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Abstract. We propose a method for learning entity orders, for example,
safety, popularity, and livability orders of countries. We train linear func-
tions by using samples of ordered entities as training data, and attributes
of entities as features. An example of such functions is f(Entity) = +0.5
(Police budget) —0.8 (Crime rate), for ordering countries in terms of
safety. As the size of training data is typically small in this task, we pro-
pose a machine learning method referred to as context-guided learning
(CGL) to overcome the over-fitting problem. Exploiting a large amount
of contexts regarding relations between the labeling criteria (e.g. safety)
and attributes, CGL guides learning in the correct direction by estimat-
ing a roughly appropriate weight for each attribute by the contexts. This
idea was implemented by a regularization approach similar to support
vector machines. Experiments were conducted with 158 kinds of orders
in three datasets. The experimental results showed high effectiveness of
the contextual guidance over existing ranking methods.

1 Introduction

Entity search is one of the emerging trends in major search engines [19,32], and
has been powered by large-scale knowledge bases such as DBpedia, Wikidata,
and YAGO. A wide variety of entity attributes are stored in knowledge bases and
have enabled search engines to support entity search queries such as “european
countries” and “movies starring emma watson”.

On the other hand, the current entity search systems have not supported
various kinds of rankings yet, which can be found on the Web, for example, the
most livable countries, innovative companies, and high-performance cameras. If
such diverse rankings were integrated into entity search and explained objectively
with some evidences, users could be more efficient for accomplishing complex
tasks such as decision making, comparison, and planning. For example, a user
is planning to visit several European countries and inputs a query “european
countries safety” to know how safe each country is. If an entity search engine
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provided a list of countries ranked by public safety and factors used to determine
the ranking (e.g. crime rate and police budget), they would be helpful for the
user to make his/her travel plan.
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Fig. 1. (A) Entities e; and ez are rich countries, and e3 is not a rich country. They have
only two attributes a1 (temperature) and as (GDP). (B) Every entity can be expressed
as a point in a two dimensional space by their attribute values in this example. Our goal
is to learn a linear function for the labeling criterion /1, which is defined as f1(x) = w?x.
One of the possible weights that perfectly classify the training examples is wi = (1, 0),
but not necessarily effective for the other examples. (C) Contexts are used to produce a
“rough” prediction g of the ideal weights. CGL determines the weights w1 such that
vi, the difference between wi and g1, is small and training examples are separated
well. The weights w; are expected to be effective for the other cases, since a strong
correlation between richness and GDP is suggested by their contexts.

In this paper, we propose a method for learning orders of entities using sam-
ples of ordered entities as training data and attributes of entities as features.
Entity orders are expressed in several forms on the Web: comparative sentences
(e.g. “DiCaprio is taller than Pitt”), scores (e.g. “[Camera A] portrait: 9.2, land-
scape: 7.5, and sports: 8.5”), and rankings (e.g. “Ist: Iceland, 2nd: Denmark, and
3rd: Austria”). These expressions can be interpreted with a uniform model, i.e. a
subset of entity pairs that defines an entity order, and be used as training data to
learn entity orders. The learned models can be used not only to rank entities but
also to explain rankings by correlated attributes. We assume that entity orders
can be represented as a linear function of attributes (denoted by f), primarily
because of the high explanatory capacity for users. For example, given a list of
entities ordered by labeling criterion “safety”, (Iceland, Denmark, Austria), and
their attributes such as “GDP”, “Crime rate”, and “Police budget”, we learn
function f(Entity) = 40.5 (Police budget) —0.8 (Crime rate).

A major challenge for this problem is the lack of training data. Many Web
sites do not present all the ordered entities (see Table 1). Moreover, the size of
training data might not be sufficiently large for some entity classes, even if all
the ordered entities are described (e.g. only 50 states in the United States). As
the number of attributes should be large enough to explain diverse orders, and
can be increased easily with existing techniques [11,28], the problem of learning
to rank entities can suffer from serious over-fitting problems.

To cope with this essential problem, we propose a learning method referred to
as context-guided learning (CGL). This method uses not only ordered entities but
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also contexts of labeling criteria and attributes to learn the function f. A labeling
criterion refers to a textual representation to determine labels (or an order in
a ranking problem). The context can provide the models with additional infor-
mation, and guide learning in the correct direction by preventing over-fitting.
Figure 1 illustrates how CGL is applied to a classification problem. (As can be
seen later, CGL is first explained for a classification problem and later extended
to a ranking problem). Our goal in this example is to learn a linear function for
the labeling criterion I (richness), which is defined as f;(x) = w?x (an intercept
is omitted for simplicity). When we simply apply an ordinary learning algorithm,
learned weights can be wj = (1,0) in (B) of Fig. 1, indicating that the attribute
a1 is useful for this classification. Although these weights seem reasonable as
their decision boundary perfectly separates positive (e; and es) and negative
(e3) examples, it is easy to anticipate that the attribute a; can be useless for the
other cases if we know the meaning of the labeling criterion (i.e. richness) and
attribute a; (i.e. temperature). CGL, on the other hand, incorporates contexts
of the labeling criterion and attributes for making a “rough” prediction of the
ideal weights, and expects the weights w; to be close to the “rough” predic-
tion (denoted as g; in (C) of Fig. 1). Although the prediction based on contexts
cannot be always accurate (indeed, the decision boundary of g fails to classify
examples well), g1 suggests that the attribute a1 is not strongly related to the
labeling criterion, and guides the learning of the weights wy. Thus, the learning
can be successful even if sufficient training data are not available. CGL does
not require any annotations for the contexts. Alternatively, CGL learns multiple
functions at the same time for learning the relationship between contexts and
weights in the function f.

To the best of our knowledge, CGL is the first attempt to leverage contexts
of labeling criteria and features directly in machine learning (ML) problems.
CGL is a general ML, method and can be applied not only to ranking problems
but also to classification and regression problems as long as relations between
labeling criteria and features are described in a particular corpus.

Our contributions in this paper can be summarized as follows: (1) we intro-
duced the problem of learning to rank entities by using attributes as features,
in order to rank entities by various criteria and precisely understand labeling
criteria; (2) we proposed CGL, a general ML method using contexts of labeling
criteria and features for preventing over-fitting; and (3) we conducted experi-
ments with a wide variety of orders, and demonstrated the effectiveness of CGL
in the task of learning to rank entities.

2 Related Work

We review related work on entity ranking and discuss the difference between
CGL and existing ML methods, in particular, multi-task learning methods.
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2.1 Entity Ranking

Entity ranking has been addressed in some tracks in INEX and TREC. The INEX
Entity Ranking track held two tasks: entity ranking and entity list completion
tasks [12-14]. The entity ranking task expected systems to return relevant enti-
ties in response to a given query, while the entity list completion task expected
systems to return entities related to given example entities. The TREC Entity
track offered related entity finding tasks, in which systems were expected to find
entities related to a given entity, with the type of the target entity and nature of
their relation [2-4]. Those tasks only expect that retrieved entities are ordered
by the relatedness to given example entities, and do not expect different kinds
of orders within related entities.

Apart from the evaluation campaigns, there are some work that addresses
learning to rank entities. Kang et al. used a ranking algorithm based on a boosted
tree model for finding entities related to a given query [24]. Tran et al. proposed
a method of ranking entities based on salience and informativeness for timeline
summarization of events [30]. Zhou et al. addressed a problem of finding entities
that have a specified relation with an input entity [34]. They trained a ranker
for each relation based on training queries and labeled entities by using features
derived from search snippets regarding pairs of entities. Although this work and
ours use contexts (or search snippets) for learning to rank entities, our rankers
are built primarily on attributes of entities and does not use contexts of entity
pairs. Jameel et al. proposed an entity embedding method for entity retrieval [22].
Their method is mainly based on the co-occurrence between entities and words,
and does not directly model entity attributes.

Some NLP tasks are also related to our task. Iwanari et al. tackled a prob-
lem of ordering entities in terms of a given adjective by using some evidences
extracted from texts [20]. Their task is similar to ours as both address entity
ranking in terms of a particular labeling criterion. While their method uses
contexts of labeling criteria and entities, our method uses contexts of labeling
criteria and attributes of entities.

2.2 Multi-task Learning

The important characteristics of CGL are summarized as follows: (1) weights in
the function f are learned based on labels as well as contexts regarding labeling
criteria and features, and (2) multiple functions are learned at the same time
to learn the relationship between the contexts and weights in the function f.
Below, we review several ML methods and discuss their relationship to CGL.
Multi-task learning is an approach to improving learning in each task by
learning multiple tasks simultaneously [9]. CGL is considered as an instance
of multi-task learning. Regularized multi-task learning, which was proposed by
Evgeniou and Pontil, assumes that weights of multiple tasks are similar [15]. As
explained later, their model is a special case of our model when contexts are
all the same. Other models assume that weights are sampled from a common
prior [10,27,33]. Argyriou et al. used an assumption that weights are represented
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in a low subspace common to multiple tasks [1]. In contrast to these methods
using an assumption that all the tasks are related, some work selectively decides
which tasks are related and are expected to share similar weights [21,25]. Sim-
ilarly, CGL uses contexts to measure the similarity between tasks implicitly,
and tends to estimate similar weights for similar tasks. An interesting differ-
ence between CGL and the other multi-task learning methods is that CGL still
works even if any pairs of tasks are not similar. CGL only requires that some
contexts are similar among multiple tasks. Thus, the applicable scope of CGL is
not limited to problems targeted by existing multi-task learning methods.

3 Methodology

In this section, we first explain the problem of learning to rank entities from
samples of ordered entities with attributes. We then introduce CGL, apply it to
our problem, and explain some approaches to modeling contexts for CGL.

3.1 Problem Definition

Letting F be a set of entities of a particular class, we define an entity order
as a total order on E, denoted by <. Each order has a labeling criterion (or
an ordering criterion in this case) denoted by [i. For example, labeling criteria
could include “livability”, “innovativeness”, “beauty”, and “performance”. A set
of all (e;,ej) € E x E for which e; <, e; holds is called a graph' of an entity
order, denoted by G<, . Orders are usually expressed on the Web as subsets of
their graphs. Thus, we can observe and use only G, C G<, for learning entity
orders. For example, a ranking of safe countries “Ist: Iceland, 2nd: Denmark, and
3rd: Austria” implies G, = {(“Denmark”, “Iceland”), (“Austria”, “Iceland”),
(“Austria”, “Denmark”)} and I, = “safety”.

Our principal purpose is to learn a linear function f(e;) = W,fei based on a
subset of a graph G, for each entity order =<}, where e; is an M-dimensional
vector representing attributes of entity e; € E, and the d-th value of the vector
represents a value of attribute ag. We expect that the function f; preserves the
entity order <j: e; =i €; = fr(e;) < fx(e;) for any e;,e; € E, so that entities
can be ranked by entity order <, with learned function fx. Moreover, attributes
whose weights are non-zero are expected to explain the entity order well.

As we explained earlier, the key challenge of this problem is lack of train-
ing data: |G, | is typically small compared with the number of attributes M.
For example, M = 83 for countries and M = 137 for cities in our experiments.
Ranked lists of ten or fewer entities can provide only at most 45 entity pairs as
training data, which are not considered as sufficiently large for learning. More-
over, M must be as large as possible for modeling a wide range of orders. Thus,
some approaches are necessary for preventing the over-fitting problem caused by
lack of training data.

L Graph of a function, a subset of the Cartesian product of two sets defining an order.
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The key idea in our work is to use data other than G for learning wy, effec-
tively. One of the unique characteristics or assumptions in our problem is that
textual representations for labeling criteria and attributes are available. There-
fore, given a labeling criterion, it is possible to estimate a roughly appropriate
weight for each attribute by leveraging the contexts regarding relations between
the labeling criterion and attribute. This idea is instantiated as CGL, which is
explained in the next subsection.

3.2 Context-Guided Learning

We introduce CGL, our proposed learning method that leverages contexts of
labeling criteria and features. We begin with CGL for classification problems
and then extend it to be used for ranking problems.

The input for a classification problem is D = {Dy}£ where D, =
{(Xk,hyk,i)}iv:kp xki € RM yp, € {—1,+1}, K is the number of labeling cri-
teria, and Nj is the number of examples for the k-th labeling criteria. Labeling
criterion I, is a textual representation to determine values for yy, ;. For example,
if x;,; represents a feature of a city and yi; = +1 if the city is a metropolitan
city, the labeling criterion I could be “metropolitan city”. Another example can
be found in Fig. 1. The d-th value of a vector should correspond to a particular
feature and have a name denoted by a4. Example names include “population”
and “GDP”.

The requirements for CGL are summarized as follows: (1) A labeling criterion
I, is expressed in language, (2) Features A = {aq}}L, are expressed in language,
and (3) There is a corpus including contexts regarding relations between labeling
criteria and feature names. It is not necessary that all the labeling criteria and
feature are expressed in language. In contrast to multi-task learning, CGL does
not require that tasks (or labeling criteria in CGL) are similar.

A classification problem can be formalized as learning function fj for each
labeling criterion k¥ = 1,..., K such that fx(xx;) >~ yr,;. To solve this problem,
we use a linear function fi(xy,) = w,{xk,i. Letting cj q represent contexts for
labeling criterion I and feature ay € A, we can use the contexts for estimating
wy, as follows:

wi,q = u’ ¢(ckq) + Vk,a, (1)

where wy, g is the d-th value of wy, ¢ is a feature map function that transforms
a context to a vector, and u is a weight vector that does not depend on labeling
criteria. The equation above indicates that the weight for the labeling criterion iy,
and feature a4 is estimated by their context cj 4 and an intercept vy 4. Equation 1
is generalization of wy q = 2zq + vg,q in the regularized multi-task learning [15],
where zg4 is a weight common to multiple tasks. Equation 1 is reduced to their
model if all the contexts are the same. If contexts for two labeling criteria are
similar, or equivalently, labeling criteria are similar, wy ¢ tends to be similar
for these labeling criteria. This property is similar to some multi-task learning
methods [21,25].
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Based on Eq. 1, wj, can be expressed as follows:
Wi = 8k + Vi, (2)

where Vi = (Uk71, NN 7'Uk,M)7 gL — @Zu, and ¢k = (gi)(ck,l), .. .,qb(ck,M)). This
equation is illustrated in (C) of Fig. 1. We expect that the “rough” prediction
g, can be given by contexts of labeling criterion [, and ideal weights are close
to gk; in other words, vy is not large.

We propose to learn the linear function using a regularization approach sim-
ilar to support vector machines (SVMs) and the regularized multi-task learn-
ing [15]. The optimization problem is shown below:

Problem 1
K Ng
in |u||2+—2\\vk||2+czzsm, 3)
WYk, k=11i=1

subject, fork =1,...,K andi=1,..., N, to the constraints that yy ; fr(Xk,) >
1—&ki, ki >0, where ¢ and C' are hyper parameters.

Slack variables £ ; measure the error of the linear functions on the training
data, while the other terms are regularization terms for the weights u and vy.
Hyper parameters ¢ and C' can control the effect of the contexts on the model and
the sensitivity for the error on the training data: a large value for ¢ increases the
effect of the contexts, while a large value for C' tends to inhibit misclassification
of the training data. We learn multiple functions f; for £ = 1,..., K with the
single objective function so that we can learn the weight u based on the whole
training data.

We show that Problem 1 can be solved in the same manner as would be
used with the standard SVM. To this end, we first define a single function to be
learned that summarizes functions fi for k =1,..., K as F(x,k) = fr(x). This
function, F': RM x {1,..., K} — R, can be written as a linear function:

F(x,k) = Wsz(x7 k), (4)

by using the following settings:

W= (uT7 \/ £VT)T7 ¢(X7 k) = ((stx)TvoTv . '7OT» \) EXT’0T7 e '70T)T7 (5)
K ———— C ——

k—1 K—k

where v is a feature map function, and 0 is an M-dimensional vector whose
values are all zeros.

Reassigning x; to X, ¥; t0 Yk, and & to &g (1 = Zﬁ;ll Ny + 1), we
can reduce Problem 1 to the standard SVM problem, as follows.

Theorem 1. The optimization of Problem 1 is equivalent to solving the follow-
ing problem:
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Problem 2. Given D = {((x;,k;),y:)}, where N = Eszl Ny, such that D =
Ué{zl {((zh,, k)aykz)’(-rkwykz) € Dy},

N
1
min SIwl?+C"> &, (6)
” i=1
subject, for i = 1,...,N, to the constraints that y; F(x;,k;) > 1 — &, & >0,
where C' = C/2 and &; is a slack variable for ((z;, ki), y;) € D.

Proof. The norm of w is ||w||? = ||u||?*++%||v||>. Therefore, the objective function
of Problem 2 is rewritten as:

1 c K N
S {||u||2 2 Il +cZa}, (7)
k=1 i=1

which is equivalent to the objective function of Problem 1.

Since Problem 2 is the standard SVM problem, we can use the standard
SVM dual problem for solving Problem 1. Furthermore, we can use an impor-
tant characteristic of SVMs: i.e. non-linear functions can be used by means of
kernels. While the linear function for classification (i.e. fi) cannot be a non-
linear function owing to the form of the model, we can use a non-linear function
for estimating the weights based on contexts (see Eq.1). The kernel method for
CGL provides us with a wide range of choices for the representation of contexts.
They can be represented as vectors, sets of vectors, trees, etc. as long as the
kernel function is appropriately designed for two contexts.

3.3 Context-Guided Learning for Ranking

We extend CGL to the ranking problem and explain how it can be applied to
the problem of ranking entities.

The input for the ranking problem is D = {Dy}* |, where D C RM x
RM and K is the number of labeling criteria. Labeling criterion I, is a textual
representation to determine the order for Dy: i.e. (Xx4, Xk ;) in Dy, indicates that
Xp,; is higher than x;; in terms of the labeling criterion ;. The d-th value of
vectors in Dy must correspond to a particular feature and have a name denoted
by ag4. The requirements are the same as those explained in regard to CGL
for classification. A ranking problem can be formalized as a learning function
fr for each labeling criterion k = 1,..., K such that fy(xg ;) — fr(xk,:) ~ 1
for (xx,i,Xk,;) in Dg. As assumed in the classification problem, we use a linear
function fi(xx,;) = ngkﬂ-.

It is clear that the ranking problem can be reduced to the classification
problem if we redefine Dy, as follows: Dj = {(xk,j — X i 1)|(x;€’i7xk,j) € Dk},
since fr(Xk,j — Xk,i) = fe(Xk,5) — fre(Xk.0)-

We can apply CGL for ranking to the problem in Problem Definition
section by using vectors of entity pairs in G’ﬂ as the training data, i.e. Dy =

{(ei,ej)l(ei e5) € G}
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3.4 Context Models

Having described the learning method for the problem of ranking entities, we
explain the context models used in the learning. Contexts can be a set of sen-
tences or a set of documents regarding a labeling criterion and a feature. In this
work, we describe methods of modeling contexts by using sentences retrieved
from Web search results.

Given labeling criterion I and feature ay, we create a query combining [
and ag with an AND operator, and use the query to retrieve the top N () search
results using a particular Web search engine (N(©) = 500 in our experiments).
We then split snippets of the search results into sentences and find sentences
including both the labeling criterion [; and the feature aq.

We use two basic methods for modeling sentences. One is a vector represen-
tation based on the TF-IDF weighting, and the other is a distributional rep-
resentation of sentences [26]. The vector representation based on the TF-IDF
weighting is sparse, and not sensitive to the order of words, but it can represent
exact words appearing in the context. In contrast, the distributed representation
of sentences is dense, and sensitive to the word order, but it might not retain
the exact words appearing in the context.

4 Experiments

This section explains data used in the experiment, describes experimental set-
tings, and shows the experimental results.

4.1 Data

Since there is no publicly available dataset for our task, we first explain our
development of a dataset and its statistics.

Various kinds of entity orders in three datasets were mined from the Web and
from magazines both automatically and manually. The three datasets include
City (more specifically, Japanese prefectures), Country, and Camera entities,
respectively. These classes were selected primarily for the following reasons: (1)
availability of a wide range of entity orders, (2) availability of attributes, and
(3) diversity of statistics. The language scope of our dataset was Japanese, as
we used a Japanese crowd-sourcing service in the evaluation. Entity names and
attribute names were Japanese and translated into English for this paper.

Entity orders were mined from Web pages for City and Country datasets, and
from ten Japanese camera magazines for Camera dataset. The retrieved ranked
lists were converted into a set of pairs for each entity orders. We excluded entity
sets including less than five entities.

Attributes for City and Country datasets were mined from tables in Web
documents. We chose Web tables as a resource for obtaining attributes because
(1) the extraction method can be accurate and language-independent, and (2)
standardization of numerical values was not necessary as units of numerical
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Table 1. Statistics of the datasets Table 2. Accuracy in the three
and examples of entities, orders, datasets (£SEM).
and attributes.
Accuracy
City Country |Camera City |Country Camera|Total
# Entities 47 138 149 RankNet [5] 0.482 0.478 10.530 |0.497
# Orders 64 40 54 (0.023)/(0.025) |(0.030) |(0.015)
# Entities/Order 13.3 17.7 14.4 RankBoost [16] 0.513 0.636 |0.552 [0.557
# Attributes 137 83 16 (0.028)/(0.024) |(0.036) |(0.018)
Entity examples Tokyo Denmark |EOS 5DS LinearFeature [29] 0.566 0.670 |0.614 |0.609
Kyoto Iceland  |Nikon D3300 (0.019)/(0.024) |(0.034) |(0.015)
Attribute examples  |Population|# Tourists Resolution LambdaMART ([31] 0.614 0.659 0.697 |0.654
Crime rate|# Suicides|Weight (0.021)|(0.019) |(0.024) |(0.013)
Order examples Attractive |Livable Portable ListNet [7] 0.559 0.518 |0.504 |0.530
Rich Happy Tough (0.020)|(0.022) |(0.031) |(0.014)
CGL (TF-IDF, Linear) 0.661 0.716 |0.823 |0.730
(0.017)/(0.022) |(0.019) |(0.012)
CGL (TF-IDF, RBF) |0.661 [0.725 |0.799 |0.724
(0.019)/(0.021) |(0.019) |(0.012)
CGL (Distributed, 0.646 0.701 |0.798 |0.712
Linear)
(0.020)/(0.023) |(0.021) |(0.013)
CGL (Distributed, 0.661 0.731 |0.804 |0.728
RBF)
(0.018)((0.022) |(0.021) |(0.013)

values are usually consistent within a table. Attributes for Camera dataset were
scraped from Web pages of a Japanese Web site, Kakaku.com?, which provides
prices and specifications of products. All the numerical values for each attribute
were normalized into [0, 1].

Table 1 shows statistics and examples of entities, orders, and attributes. There
are 158 entity orders in total. For most of the orders, we could not find all of
the entities in a class in a ranking on the Web. There were many Web pages
presenting the top three or ten entities for an order. Thus, the average number
of entities per order is much less than the total number of entities.

4.2 Experimental Settings

We selected as baseline methods for this experiment some existing ranking meth-
ods that do not use contexts: (1) RankNet [5]: a pairwise ranking method that
uses a neural network model and optimizes the cross entropy loss, (2) Rank-
Boost [16]: application of AdaBoost [17] to pairwise preferences, (3) Linear-
Feature [29]: a linear feature-based model optimized by coordinate ascent, (4)
LambdaMART [31]: a combination of the ranking model, LambdaRank [6],
and the boosted tree model, MART [18], and (5) ListNet [7]: a listwise ranking
method using a neural network model. We used these methods implemented in
RankLib®. We used normalized discounted cumulative gain (nDCG@10) [23] as
an evaluation metric to be optimized for some methods.

2 http://kakaku.com/.
3 https://www.lemurproject.org/ranklib.php.
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We conducted experiments using the developed dataset in the following set-
tings. For each set of ordered entities G<,, we split entities in the set F into
50:50, FEtrain and Fiest, and obtained training data Girain = {(ei,€;)|(ei, €5) €
G<, Ne€;i € Eyain N €j € Eyain} and test data Giest = G<,, — Girain. Our task in
this experiment is to learn a model based on Gypain, and to predict the pairwise
preference of e; and e; for (e;, e;) € Giest- We measured the accuracy defined as
the fraction of correctly predicted pairwise preferences. We used five-fold cross
validation on entity orders within Ei,ain of the same dataset to determine the
best parameters for each method.

We configured CGL with the following settings. Two context models were
used: TF-IDF and Distributed (distributed representation with 400 dimen-
sional vectors). Parameters ¢ and C' were determined using the cross validation
explained above. A linear kernel (Linear) and an RBF kernel (RBF) were used
for the kernel in CGL.

4.3 Experimental Results

Table 2 shows the accuracy in the three datasets with the standard error of
the mean (SEM). CGL in any settings were better than any of the baseline
methods. Among the CGL-based methods, the best method was CGL (TF-IDF,
Linear), followed by CGL (Distributed, RBF). The total improvement over the
best baseline method, LambdaMart, was 11.6%. According to a randomized
Tukey HSD test [8]* (a = 0.01), the differences between CGL (TF-IDF, Linear)
and all the baseline methods were found to be statistically significant, while
there was no statistically significant difference across methods based on CGL.

CGL (TF-IDF, Linear) achieved 8%, 11%, and 18% improvements over
LambdaMART for City, Country, and Camera, respectively. We hypothesize
that the quality and amount of contexts are the main factors that determine the
effectiveness of CGL, based on the observation that the number of sentences used
for modeling contexts per attribute was 36.0, 45.7, and 137 for City, Country,
and Camera, respectively.

Table 3. Examples of linear functions learned by CGL, in which three attributes for
the highest absolute weights are shown.

Class Learned linear model

City Attractiveness = 4+0.035 Women’s —0.032 # Accident fatalities —0.031 Population/family
life expectancy

City Avg. savings = —0.174 Highest +0.160 Healthy life-span +0.148 # Country inns
temperature

Country|Reputation = +0.058 Happiness —0.057 # Applicants for asylum|—0.045 # Suicides

Country|Peace = +0.170 Grain harvest +0.166 GDP growth rate —0.126 # Suicides

Camera |Operability = —0.240 Weight —0.213 Height +0.133 Max. shutter speed

We also conducted evaluation of the attributes used in the learned func-
tions. Five attributes with the highest absolute weights for each entity order

4 http://www.f.waseda.jp/tetsuya,/tools.html.
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Fig. 2. Distribution of rates for five attributes with the highest absolute weights.

were pooled, and then presented to users in a Japanese crowd-sourcing service,
Lancers®. In this evaluation, we aimed to understand to what extent the learned
attributes could explain the orders. The instruction was as follows: “If you agree
that there is a correlation between <labeling criterion> and <attribute>, please
assign a score +2. If you disagree, please assign a score —2. If you cannot agree
or disagree, please assign a score 0.” Users could choose a rate from —2, —1, 0,
+1, and +2. We assigned five users for each pair of a labeling criterion and an
attribute. The best CGL method, CGL (TF-IDF, Linear), was selected for this
evaluation. LinearFeature was used as a baseline method, since only this method
used a linear function among the baseline methods.

Figure 2 shows the distribution of rates for five attributes with the highest
absolute weights. The average rates of CGL were —0.455, —0.166, and +0.581,
while those of LinearFeature were —0.560, —0.204, +0.516 for City, Country,
and Camera datasets, respectively. These average rates show a high correlation
with the accuracy of the models. Even though CGL could find more reasonable
attributes in all of the classes than LinearFeature, their differences were small
for those datasets. The average rates for City and Country datasets were neg-
ative indicating low explainability of the attributes. This is partially because
some attributes only correlate to a particular labeling criterion, but were not
considered as causes for increasing the criterion. Although CGL could learn a
more accurate model than the baseline methods, it is still challenging to find
highly explanatory attributes for a given label criterion.

Finally, we show some examples of linear functions learned by CGL in Table 3.
Most of the attributes seem explainable and can possibly affect the entity order.
While the others do not seem explanatory for the labeling criteria (e.g. “popula-
tion/family” for “attractiveness” and “highest temperature” for “avg. savings”),
they correlate well to the labeling criteria in our dataset, and are examples of
attributes that were considered unreasonable in the subjective evaluation, but
highly contributed to the prediction.

5 http://www.lancers.jp/.
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5 Conclusions

In this paper, we addressed the problem of learning orders of entities, by using
partially observed orders as training data and attributes of entities as features.
We proposed a learning method called context-guided learning (CGL) to avoid
the over-fitting problem caused by lack of training data, and demonstrated the
effectiveness of CGL for 158 orders in three datasets. Our future work includes
theoretical analysis of CGL, application of CGL to the other problems (e.g. a
fact verification task), exploration of better context models, and improvement
of the efficiency of CGL for a large amount of data.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP16H02906, JP17H00762, JP18H03243, and JP18H03244, and JST PRESTO Grant
Number JPMJPR1853, Japan.

References

1. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach.
Learn. 73(3), 243-272 (2008)

2. Balog, K., Serdyukov, P., De Vries, A.P.: Overview of the TREC 2010 entity track.
In: TREC (2010)

3. Balog, K., Serdyukov, P., De Vries, A.P.: Overview of the TREC 2011 entity track.
In: TREC (2010)

4. Balog, K., De Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of
the TREC 2009 entity track. In: TREC (2009)

5. Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89-96
(2005)

6. Burges, C.J., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions.
In: NIPS, pp. 193-200 (2006)

7. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In: ICML, pp. 129-136 (2007)

8. Carterette, B.A.: Multiple testing in statistical analysis of systems-based informa-
tion retrieval experiments. ACM TOIS 30(1), 4 (2012)

9. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41-75 (1997)

10. Daumé III, H.: Bayesian multitask learning with latent hierarchies. In: UAI, pp.
135-142 (2009)

11. Davidov, D., Rappoport, A.: Extraction and approximation of numerical attributes
from the web. In: ACL, pp. 1308-1317 (2010)

12. de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview
of the INEX 2007 entity ranking track. In: Fuhr, N., Kamps, J., Lalmas, M.,
Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 245-251. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85902-4_22

13. Demartini, G., Iofciu, T., de Vries, A.P.: Overview of the INEX 2009 entity ranking
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp.
254-264. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14556-
826

14. Demartini, G., de Vries, A.P., lofciu, T., Zhu, J.: Overview of the INEX 2008 entity
ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 243-252. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03761-0_25


https://doi.org/10.1007/978-3-540-85902-4_22
https://doi.org/10.1007/978-3-642-14556-8_26
https://doi.org/10.1007/978-3-642-14556-8_26
https://doi.org/10.1007/978-3-642-03761-0_25
https://doi.org/10.1007/978-3-642-03761-0_25

96

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. P. Kato et al.

Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: KDD, pp. 109-117
(2004)

Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4, 933-969 (2003)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 1(55), 119-139 (1997)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189-1232 (2001)

Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: SIGIR,
pp. 267-274 (2009)

Iwanari, T., Yoshinaga, N., Kaji, N., Nishina, T., Toyoda, M., Kitsuregawa, M.:
Ordering concepts based on common attribute intensity. In: IJCAI, pp. 3747-3753
(2016)

Jacob, L., Vert, J.p., Bach, F.R.: Clustered multi-task learning: a convex formula-
tion. In: NIPS, pp. 745-752 (2009)

Jameel, S., Bouraoui, Z., Schockaert, S.: Member: Max-margin based embeddings
for entity retrieval. In: SIGIR, pp. 783-792 (2017)

Jarvelin, K., Kekélainen, J.: Cumulated gain-based evaluation of ir techniques.
ACM TOIS 20(4), 422-446 (2002)

Kang, C., Yin, D., Zhang, R., Torzec, N., He, J., Chang, Y.: Learning to rank
related entities in web search. Neurocomputing 166, 309-318 (2015)

Kumar, A., Daumé III, H.: Learning task grouping and overlap in multi-task learn-
ing. In: ICML, pp. 1383-1390 (2012)

Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, pp. 1188-1196 (2014)

Lee, S.I., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for
feature relevance from multiple related tasks. In: ICML, pp. 489-496 (2007)
Madaan, A., Mittal, A., Mausam, G.R., Ramakrishnan, G., Sarawagi, S.: Numerical
relation extraction with minimal supervision. In: AAAI, pp. 2764-2771 (2016)
Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval.
Inf. Retrieval 10(3), 257274 (2007)

Tran, T.A., Niederée, C., Kanhabua, N., Gadiraju, U., Anand, A.: Balancing nov-
elty and salience: Adaptive learning to rank entities for timeline summarization of
high-impact events. In: CIKM, pp. 1201-1210 (2015)

Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information
retrieval measures. Inf. Retrieval 13(3), 254-270 (2010)

Yin, X., Shah, S.: Building taxonomy of Web search intents for name entity queries.
In: WWW, pp. 1001-1010 (2010)

Yu, K., Tresp, V., Schwaighofer, A.: Learning gaussian processes from multiple
tasks. In: ICML, pp. 1012-1019 (2005)

Zhou, M., Wang, H., Change, K.C.C.: Learning to rank from distant supervision:
exploiting noisy redundancy for relational entity search. In: ICDE, pp. 829-840
(2013)



	Context-Guided Learning to Rank Entities
	1 Introduction
	2 Related Work
	2.1 Entity Ranking
	2.2 Multi-task Learning

	3 Methodology
	3.1 Problem Definition
	3.2 Context-Guided Learning
	3.3 Context-Guided Learning for Ranking
	3.4 Context Models

	4 Experiments
	4.1 Data
	4.2 Experimental Settings
	4.3 Experimental Results

	5 Conclusions
	References




