpace(s) determines the percentage of the sorted dataset available for sampling
according to the current training step s (one forward pass plus one backward
pass of a batch is considered to be one step). The neural ranking model samples
uniformly from the initial fpace(s)∗ |Dtrain| instances sorted by fscore, while the
rest of the dataset is not available for sampling. During training fpace(s) goes
from δ (percentage of initial training data) to 1 when s = T . Both δ and T are
hyperparameters. We provide an illustration of the training process in Fig. 1.

Table 2. Overview of our curriculum learning scoring functions.

Input
space

Name Definition Difficulty
notion

baseline random fscore = Uniform(0, 1)

(U) #turns fscore(U) = |U| Information
spread

#Uwords fscore(U) =
∑|U|

i=0 word count(ui)

|U|

(R) #Rwords fscore(R) =
∑|R|

i=0 word count(ri)

|R| Distraction in
responses

(U ,R) σSM fscore(U ,R) =

√
∑|R|

i=0(SM(U,ri)−SM(U,R))2

|R|−1
Responses
heterogeneity

σBM25 fscore(U ,R) =

√
∑|R|

i=0(BM25(U,ri)−BM25(U,R))2

|R|−1

(U ,R,Y) BERTpred fscore(U ,R,Y) =

− (BERT pred(U , r+i) − BERT pred(U , r−
i))

Model
confidence

BERTloss fscore(U ,R,Y) =
∑|R|

i=0 BERT loss(U,ri)

|R|

Scoring Functions. In order to measure the difficulty of a training triplet
composed of (Ui,Ri,Yi), we define pacing functions that use different parts of
the input space: functions that leverage (i) the text in the dialogue history {U}
(ii) the text in the response candidates {R} (iii) interactions between them,
i.e., {U ,R}, and, (iv) all available information including the labels for the train-
ing set, i.e., {U ,R,Y}. The seven2 scoring functions we propose are defined in
Table 2; we now provide intuitions of why we believe each function to capture
some notion of instance difficulty.

• #turns(U) and #Uwords(U): The important information in the context can be
spread over different utterances and words. Bigger dialogue contexts means
there are more places where the important part of the user information need
can be spread over. #Rwords(R): Longer responses can distract the model as
to which set of words or sentences are more important for matching. Previous

2 The function random is the baseline—instances are sampled uniformly (no CL).

Curriculum Learning Strategies for IR 705

work shows that it is possible to fool machine reading models by creating
longer documents with additional distracting sentences [18].

• σSM (U ,R) and σBM25(U ,R): Inspired by query performance prediction lit-
erature [40], we use the variance of retrieval scores to estimate the amount of
heterogeneity of information, i.e. diversity, in the response candidate. Homo-
geneous ranked lists are considered to be easy. We deploy a semantic matching
model (SM) and BM25 to capture both semantic correspondences and key-
word matching [19]. SM is the average cosine similarity between the first k
words from U (concatenated utterances) with the first k words from r using
pre-trained word embeddings.

• BERTpred(U ,R,Y) and BERTloss(U ,R,Y): Inspired by CL literature [14],
we use external model prediction confidence scores as a measure of difficulty3.
We fine-tune BERT [7] on Dtrain for the conversation response ranking task.
For BERTpred easy dialogue contexts are the ones that the BERT confidence
score for the positive response r+ candidate is higher than the confidence for
the negative response candidate r−. The higher the difference the easier the
instance is. For BERTlosswe consider the loss of the model to be an indicator
of the difficulty of an instance.

Table 3. Overview of our curriculum learning pacing
functions. δ and T are hyperparameters.

Pacing function Definition

baseline training fpace(s) = 1

step fpace(s) =

⎧
⎪⎪⎨

⎪⎪⎩

δ, if s ≤ T ∗ 0.33

0.66, if s > T ∗ 0.33, s ≤ T ∗ 0.66

1, if s > T ∗ 0.66

root fpace(s, n) = min

(

1,
(

s 1−δn

T
+ δn

) 1
n

)

linear fpace(s, n) = root(s, 1)

root n fpace(s, n) = root(s, n)

geom progression fpace(s) = min

⎛

⎝1, 2

(

s
log21−log2δ

T
+log2δ

)⎞

⎠

0.4

0.6

0.8

1.0

0 250 500 750 1000
iteration

Fr
ac

tio
n

of
 tr

ai
ni

ng
 d

at
a

pacing function
baseline_training
geom_progression
linear
root_10
root_2
root_5
step

Fig. 2. Example with δ = 0.33
and T = 1000.

Pacing Functions. Assuming that we know the difficulty of each instance in
our training set, we still need to define how are we going to transition from easy
to hard instances. We use the concept of pacing functions fpace(s); they should
each have the following properties [30,49]: (i) start at an initial value of training
instances fpace(0) = δ with δ > 0, so that the model has a number of instances
to train in the first iteration, (ii) be non-decreasing, so that harder instances
are added to the training set, and, (iii) eventually all instances are available for
sampling when it reaches T iterations, fpace(T) = 1.

3 We note, that using BM25 average precision as a scoring function failed to outper-
form the baseline.

706 G. Penha and C. Hauff

As intuitively visible in the example in Fig. 2, we opted for pacing functions
that introduce more difficult instances at different paces—while root 10 intro-
duces difficult instances very early (after 125 iterations, 80% of all training data
is available), geom progression introduces them very late (80% is available after
∼ 800 iterations). We consider four different types of pacing functions, formally
defined in Table 3. The step function [1,14,41] divides the data into S fixed sized
groups, and after T

S iterations a new group of instances is added, where S is a
hyperparameter. A more gradual transition was proposed by Platanios et al. [30],
by adding a percentage of the training dataset linearly with respect to the total
of CL iterations T , and thus the slope of the function is 1−δ

T (linear function).
They also proposed root n functions motivated by the fact that difficult instances
will be sampled less as the training data grows in size during training. By mak-
ing the slope inversely proportional to the current training data size, the model
has more time to assimilate difficult instances. Finally, we propose the use of a
geometric progression that instead of quickly adding difficult examples, it gives
easier instances more training time.

4 Experimental Setup

Datasets. We consider two large-scale information-seeking conversation
datasets (cf. Table 4) that allow the training of neural ranking models for conver-
sation response ranking. MSDialog4 [32] contain 246 K context-response pairs,
built from 35.5 K information seeking conversations from the Microsoft Answer
community, a question-answer forum for several Microsoft products. MANtIS5 [29]
was created by us and contains 1.3 million context-response pairs built from
conversations of 14 different sites of Stack Exchange. Each MANtIS conversation
fulfills the following conditions: (i) it takes place between exactly two users (the
information seeker who starts the conversation and the information provider);
(ii) it consists of at least 2 utterances per user; (iii) one of the provider’s
utterances contains a hyperlink, providing grounding; (iv) if the final utterance
belongs to the seeker, it contains positive feedback. We created MANtIS to con-
sider diverse conversations from different domains besides technical ones. We
include MSDialog [31,32,52] here as a widely used benchmark.

Implementation Details. As strong neural ranking model for our exper-
iments, we employ BERT [7] for the conversational response ranking task.
We follow recent research in IR that employed fine-tuned BERT for retrieval
tasks [28,55] and obtain strong baseline (i.e., no CL) results for our task. The
best model by Yang et al. [52], which relies on external knowledge sources for
MSDialog, achieves a MAP of 0.68 whereas our BERT baselines reaches a MAP
of 0.71 (cf. Table 5). We fine-tune BERT6 for sentence classification, using the
4 MSDialog is available at https://ciir.cs.umass.edu/downloads/msdialog/.
5 MANtIS is available at https://guzpenha.github.io/MANtIS/.
6 We use the PyTorch-Transformers implementation https://github.com/huggingface/

pytorch-transformers and resort to bert-base-uncased with default settings.

https://ciir.cs.umass.edu/downloads/msdialog/
https://guzpenha.github.io/MANtIS/
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers

Curriculum Learning Strategies for IR 707

Table 4. Dataset used. U is the dialogue context, r a response and u an utterance.

MSDialog MANtIS

Number of domains 75 14

Train Valid Test Train Valid Test

Number of (U , r) pairs 173k 37k 35k 904k 199k 197k

Number of candidates per U 10 10 10 11 11 11

Average number of turns 5.0 4.8 4.4 4.0 4.1 4.1

Average number of words per u 55.8 55.8 52.7 98.2 107.2 110.4

Average number of words per r 67.3 68.8 67.7 91.0 100.1 94.6

CLS token7; the input is the concatenation of the dialogue context and the can-
didate response separated by SEP tokens. When training BERT we employ a
balanced number of relevant and non-relevant context and response pairs8. We
use cross entropy loss and the Adam optimizer [20] with learning rate of 5e − 5
and ε = 1e − 8.

For σSM , as word embeddings we use pre-trained fastText9 embeddings with
300 dimensions and a maximum length of k = 20 words of dialogue contexts
and responses. For σBM25, we use default values10 of k1 = 1.5, b = 0.75 and
ε = 0.25. For CL, we fix T as 90% percent of the total training iterations—this
means that we continue training for the final 10% of iterations after introducing
all samples—and the initial number of instances δ as 33% of the data to avoid
sampling the same instances several times.

Evaluation. To compare our strategies with the baseline where no CL is
employed, for each approach we fine-tune BERT five times with different random
seeds—to rule out that the results are observed only for certain random weight
initialization values—and for each run we select the model with best observed
effectiveness on the development set. The best model of each run is then applied
to the test set. We report the effectiveness with respect to Mean Average Preci-
sion (MAP) like prior works [50,52]. We perform paired Student’s t-tests between
each scoring/pacing-function variant and the baseline run without CL.

5 Results

We first report the results for the pacing functions (Fig. 3) followed by the main
results (Table 5) comparing different scoring functions. We finish with an error
analysis to understand when CL outperforms our no-curriculum baseline.
7 The BERT authors suggest CLS as a starting point for sentence classification

tasks [7].
8 We observed similar results to training with 1 to 10 ratio in initial experiments.
9 https://fasttext.cc/docs/en/crawl-vectors.html.

10 https://radimrehurek.com/gensim/summarization/bm25.html.

https://fasttext.cc/docs/en/crawl-vectors.html
https://radimrehurek.com/gensim/summarization/bm25.html

708 G. Penha and C. Hauff

0.64

0.66

0.68

0.70

0 500 1000 1500
iteration

Av
er

ag
e

M
AP

pacing function
baseline_training
geom_progression
linear
root_10
root_2
root_5
step

MSDialog

0.69

0.70

0.71

0.72

1000 2000
iteration

Av
er

ag
e

M
AP

MANtIS

Fig. 3. Average development MAP for 5 differ-
ent runs, using different curriculum learning pacing
functions. � is the maximum observed MAP.

no curriculum curriculum

0.64
0.68
0.72

3 6 9

M
AP

0.0
0.1
0.2
0.3
0.4

3 6 9

%
 o

f i
ns

ta
nc

es

Fig. 4. MSDialog test set MAP of
curriculum learning and baseline
by number of turns.

Pacing Functions. In order to understand how CL results are impacted by the
pace we go from easy to hard instances, we evaluate the different proposed pacing
functions. We display the evolution of the development set MAP (average of 5
runs) during training on Fig. 3 (we use development MAP to track effectiveness
during training). We fix the scoring function as BERTpred; this is the best
performing scoring function, more details in the next section. We see that the
pacing functions with the maximum observed average MAP are root 2 and root 5
for MSDialog and MANtIS respectively11. The other pacing functions, linear,
geom progression and step, also outperform the standard training baseline with
statistical significance on the test set and yield similar results to the root 2 and
root 5 functions.

Our results are aligned with previous research on CL [30], that giving more
time for the model to assimilate harder instances (by using a root pacing func-
tion) is beneficial to the curriculum strategy and is better than no CL with
statistical significance on both development and test sets. For the rest of our
experiments we fix the pacing function as root 2, the best pacing function for
MSDialog. Let’s now turn to the impact of the scoring functions.

Scoring Functions. The most critical challenge of CL is defining a measure of
difficulty of instances. In order to evaluate the effectiveness of our scoring func-
tions we report the test set results across both datasets in Table 5. We observe
that the scoring functions which do not use the relevance labels Y are not able
to outperform the no CL baseline (random scoring function). They are based on
features of the dialogue context U and responses R that we hypothesized make
them difficult for a model to learn. Differently, for BERTloss and BERTpred

we observe statistically significant results on both datasets across different runs.
They differ in two ways from the unsuccessful scoring functions: they have access

11 If we increase the n of the root function to bigger values, e.g. root 10, the results
drop and get closer to not using CL. This is due to the fact that higher n generate
root functions with a similar shape to standard training, giving the same amount of
time to easy and hard instances (cf. Fig. 2).

Curriculum Learning Strategies for IR 709

Table 5. Test set MAP results of 5 runs using different curriculum learning scoring
functions. Superscripts †/‡ denote statistically significant improvements over the base-
line where no curriculum learning is applied (fscore = random) at 95%/99% confidence
intervals. Bold indicates the highest MAP for each line.

MSDialog

run random #turns #Uwords #Rwords σSM σBM25 BERTpred BERTloss

1 0.7142 0.7220 † 0.7229 † 0.7182 0.7239 †‡ 0.7175 0.7272 †‡ 0.7244 †‡

2 0.7044 0.7060 0.7053 0.6968 0.7032 0.7003 0.7159 †‡ 0.7194 †‡

3 0.7126 0.7215 † 0.7163 0.7171 0.7174 0.7159 0.7296 †‡ 0.7225 †‡

4 0.7031 0.7065 0.7043 0.6993 0.7026 0.6949 0.7154 †‡ 0.7204 †‡

5 0.7148 0.7225 † 0.7203 0.7169 0.7171 0.7134 0.7322 †‡ 0.7331 †‡

AVG 0.7098 0.7157 0.7138 0.7097 0.7128 0.7084 0.7241 0.7240

SD 0.0056 0.0086 0.0086 0.0106 0.0095 0.0101 0.0079 0.0055

MANtIS

1 0.7203 0.7192 0.7198 0.7194 0.7166 0.7200 0.7257 †‡ 0.7268 †‡

2 0.6984 0.6993 0.6989 0.6996 0.6964 0.7009 0.7067 †‡ 0.7051 †‡

3 0.7200 0.7197 0.7134 0.7206 0.7153 0.7153 0.7282 †‡ 0.7221

4 0.7114 0.7117 0.7002 0.6978 0.7140 0.7084 0.7240 †‡ 0.7184 †‡

5 0.7156 0.7174 0.7193 † 0.7162 0.7147 0.7185 0.7264 †‡ 0.7258 †‡

AVG 0.7131 0.7135 0.7103 0.7107 0.7114 0.7126 0.7222 0.7196

SD 0.0090 0.0085 0.0102 0.0111 0.0084 0.0079 0.0088 0.0088

to the training labels Y and the difficulty of an instance is based on what a pre-
viously trained model determines to be hard, and thus not our intuition.

Our results bear resemblance to Born Again Networks [10], where a student
model which is identical in parameters and architecture to the teacher model out-
performs the teacher when trained with knowledge distillation [15], i.e., using the
predictions of the teacher model as labels for the student model. The difference
here is that instead of transferring the knowledge from the teacher to the student
through the labels, we transfer the knowledge by imposing a structure/order on
the training set, i.e. curriculum learning.

Error Analysis. In order to understand when CL performs better than random
training samples, we fix the scoring (BERTpred) ad pacing function (root 2) and
explore the test set effectiveness along several dimensions (cf. Figs. 4 and 5). We
report the results only for MSDialog, but the trends hold for MANtIS as well.

We first consider the number of turns in the conversation in Fig. 4. CL out-
performs the baseline approach for the types of conversations appearing most
frequently (2–5 turns in MSDialog). The CL-based and baseline effectiveness
drops for conversations with a large number of turns. This can be attributed to
two factors: (1) employing pre-trained BERT in practice allows only a certain
maximum number of tokens as input, so longer conversations can lose important
information due to truncating; (2) for longer conversations it is harder to identify
the important information to match in the history, i.e information spread.

Next, we look at different conversation domains in Fig. 5 (left), such as physics
and askubuntu—are the gains in effectiveness limited to particular domains? The

710 G. Penha and C. Hauff

no curriculum curriculum

windows8.1
insiderprev

skypewindesk
outlookemail

appswin10
word

outlook
excel

windows10

0.0
9

% of instances
0.4 0.5 0.6 0.7 0.8

MAP

0.65

0.70

0.75

[0%,33%] (33%,66%] (66%,100%]
#Uwords

M
AP

Fig. 5. Test set MAP for MSDialog across different domains (left) and instances’ diffi-
culty (right) according to #Rwords for curriculum learning and the baseline.

error bars indicate the confidence intervals with confidence level of 95%. We list
only the most common domains in the test set. The gains of CL are spread over
different domains as opposed to concentrated on a single domain.

Lastly, using our scoring functions we sort the test instances and divide
them into three buckets: first 33% instances, 33%–66% and 66%–100%. In Fig. 5
(right), we see the effectiveness of CL against the baseline for each bucket using
#Uwords (the same trend holds for the other scoring functions). As we expect,
the bucket with the most difficult instances according to the scoring function
is the one with lowest MAP values. Finally, the improvements of CL over the
baseline are again spread across the buckets, showing that CL is able to improve
over the baseline for different levels of difficulty.

6 Conclusions

In this work we studied whether CL strategies are beneficial for neural rank-
ing models. We find supporting evidence for curriculum learning in IR. Simply
reordering the instances in the training set using a difficulty criteria leads to
effectiveness improvements, requiring no changes to the model architecture—a
similar relative improvement in MAP has justified novel neural architectures in
the past [43,50,61,62]. Our experimental results on two conversation response
ranking datasets reveal (as one might expect) that it is best to use all available
information (U ,R,Y) as evidence for instance difficulty. Future work directions
include considering other retrieval tasks, different neural architectures and an
investigation of the underlying reasons for CL’s workings.

Acknowledgements. This research has been supported by NWO projects SearchX
(639.022.722) and NWO Aspasia (015.013.027).

Curriculum Learning Strategies for IR 711

References

1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:
ICML, pp. 41–48 (2009)

2. Breiman, L.: Arcing classifier. Ann. Stat. 26(3), 801–849 (1998)
3. Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning

11(23–581), 81 (2010)
4. Chang, H.S., Learned-Miller, E., McCallum, A.: Active bias: training more accurate

neural networks by emphasizing high variance samples. In: NeurIPS, pp. 1002–1012
(2017)

5. Chen, X., Gupta, A.: Webly supervised learning of convolutional networks. In:
ICCV, pp. 1431–1439 (2015)

6. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
J. Artif. Intell. Res. 4, 129–145 (1996)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186
(2019)

8. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48(1), 71–99 (1993)

9. Ferro, N., Lucchese, C., Maistro, M., Perego, R.: Continuation methods and cur-
riculum learning for learning to rank. In: CIKM, pp. 1523–1526 (2018)

10. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born-again
neural networks. In: ICML, pp. 1602–1611 (2018)

11. Gong, C., Tao, D., Maybank, S.J., Liu, W., Kang, G., Yang, J.: Multi-modal cur-
riculum learning for semi-supervised image classification. IEEE Trans. Image Pro-
cess. 25(7), 3249–3260 (2016)

12. Gui, L., Baltrušaitis, T., Morency, L.P.: Curriculum learning for facial expression
recognition. In: FG, pp. 505–511 (2017)

13. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc
retrieval. In: CIKM, pp. 55–64 (2016)

14. Hacohen, G., Weinshall, D.: On the power of curriculum learning in training deep
networks. arXiv preprint arXiv:1904.03626 (2019)

15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

16. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: NeurIPS, pp. 2042–2050 (2014)

17. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: CIKM, pp.
2333–2338 (2013)

18. Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension sys-
tems. In: EMNLP, pp. 2021–2031 (2017)

19. Rao, J., Liu, L., Tay, Y., Yang, W., Shi, P., Lin, J.: Bridging the gap between
relevance matching and semantic matching for short text similarity modeling. In:
EMNLP (2019)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

21. Kocmi, T., Bojar, O.: Curriculum learning and minibatch bucketing in neural
machine translation. In: RANLP, pp. 379–386 (2017)

22. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: NeurIPS, pp. 1189–1197 (2010)

http://arxiv.org/abs/1904.03626
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6980

712 G. Penha and C. Hauff

23. Liu, C., He, S., Liu, K., Zhao, J.: Curriculum learning for natural answer genera-
tion. In: IJCAI, pp. 4223–4229 (2018)

24. Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends R© Inf.
Retr. 3(3), 225–331 (2009)

25. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

26. Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large
dataset for research in unstructured multi-turn dialogue systems. In: SIGDIAL,
pp. 285–294 (2015)

27. Nie, Y., Li, Y., Nie, J.Y.: Empirical study of multi-level convolution models for IR
based on representations and interactions. In: SIGIR, pp. 59–66 (2018)

28. Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv preprint
arXiv:1901.04085 (2019)

29. Penha, G., Balan, A., Hauff, C.: Introducing MANtIS: a novel multi-domain infor-
mation seeking dialogues dataset. arXiv preprint arXiv:1912.04639 (2019)

30. Platanios, E.A., Stretcu, O., Neubig, G., Poczos, B., Mitchell, T.: Competence-
based curriculum learning for neural machine translation. In: NAACL, pp. 1162–
1172 (2019)

31. Qu, C., Yang, L., Croft, W.B., Zhang, Y., Trippas, J., Qiu, M.: user intent predic-
tion in information-seeking conversations. In: CHIIR (2019)

32. Qu, C., Yang, L., Croft, W.B., Trippas, J.R., Zhang, Y., Qiu, M.: Analyzing and
characterizing user intent in information-seeking conversations. In: SIGIR, pp. 989–
992 (2018)

33. Qu, C., Yang, L., Qiu, M., Croft, W.B., Zhang, Y., Iyyer, M.: BERT with history
answer embedding for conversational question answering. In: SIGIR, pp. 1133–1136
(2019)

34. Ranjan, S., Hansen, J.H., Ranjan, S., Hansen, J.H.: Curriculum learning based
approaches for noise robust speaker recognition. TASLP 26(1), 197–210 (2018)

35. Rohde, D.L., Plaut, D.C.: Language acquisition in the absence of explicit negative
evidence: how important is starting small? Cognition 72(1), 67–109 (1999)

36. Sachan, M., Xing, E.: Easy questions first? a case study on curriculum learning for
question answering. In: ACL, vol. 1, pp. 453–463 (2016)

37. Sakata, W., Shibata, T., Tanaka, R., Kurohashi, S.: FAQ retrieval using query-
question similarity and BERT-based query-answer relevance. arXiv preprint
arXiv:1905.02851 (2019)

38. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: CIKM, pp. 101–110
(2014)

39. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: CVPR, pp. 761–769 (2016)

40. Shtok, A., Kurland, O., Carmel, D.: Predicting query performance by query-drift
estimation. In: ICTIR, pp. 305–312 (2009)

41. Soviany, P., Ardei, C., Ionescu, R.T., Leordeanu, M.: Image difficulty curriculum
for generative adversarial networks (CuGAN). arXiv preprint arXiv:1910.08967
(2019)

42. Subramanian, S., Rajeswar, S., Dutil, F., Pal, C., Courville, A.: Adversarial gen-
eration of natural language. In: Rep4NLP, pp. 241–251 (2017)

43. Tao, C., Wu, W., Xu, C., Hu, W., Zhao, D., Yan, R.: One time of interaction may
not be enough: go deep with an interaction-over-interaction network for response
selection in dialogues. In: ACL, pp. 1–11 (2019)

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1912.04639
http://arxiv.org/abs/1905.02851
http://arxiv.org/abs/1910.08967

Curriculum Learning Strategies for IR 713

44. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)

45. Tudor Ionescu, R., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P.,
Ferrari, V.: How hard can it be? Estimating the difficulty of visual search in an
image. In: CVPR, pp. 2157–2166 (2016)

46. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
47. Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for

semantic matching with multiple positional sentence representations. In: AAAI,
pp. 2835–2841 (2016)

48. Wan, S., Lan, Y., Xu, J., Guo, J., Pang, L., Cheng, X.: Match-SRNN: modeling the
recursive matching structure with spatial RNN. In: IJCAI, pp. 2922–2928. AAAI
Press (2016)

49. Weinshall, D., Cohen, G., Amir, D.: Curriculum learning by transfer learning:
theory and experiments with deep networks. In: ICML, pp. 5235–5243 (2018)

50. Wu, Y., Wu, W., Xing, C., Zhou, M., Li, Z.: Sequential matching network: a new
architecture for multi-turn response selection in retrieval-based chatbots. In: ACL,
vol. 1, pp. 496–505 (2017)

51. Yang, L., et al.: A hybrid retrieval-generation neural conversation model. arXiv
preprint arXiv:1904.09068 (2019)

52. Yang, L., et al.: Response ranking with deep matching networks and external
knowledge in information-seeking conversation systems. In: SIGIR, pp. 245–254
(2018)

53. Yang, W., Lu, K., Yang, P., Lin, J.: Critically examining the neural hype: weak
baselines and the additivity of effectiveness gains from neural ranking models. In:
SIGIR, pp. 1129–1132, New York, NY, USA (2019)

54. Yang, W., et al.: End-to-end open-domain question answering with BERTserini.
In: NAACL, pp. 72–77 (2019)

55. Yang, W., Zhang, H., Lin, J.: Simple applications of BERT for ad hoc document
retrieval. arXiv preprint arXiv:1903.10972 (2019)

56. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: XLNet:
generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237 (2019)

57. Yilmaz, Z.A., Yang, W., Zhang, H., Lin, J.: Cross-domain modeling of sentence-
level evidence for document retrieval. In: EMNLP, pp. 3481–3487 (2019)

58. Yu, Y., Zhang, W., Hasan, K., Yu, M., Xiang, B., Zhou, B.: End-to-end
answer chunk extraction and ranking for reading comprehension. arXiv preprint
arXiv:1610.09996 (2016)

59. Zhang, D., Kim, J., Crego, J., Senellart, J.: Boosting neural machine translation.
In: IJCNLP, pp. 271–276 (2017)

60. Zhang, X., et al.: An empirical exploration of curriculum learning for neural
machine translation. arXiv preprint arXiv:1811.00739 (2018)

61. Zhang, Z., Li, J., Zhu, P., Zhao, H., Liu, G.: Modeling multi-turn conversation with
deep utterance aggregation. In: ACL, pp. 3740–3752 (2018)

62. Zhou, X., et al.: Multi-turn response selection for chatbots with deep attention
matching network. In: ACL, pp. 1118–1127 (2018)

http://arxiv.org/abs/1904.09068
http://arxiv.org/abs/1903.10972
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1610.09996
http://arxiv.org/abs/1811.00739

	Curriculum Learning Strategies for IR
	1 Introduction
	2 Related Work
	3 Curriculum Learning
	4 Experimental Setup
	5 Results
	6 Conclusions
	References

