
Patch-Based Identification of Lexical
Semantic Relations
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Abstract. The identification of lexical semantic relations is of the
utmost importance to enhance reasoning capacities of Natural Language
Processing and Information Retrieval systems. Within this context, suc-
cessful results have been achieved based on the distributional hypothesis
and/or the paradigmatic assumption. However, both strategies solely rely
on the input words to predict the lexical semantic relation. In this paper,
we make the hypothesis that the decision process should not only rely
on the input words but also on their K closest neighbors in some seman-
tic space. For that purpose, we present different binary and multi-task
classification strategies that include two distinct attention mechanisms
based on PageRank. Evaluation results over four gold-standard datasets
show that average improvements of 10.6% for binary and 8% for multi-
task classification can be achieved over baseline approaches in terms of
F1. The code and the datasets are available upon demand.

Keywords: Patches · PageRank · Attention mechanism · Multi-task
learning

1 Introduction

Recognizing the exact nature of the semantic relation holding between a pair of
words is crucial for many applications such as taxonomy induction [10], ques-
tion answering [6,22], query expansion [15] or text summarization [8]. The most
studied lexical semantic relations are synonymy, co-hyponymy, hypernymy, or
meronymy, but more exist [37]. Numerous approaches have been proposed to
identify one particular semantic relation of interest following either the paradig-
matic approach [28,29,33,39], the distributional model [9,31,36,37], or their
combination [25,32].

In all these studies, the decision process relies on finding representation reg-
ularities between two input words. In this paper, we make the assumption that
finding the lexical semantic relation that holds between two words does not solely
rely on the pair itself, but also on the semantically related neighboring words.
Our hypothesis relies on two different ideas. First, studies about the mental lexi-
con [13,23] theorize that words are highly interconnected within a mental seman-
tic network, such that conceptual information is encoded in one’s mind rather
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than single words alone. Second, studies in image segmentation show that divid-
ing up an image into a patch work of regions, each of which being homogeneous,
leads to successful results [18,20]. Analogously, we propose to define a word
patch as a source word augmented by its semantically close related neighbors,
and expect that performance gains can be achieved by grounding the decision
process on finding representation regularities between word patches.

However, as the information contained in patches may be voluminous, noisy
information may be embedded possibly due to semantic shifts, so that concept
centrality may be lost. Consequently, we propose to define two attention mech-
anisms (one inside patches and one between patches) based on the PageRank
algorithm [26] to account for the valuable information present in large patch-
based input representation vectors.

In order to test our hypotheses, we follow the distributional approach,
although we acknowledge that its combination with the pattern-based approach
could lead to improved results as stated in [25,32]. However, integrating contin-
uous pattern representations within the patch paradigm is not straightforward
and requires specific further analysis, which is out of the scope of this paper. But,
to overcome the main drawback of the distributional hypothesis that conflates
different semantic relations between words [9], we design different multi-task neu-
ral learning strategies, as recently introduced by [1], together with their binary
classification counterparts.

Results over four gold-standard datasets i.e. RUMEN [1], ROOT9 [30],
WEEDS [39] and BLESS [3] show that the patch representation leads to sig-
nificant improvements, in particular when attention mechanisms are applied -
10.6% for binary and 8% for multi-task classification over baselines in terms
of F1 score. Moreover, multi-task learning strategies evidence slightly improved
performance results as well as more coherent behaviors when compared to binary
configurations.

2 Related Work

Two main approaches have been intensively studied to classify word pairs into
the lexical semantic relation they share, or to categorize them as unrelated (or
random). On the one hand, pattern-based methods rely on lexico-syntactic pat-
terns, which connect a pair of words [12,17,25,29,32,33]. On the other hand, the
distributional approach consists in characterizing the semantic relation between
two words based on their distributional representations, thus following Harris
distributional hypothesis [11]. In this case, a word pair can be represented by
the concatenation of the context vectors of the individual words [2,28,32,39] or
by their difference [7,37,39]. The main drawback of the distributional hypoth-
esis is that it conflates different semantic relations between words. Therefore,
different solutions have been proposed to overcome this issue. First, specialized
similarity measures can be defined to distinguish different relations [29]. Another
solution is to specialize word embeddings for particular relations using external
knowledge [9,36]. However, these methods are one-relation specific and cannot
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differentiate between multiple semantic relations at a time. So, multi-task learn-
ing strategies have been proposed [1], which concurrently learn different semantic
relations with the assumption that the learning process of a given semantic rela-
tion may be improved by jointly learning another semantic relation.

In this paper, we propose to look at the problem from a different point of
view, the underlying idea being that if each word is augmented by its set of K
nearest neighbors (i.e. a patch), improved performance results may be attained.
A similar idea is proposed by [14], who presented a set cardinality-based method,
which exploits WordNet [24] to compute related neighboring words. In particular,
they show that the features extracted from set cardinalities produce competitive
results compared to word embedding approaches for a large set of word similarity
tasks. However, their methodology relies on the pre-existence of a knowledge
base, which is not available for a vast majority of languages. Moreover, their
hypothesis builds on discrete representations of words, which cannot account
for word continuous similarities and thus highly relies on representative1 set
intersections. Also, only word similarity tasks are tested and it is difficult to
access to what extent their methodology can adapt to lexical semantic relation
identification. Furthermore, in their proposal, all neighboring words receive the
same importance for the decision process, although by extending the semantic
scope of each individual word, semantic shifts may occur as well as concept
centrality may be lost.

To overcome all these situations, we propose binary and multi-task classifica-
tion strategies grounded on continuous input representations, that combine two
attention mechanisms to evidence word centrality within and between patches
based on the PageRank algorithm. In particular, word pairs are represented by
the concatenation of their word embeddings as suggested by [32], augmented by
their cosine similarity, which is an important feature for lexical semantic relation
identification [31].

3 Patch-Based Classification

In this section, we present the overall learning architecture, which consists in
the definition of (1) the new input representations based on patches, (2) two
attention mechanisms grounded on the PageRank algorithm, and (3) the binary
and multi-task neural parallel and sequential classification configurations.

3.1 Definition of Patch and Similarity Between Patches

Definition of Patch. A patch consists of the K most similar words wj to a source
word w0 in terms of cosine similarity in some latent semantic space (embedding).
As such, the patch PK

w0
corresponding to the source word w0 is a set of K + 1

words defined as in Eq. 1, where cos(−→w0,
−→wj) stands for the cosine similarity

between the two representation vectors of w0 and wj in some semantic space.

PK
w0

= {w0} ∪ {wj |argmaxK
cos(−→w0,

−→wj)
} (1)

1 In terms of occurrence and variety.
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The next step consists in transforming a patch into a learning input. For that
purpose, we follow a simple strategy that consists in concatenating the distri-
butional representations of all words within a patch in their order of similarity
measure with the source word2. Such input is defined in Eq. 2, where −→wi stands
for the distributional representation of the ith word in the patch PK

w0
.

K⊕

i=0

−→wi (2)

Similarity Between Patches. Many similarity measures exist to account for the
lexical semantic relation that links two words [31]. Within this scope, the cosine
similarity measure has evidenced successful results for a variety of semantic
relations [35]. As a consequence, we propose to extend the cosine similarity to
patches in a straightforward manner. The similarity between two patches is the
set of one-to-one cosine similarity measures between all words in their respective
patches. It is formally defined in Eq. 3, where PK

w0
and PK

w′
0

are two patches, and
the (K + 1) × (K + 1) matrix noted SP (PK

w0
, PK

w′
0
) summarizes all values.

SP (PK
w0

, PK
w′

0
) =

⎡

⎢⎢⎢⎢⎣

cos(−→w0,
−→
w′

0) cos(−→w0,
−→
w′

1) . . . cos(−→w0,
−→
w′

K)
cos(−→w1,

−→
w′

0) cos(−→w1,
−→
w′

1) . . . cos(−→w1,
−→
w′

K)
...

...
. . .

...
cos(−→wK ,

−→
w′

0) cos(−→wK ,
−→
w′

1) . . . cos(−→wK ,
−→
w′

K)

⎤

⎥⎥⎥⎥⎦
(3)

Similarly to the transformation of a patch into a learning input, we concatenate
all (K +1)× (K +1) values of the SP (PK

w0
, PK

w′
0
) matrix to be fed to the decision

process. Such input is defined in Eq. 4.

K⊕

i=0

K⊕

j=0

cos(−→wi,
−→
w′

j) (4)

3.2 Attention Mechanisms

Attention Mechanism Within a Patch. A patch should ideally represent a seman-
tic concept centered around its source word. However, this may not be the case
as semantic shifts may occur when augmenting the source word with K likely
related neighbors, such that centrality may be lost. In order to measure cen-
trality within a patch, we propose to run the PageRank algorithm [26] over
the patch defined as a weighted complete graph. Thus, a patch is defined as
GPK

w0
= (VPK

w0
, EPK

w0
), where VPK

w0
is the set of K+1 vertices (words) within PK

w0
,

and EPK
w0

is the complete set of edges that link all vertices together, weighted by
their corresponding cosine similarity. The result of the PageRank algorithm over

2 Other representations have been tested, but this solution proved to lead to better
results.
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GPK
w0

is a vector of (K+1) dimensions, where each vertex (word) within the patch

receives a centrality score in R, and it is noted
−−→
αK
w0

= 〈αw0 , αw1 , αw2 , . . . , αwK
〉.

The output of the PageRank algorithm
−−→
αK
w0

stands for the attention mech-
anism within a patch. Indeed, if we represent a patch (as a learning input) by
the concatenation of its words embeddings, all input words are given the same
importance for the decision process, letting the classification algorithm decide
upon which input dimensions should be discriminant. To guide the learning pro-
cess, attention mechanisms have shown successful results [34]. As a consequence,
we propose to weight each input embedding by its PageRank value so that word
centrality scores are included in the decision process. Such an attention-based
input is defined in Eq. 5.

K⊕

i=0

αwi
.−→wi (5)

Attention Mechanism Between Patches. While the first attention mechanism
focuses on word centrality within a given patch, the second attention mecha-
nism spotlights on word centrality between patches. Indeed, it is important to
acknowledge, which words are central in a set of two patches in order to verify if
two words are in a lexical semantic relation. As such, if two patches share a set of
close semantically related words that are central to both concepts, the decision
process may be more reliable. In order to measure word centrality between two
patches (PK

w0
, PK

w′
0
), we propose to run the PageRank algorithm over the graph

defined by the SP (PK
w0

, PK
w′

0
) matrix, which results in a vector of 2 × (K + 1)

dimensions, where each word of both patches receives a centrality score in R,
and it is noted

−−−−→
βK
w0,w′

0
= 〈βw0 , βw1 , . . . , βwK

, βw′
0
, βw′

1
, . . . , βw′

K
〉.

The output of the PageRank algorithm
−−−−→
βK
w0,w′

0
stands for the attention mech-

anism between patches. So, similarly to the previous attention mechanism, we
propose to weight each input embedding of a pair of patches by its PageRank
value so that inter-patch word centrality scores are fed to the decision process.
Such a second attention-based input is defined in Eq. 6.

K⊕

i=0

βwi
.−→wi

K⊕

i=0

βw′
i
.
−→
w′

i (6)

Combined Attention Mechanisms. Based on the previous definitions of atten-
tion mechanisms, we can acknowledge that all input word embeddings may
receive two centrality scores: one within patches (first attention) and one between
patches (second attention). As a consequence, both attention mechanisms can be
combined in a unique learning representation to be fed to the decision process,
and it is defined in Eq. 7.
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K⊕

i=0

αwi
.βwi

.−→wi

K⊕

i=0

αw′
i
.βw′

i
.
−→
w′

i (7)

3.3 Learning Framework

In order to perform binary and multi-task classification, we define two distinct
learning input representations, Xp and Xs, which combine patches representa-
tions, attention mechanisms and similarity between patches. The first learning
input configuration Xp builds on the individual attention mechanisms and it is
defined in Eq. 8. In particular, it is composed of the concatenated embeddings
of PK

w0
and PK

w′
0

weighted by their inside patch attention, plus the concatenated
embeddings of PK

w0
and PK

w′
0

weighted by their in between patch attention, plus
the concatenated values of the cosine similarity between both patches PK

w0
and

PK
w′

0
.

Xp = (
K⊕

i=0

αwi
.−→wi,

K⊕

j=0

αw′
j
.
−→
w′

j ,

K⊕

i=0

βwi
.−→wi

K⊕

i=0

βw′
i
.
−→
w′

i,

K⊕

i=0

K⊕

j=0

cos(−→wi,
−→
w′

j)) (8)

The second learning input Xs is grounded on the combined attention mechanism,
which allows a more compact representation. It is defined in Eq. 9 and it consists
in the concatenated embeddings of PK

w0
and PK

w′
0

weighted by their combined
inside and in between patch attentions, plus the concatenated values of the
cosine similarity between both patches PK

w0
and PK

w′
0
.

Xs = (
K⊕

i=0

αwi
.βwi

.−→wi

K⊕

i=0

αw′
i
.βw′

i
.
−→
w′

i,
K⊕

i=0

K⊕

j=0

cos(−→wi,
−→
w′

j)) (9)

With respect to binary and multi-task classification algorithms, we adapted the
(hard parameter sharing architecture) feed-forward neural networks proposed
in [1], as the code is freely available3, and as a consequence allows direct com-
parison and reproducibility. In particular, Adam [16] is used as the optimizer
with default parameters of Keras [5]. For multi-task classification, the network
is trained with batches of 64 examples and the number of iterations is optimized
to maximize the F1 score on the validation set. Word embeddings are initialized
with the 300-dimensional representations of GloVe [27]. The overall architectures
are illustrated in Fig. 1 both for Xp (parallel architecture) and Xs (sequential
architecture).

4 Evaluation Results

In this section, we present overall classification results for four gold-standard
datasets, namely RUMEN [1], ROOT9 [32], WEEDS [39] and BLESS [3].
3 https://bit.ly/2Qitasd.

https://bit.ly/2Qitasd
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Fig. 1. On the left, the sequential architecture. On the right, the parallel architecture.
Note that the dotted red line between the last fully connected layer of the neural
network and the output layer stands for the multi-task architecture only. (Color figure
online)

In particular, we test 8 different configurations for both binary and multi-task
classification strategies: (1) Concat, where the learning input is the concatenation
of the word pair embeddings, (2) Concat + cos stands for the same configuration
as Concat plus the cosine similarity measure between the two word embeddings,
(3) Patches consists of the concatenation of the embeddings of the word pair plus
all its respective neighbors, (4) Concat + SP is similar to Concat + cos, but the
cosine similarity is replaced by the concatenated SP matrix, (5) Patches + SP
represents the exact counterpart of the Concat + cos input for patches, and com-
bines the concatenation of all embeddings within patches plus the concatenated
SP matrix, (6) Patches + SP + att1 is similar to Patches + SP, where each indi-
vidual patch is weighted by the attention mechanism within patch, (7) Patches
+ SP + att12 represents the sequential architecture illustrated in Fig. 1 (left),
and (8) Patches + SP + att1+2 stands for the parallel architecture illustrated
in Fig. 1 (right). Classification performance is evaluated through Accuracy, F1

score, Precision and Recall. Note that lexical split is applied to avoid vocabu-
lary intersection between training, validation and test datasets to avoid lexical
memorization [19].

Binary Classification: Results for binary classification are given in Table 1. They
clearly evidence the superiority of the sequential architecture, which produces
best results in 6 learning situations out of 8 in terms of F1 score4. In particular,

4 F1 is not sensitive to unbalanced datasets.
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Table 1. Accuracy, F1, Precision and Recall scores on all datasets for binary
classification.

Synonym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec

RUMEN Concat – 0.756 0.760 0.744 0.776 – 0.776 0.768 0.741 0.714

Concat + cos – 0.817 0.819 0.806 0.833 – 0.790 0.766 0.741 0.792

Patches K=1 0.713 0.718 0.701 0.736 K=3 0.765 0.728 0.728 0.729

Concat + SP K=6 0.829 0.830 0.819 0.841 K=9 0.801 0.778 0.753 0.805

Patches + SP K=1 0.792 0.793 0.786 0.799 K=7 0.779 0.747 0.740 0.754

Patches + SP + att1 K=9 0.833 0.831 0.835 0.828 K=2 0.818 0.789 0.792 0.786

Patches + SP + att1+2 K=9 0.830 0.827 0.839 0.814 K=2 0.811 0.780 0.782 0.779

Patches + SP + att12 K=9 0.855 0.851 0.873 0.829 K=4 0.819 0.783 0.813 0.756

Co-hynonym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

ROOT9 Concat – 0.907 0.938 0.949 0.888 – 0.852 0.895 0.901 0.927

Concat + cos – 0.911 0.941 0.951 0.931 – 0.835 0.883 0.891 0.874

Patches K=10 0.911 0.941 0.948 0.935 K=2 0.876 0.913 0.908 0.918

Concat + SP K=10 0.926 0.951 0.955 0.947 K=9 0.893 0.924 0.927 0.942

Patches + SP K=10 0.920 0.946 0.957 0.936 K=6 0.903 0.931 0.938 0.923

Patches + SP + att1 K=9 0.945 0.964 0.961 0.966 K=3 0.919 0.943 0.938 0.949

Patches + SP + att1+2 K=9 0.950 0.967 0.965 0.970 K=6 0.908 0.934 0.943 0.925

Patches + SP + att12 K=3 0.946 0.964 0.968 0.961 K=2 0.931 0.952 0.941 0.963

Co-hyponym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

WEEDS Concat – 0.718 0.429 0.414 0.444 – 0.810 0.422 0.433 0.412

Concat + cos – 0.789 0.587 0.548 0.632 – 0.842 0.527 0.530 0.524

Patches K=8 0.711 0.406 0.397 0.416 K=1 0.789 0.376 0.374 0.377

Concat + SP K=9 0.841 0.671 0.660 0.682 K=9 0.901 0.653 0.796 0.554

Patches + SP K=9 0.794 0.592 0.560 0,628 K=9 0.871 0.602 0.623 0.583

Patches + SP + att1 K=8 0.859 0.680 0.789 0.629 K=7 0.904 0.672 0.793 0.583

Patches + SP + att1+2 K=10 0.861 0.685 0.743 0.635 K=9 0.903 0.661 0.799 0.564

Patches + SP + att12 K=4 0.870 0.713 0.751 0.679 K=9 0.926 0.753 0.856 0.670

Meronym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

BLESS Concat – 0.844 0.757 0.804 0.716 – 0.868 0.468 0.515 0.429

Concat + cos – 0.862 0.785 0.833 0.743 – 0.881 0.521 0.568 0.481

Patches K=3 0.848 0.764 0.808 0.725 K=2 0.922 0.692 0.742 0.647

Concat + SP K=8 0.887 0.829 0.857 0.803 K=4 0.933 0.741 0.780 0.705

Patches + SP K=7 0.881 0.818 0.855 0.785 K=2 0.939 0.759 0.806 0.718

Patches + SP + att1 K=9 0.896 0.835 0.905 0.776 K=3 0.949 0.794 0.870 0.731

Patches + SP + att1+2 K=3 0.889 0.835 0.850 0.820 K=2 0.948 0.798 0.838 0.763

Patches + SP + att12 K=6 0.898 0.837 0.915 0.772 K=2 0.955 0.822 0.882 0.769

for RUMEN, it outperforms the second best strategy by 2% for synonymy.
For ROOT9, improvements of 0.9% are obtained for hypernymy. For WEEDS,
increases of 2.8% for co-hyponymy and 8.1% for hypernymy are obtained. For
BLESS, enhancements of 0.2% and 2.4% are respectively achieved for meronymy
and hypernymy over the second best approach. Interestingly, the parallel archi-
tecture is not capable of taking advantage of the second attention mechanism (i.e.
centrality between patches) as it is the case for the sequential model. The inability
of the parallel architecture to combine both attentionmechanisms canbe explained
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by two factors. First, in the parallel architecture, individual word embeddings can
receive different PageRank weights depending on the attention mechanism. But,
as these weights are not explicitly combined, the neural network may not be able
to compute regularities between different weights for the same input. The other
reason can be explained by the tree structure of human knowledge [38], that the-
orizes that the cognitive process of human acquisition is agglomerative. Results
also evidence clear superiority of attention-based strategies compared to attention-
unawarepatch-basedmodels i.e.,Patches,Concat+SPandPatches+SP.Onaver-
age overall all datasets and all classification tasks, an increase of 3.5% is achieved
by the best attention-based model compared to the best attention-unaware con-
figuration containing neighbor information. Moreover, if we compare the sequen-
tial architecture to the current non-patch baseline i.e. Concat + cos, the difference
in performance is much more important. In particular, an average improvement of
10.6% can be attained, with a minimum increase of 1.7% for RUMEN (hypernymy)
and a maximum gain of 30.1% for BLESS (hypernymy). Results also show that
the simple introduction of neighbors, i.e. without attention mechanisms, cannot
account systematically for increase in performance. Indeed, if we compare Concat
+ cos and its direct counterpart Patches + SP that includes the neighbor infor-
mation both in terms of semantic content and similarity, best results are obtained
for the second strategy in 6 cases out of 8. This means that in two situations, the
introduction of more information does not lead to improvements. By looking in
more details and comparing Concat to Patches, we can see that better results can
be obtained in only half of the cases by the introduction of neighbor embeddings.
In fact, going further in the analysis and looking at the results of Concat + SP, we
clearly understand that the improvement in results comes from the SP matrix and
not from the concatenation of the embeddings. Indeed, the Concat + SP strategy
shows improved results in 6 cases out of 8 over the more complete Patches + SP
configuration, with an average increase of 3.6%. This situation can be explained by
the inability of the neural network to focus on the meaningful word embeddings.
Indeed, by just concatenating all neighbor embeddings, all words become equal for
the decision process, although this should not be the case. As such, attention mech-
anisms allow to overcome this situation.

Finally, we can observe that different values of K are obtained for all tested
situations. First, if we compare the best attention-based model with the best
attention-unaware configuration5 for all the classification tasks, it is clear that
smaller values of K are needed for models with attention. On average, attention-
aware models find optimal results for K = 5.4, while configurations without
attention attain maximum performance for K = 7.4. This situation can easily
be explained as the best attention-unaware model is Concat + SP, which does
not include the embeddings of the neighbors. As such, the only information
from the neighbors is given by the SP matrix, which must give trace of all
the information alone between patches. As a consequence, only large matri-
ces can account for the extra information included in the patches. Results
also show that different values of K can be obtained for the same semantic

5 Which may not include any information about neighbors.
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relation depending on the dataset, although some regularities seem to exist. For
instance, for hypernymy, best results are obtained for K = 9 for WEEDS, but
the best results for RUMEN, BLESS and ROOT9 are obtained for K = 2. Fur-
thermore, by comparing symmetric (synonymy, co-hyponymy) and asymmetric
(hypernymy, meronymy) relations, results show that best results are obtained
for K = 7.4 on average in the first case, and for K = 6 on average in the second
case, thus suggesting the need for less extra-knowledge for asymmetric semantic
relations. This can be explained by the semantic shift phenomenon [4]. When
dealing with asymmetric relations, it is likely that one of the words within the
pair is a general word. As a consequence, when expanding the general word with
its neighbors, it is likely that a semantic shift occurs. As a consequence, it is
conceivable that smaller values of K are preferred for asymmetric relations.

Multi-task Classification: Results for multi-task classification are given in
Table 2. They clearly evidence the increase in performance from the sequential
architecture compared to all other strategies. Indeed, best results are achieved
by this configuration in almost all cases. In particular, average improvements of
15.4% and 8.1% are attained when compared to the recent work of [1] i.e. FS
Concat and its extended version including the cosine similarity measure, i.e. FS
Concat + cos. Results also show that similar behaviors to binary classification
can be observed. First, the introduction of the cosine similarity measure greatly
boosts performance. Second, most of the information gain obtained by strate-
gies without attention mechanisms comes from the SP matrix and not from the
concatenation of the embeddings of the neighbors present in a given patch. Note
that in this case, that Concat + SP is the best attention-unaware strategy, which
achieves better results in terms of F1 than Patches + SP + att1 in 2 cases out
of 8. Third, if we compare the sequential architecture to the current multi-task
non-patch baseline, i.e. FS Concat + cos, similar differences in performance are
obtained compared to the binary situation. In particular, an average improve-
ment of 8% can be attained, with a minimum increase of 1.7% for RUMEN
(hypernymy) and a maximum gain of 21.1% for BLESS (hypernymy). Finally,
likewise the binary situation, the parallel architecture can not compete with
the sequential counterpart and does not outperform the configuration with only
within patch attention, i.e. Patches + SP + att1. When compared to the sequen-
tial binary classification model, the multi-task sequential counterpart based on
the fully-shared architecture evidences best results in 5 cases out of 8. Never-
theless, overall improvements are small with an average increase in performance
of 0.7%. Similarly, in the 3 other cases where the binary strategy offers best
results, average gains of 0.4% are obtained. This can easily be explained by the
small difference in architectures as already evidenced in [1]. Interestingly, the
multi-task model evidences steady improvements in terms of Recall, with best
values than the binary counterpart in 7 cases out of 8. In parallel, Precision
shows worst results in 6 cases out of 8. This can also be explained by the fully-
shared architecture that produces its decision based on a single shared layer, i.e.
features that could be specific to one single task maybe lost. As a consequence,
Precision may be affected while Recall boosted.
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Table 2. Accuracy, F1, Precision and Recall scores on all datasets for multi-task
classification.

Synonym vs Random Hypernym vs Random

Inputs K Acc F1 Prec Rec Acc F1 Prec Rec

RUMEN FS Concat [1] – 0.740↓ 0.744↓ 0.727↓ 0.764↓ 0.790↑ 0.763↓ 0.746↑ 0.780↑
FS Concat [1] + cos – 0.824↑ 0.827↑ 0.810↑ 0.844↑ 0.794↑ 0.769↑ 0.748↑ 0.792=

FS Patches 1 0.717↑ 0.722↑ 0.704↑ 0.742↑ 0.742↓ 0.705↓ 0.696↓ 0.715↓
FS Concat + SP 9 0.835↑ 0.834↑ 0.834↑ 0.835↓ 0.807↑ 0.780↑ 0.767↑ 0.792↓
FS Patches + SP 1 0.800↑ 0.801↑ 0.790↑ 0.812↑ 0.775↓ 0.743↓ 0.733↓ 0.753↓
FS Patches + SP + att1 4 0.828↓ 0.823↓ 0.840↑ 0.807↓ 0.815↓ 0.782↓ 0.795↑ 0.769↓
FS Patches + SP + att1+2 4 0.820↓ 0.816↓ 0.829↓ 0.802↓ 0.815↑ 0.790↑ 0.775↓ 0.806 ↑
FS Patches + SP + att12 8 0.852↓ 0.850↓ 0.861↓ 0.839↑ 0.821↑ 0.786↑ 0.810↓ 0.764↑

Co-hyponym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

ROOT9 FS Concat [1] – 0.896↓ 0.932↓ 0.936↓ 0.928↑ 0.807↓ 0.863↓ 0.868↓ 0.858↓
FS Concat [1] + cos – 0.901↓ 0.935↓ 0.938↓ 0.933↑ 0.835= 0.882↓ 0.893↑ 0.872↓
FS Patches 1 0.903↓ 0.937↓ 0.932↓ 0.942↑ 0.850↓ 0.895↓ 0.888↓ 0.902↓
FS Concat + SP 5 0.922↓ 0.949↓ 0.952↓ 0.945↓ 0.883↓ 0.917↓ 0.918↓ 0.916↓
FS Patches + SP 2 0.917↓ 0.946= 0.941↓ 0.951↓ 0.898↓ 0.929↓ 0.918↓ 0.940↑
FS Patches + SP + att1 3 0.926↓ 0.951↓ 0.954↑ 0.949↓ 0.909↓ 0.937↓ 0.925↓ 0.949=

FS Patches + SP + att1+2 5 0.919↓ 0.947↓ 0.944↓ 0.950↓ 0.914↑ 0.939↑ 0.941↓ 0.937↑
FS Patches + SP + att12 3 0.941↓ 0.961↓ 0.960↓ 0.963↑ 0.921↓ 0.945↓ 0.938↓ 0.951↓

Co-hyponym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

WEEDS FS Concat [1] – 0.732↑ 0.446↑ 0.439↑ 0.454↑ 0.829↑ 0.455↑ 0.489↑ 0.426↑
FS Concat [1] + cos – 0.810↑ 0.627↑ 0.615↑ 0.670↑ 0.871↑ 0.616↑ 0.615↑ 0.618↑
FS Patches 1 0.701↓ 0.391↓ 0.379↓ 0.403↓ 0.816↑ 0.415↑ 0.446↑ 0.387↑
FS Concat + SP 8 0.841= 0.672↑ 0.659↓ 0.686↑ 0.897↓ 0.668↑ 0.728↓ 0.618↑
FS Patches + SP 9 0.800↑ 0.604↑ 0.571↑ 0.641↑ 0.827↓ 0.563↓ 0.489↓ 0.662↑
FS Patches + SP + att1 3 0.832↓ 0.657↓ 0.640↓ 0.676↑ 0.907↑ 0.685↑ 0.794↑ 0.603↑
FS Patches + SP + att1+2 5 0.853↓ 0.679↓ 0.709↓ 0.670↑ 0.877↓ 0.639↓ 0.631↓ 0.647↑
FS Patches + SP + att12 6 0.876↑ 0.731↑ 0.756↑ 0.708↑ 0.927↑ 0.759↑ 0.848↓ 0.686↑

Meronym vs Random Hypernym vs Random

Inputs Acc F1 Prec Rec Acc F1 Prec Rec.

BLESS FS Concat [1] – 0.835↓ 0.740↓ 0.800↓ 0.689↓ 0.891↑ 0.526↑ 0.636↑ 0.448↑
FS Concat [1] + cos – 0.862= 0.783↓ 0.845↑ 0.729↓ 0.908↑ 0.616↑ 0.699↑ 0.551↑
FS Patches 2 0.842↓ 0.750↓ 0.817↑ 0.692↓ 0.927↑ 0.695↑ 0.789↑ 0.622↓
FS Concat + SP 8 0.882↓ 0.816↓ 0.872↑ 0.766↓ 0.931↓ 0.722↓ 0.788↑ 0.667↓
FS Patches + SP 2 0.853↓ 0.769↓ 0.828↓ 0.718↓ 0.942↑ 0.774↑ 0.816↑ 0.737↑
FS Patches + SP + att1 3 0.872↓ 0.803↓ 0.844↓ 0.766↑ 0.955↑ 0.818↑ 0.900↑ 0.750↑
FS Patches + SP + att1+2 3 0.867↓ 0.794↓ 0.843↓ 0.750↓ 0.951↑ 0.801↑ 0.878↑ 0.737↓
FS Patches + SP + att12 3 0.895↓ 0.839↑ 0.882↓ 0.789↑ 0.958↑ 0.827↑ 0.921↑ 0.750↓

In order to better understand the impact of K on the results, we show perfor-
mance results for the binary and multi-task sequential architectures for K = 1..10
in Fig. 2. Note that results in Table 2 are given for the best K on average and
cannot account for differences in K between two semantic relations. Overall, we
can notice different behaviors depending on the dataset. For RUMEN, perfor-
mance values vary minimally with respect to K, independently of the semantic
relation. For ROOT9 and BLESS, similar situations can be observed. Indeed, for
bothdatasets, performancehighlydegradeswithhigher values ofK for hypernymy,
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Fig. 2. F1 score distribution by K (K = 1..10) for all datasets for the sequential
architecture, both for binary (B) and multi-task (MT) classification.

while the impact of K on co-hyponymy is more limited. For WEEDS, the situa-
tion is the opposite for hypernymy and co-hyponymy, as higher performance values
are obtained for higher values of K. As a consequence, no clear conclusion can be
drawn as results drastically change depending on the dataset. It is clear that fur-
ther efforts are needed to propose better evaluation standards. Nevertheless, some
regularities emerge. Indeed, over all values of K, the multi-task architecture evi-
dences steady improvements over the binary counterpart for all datasets, except
for ROOT9 where best results are obtained by the binary classification for both
semantic relations. Also, in 2 cases out of 8, the best value of K is the same for the
binary and the multi-task situations. In 3 cases, the difference in K value is one,
and in the remaining 3 cases, the difference of K equals to 3, with 2 cases in which
the multi-task architecture needs less neighbors than the binary version. This con-
firms the fact that small differences in terms of K values are evidenced on average
between both strategies, although there seems to be a slight tendency to use less
neighbors in the multi-task strategy.

5 Conclusions

In this paper, we presented a patch-based classification strategy to tackle lexical
semantic relation identification. In particular, we showed that attention mech-
anisms (if correctly combined) drastically boost results compared to attention-
unaware configurations. Indeed, average improvements can reach 10.6% for
binary and 8% for multi-task classification over non-patch baseline approaches in
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terms of F1 for the sequential architecture, when tested over four gold-standard
datasets, namely RUMEN, ROOT9, WEEDS and BLESS. Moreover, results wit-
ness that small but steady improvements in classification performance can be
attained by multi-task architectures. As such, immediate future work should
include (1) the design of new multi-task architectures following the ideas of [21],
(2) the combination of the distributional approach with the paradigmatic model
as suggested in [25], and (3) the evaluation comparison to the very recent work
proposed by [14], which follows similar ideas with discrete word representations.
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