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Abstract. We present Regularized Linear Embedding (RLE), a novel
method that projects a collection of linked documents (e.g., citation net-
work) into a pretrained word embedding space. In addition to the textual
content, we leverage a matrix of pairwise similarities providing comple-
mentary information (e.g., the network proximity of two documents in
a citation graph). We first build a simple word vector average for each
document, and we use the similarities to alter this average representa-
tion. The document representations can help to solve many information
retrieval tasks, such as recommendation, classification and clustering. We
demonstrate that our approach outperforms or matches existing docu-
ment network embedding methods on node classification and link pre-
diction tasks. Furthermore, we show that it helps identifying relevant
keywords to describe document classes.
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1 Introduction

Information retrieval methods require relevant compact vector space represen-
tations of documents. The classical bag of words cannot capture all the useful
semantic information. Representation Learning is a way to go beyond and boost
the performances we can expect in many information retrieval tasks [6]. It aims
at finding low dimensional and dense representations of high dimensional data
such as words [12] and documents [2,10]. In this latent space, proximity reflects
semantic closeness. Many recent methods use those representations for infor-
mation retrieval tasks: capturing user interest [16], query expansion [9], link
prediction and document classification [20].

In addition to the textual information, many corpora include links between
documents, such as bibliographic networks (e.g., scientific articles linked with
citations or co-authorship) and social networks (e.g., tweets with ReTweet rela-
tions). This information can be used to improve the accuracy of document rep-
resentations. Several recent methods [11,20] study the embedding of networks
with textual attributes associated to the nodes. Most of them learn continuous
representations for nodes independently of a word-vector representation. That is
to say, documents and words do not lie in the same space. It is interesting to find
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a common space to represent documents and words when considering many tasks
in information retrieval (query expansion) and document analysis (description
of document clusters). Our approach allows to represent documents and words
in the same semantic space. The method can be applied with word embedding
learned on the data with any state-of-the art method [6,12], or with embeddings
that were previously learned! to reduce the computation cost. Contrary to many
existing methods that make use of deep and complex neural networks (see Sect. 2
for related works), our method is fast, and it has only one parameter to tune.

We propose to construct a weight vector for each document using both textual
and network information. We can then project the documents into the prelearned
word vector space using this vector (see Fig.1). The method is straightforward
to apply, as it only requires applying well studied word embedding methods and
matrix multiplication. We show in Sect. 4 that it outperforms or matches existing
methods in classification and link prediction tasks and we demonstrate that
projecting the documents into the word embedding space can provide semantic
insights.
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Fig. 1. Our method performs smoothing (represented as red arrows) on the documents’
centroid representations (the square blocks). As the document in the blue circle (dots
are words) is connected to the orange one, their representations get closer. The docu-
ment in the green circle is isolated, thus it remains unchanged by the smoothing effect.
(Color figure online)

2 Related Work

Several methods study the embedding of paragraph or short documents such
as [10], generalizing the seminal word2vec models proposed by [12]. These
approaches go beyond the simple method that consists in building a weighted
average of representations of words that compose the document. For example in
[2], authors propose to perturb weights for word average projection using Singu-
lar Value Decomposition (SVD). This last approach inspired our work as they
show that word average is often a relevant baseline that can be improved in some
cases using contextual smoothing.

As stated above, many corpora are structured in networks, providing addi-
tional information on documents semantics. TADW [20] is the first method that

! E.g., https://fasttext.cc/.
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deals with this kind of data. It formulates network embedding [15] as a matrix
tri-factorization problem to integrate textual information. Subsequent methods
mainly adopt neural network based models: STNE [11] extends the seq2seq mod-
els, Graph2Gauss [3] learns both representations and variances via energy based
learning, and VGAE [8] adopts a variational encoder. Even if these approaches
yield good results, they require tuning a lot of hyperparameters. Two methods
are based on factorization approaches: GVNR-t [4], that extends GloVe [14], and
AANE [7]. None of these methods learn documents and words embedding in the
same space. In [10] and [1], authors represent them in a comparable space. Yet,
they do not consider network information, as opposed to LDE [19]. Nonetheless,
this last method requires labels associated with nodes, making it a supervised
approach. Our method projects the documents and the words into the same
space in an unsupervised fashion, with only one hyperparameter to tune. We
will now present the formulation of this approach.

3 RLE: Document Projection with Smoothing

In this section, we present our model to build vector representations for a col-
lection of linked documents. From now on, we will refer to our method as Reg-
ularized Linear Embedding (RLE). Matrices are in capital letters, and if X is a
matrix, we write z; the i-th row of X. From a network of n nodes, we extract
a pairwise similarity matrix S € R™*"  computed as S = A+TAZ with A the
transition matrix of the graph. Similarly to [20], this matrix considers both first
and second order similarities. v is the number of words in the vocabulary. The
corpus is represented as a document-term matrix T° € R™*?, with each entry of
T being the relative frequency of a word in a given document.

With U € R"** a matrix of pretrained word embeddings in dimension &, our
goal is to build a matrix D € R™** of document embeddings, in the same space
as the word embeddings. We build, for each document, a weight vector p; € RY,
stacked in a matrix P and define the embedding of a document as d; = p;U. We
construct p; as follows: we first compute a smoothing matrix B € R"*? with:

1
b= = Y Sijt;. (1)
255 ; "

Each row b; of this matrix is a centroid of the initial document-term frequency
matrix T, weighted by the similarity between the document ¢ and each of the
other documents. Then, we compute the weight matrix P according to T' and B,
in matrix notation:

P=(1-X\T+ \B, (2)

where A\ € [0, 1] controls the smoothing intensity. Then, we compute D = PU.
Our method implies matrix multiplication and normalization only, making it
fast and easily scalable. When A = 0, P = T, thus, we recover the word average
method. When A\ = 1, we obtain P = B and thus embed the documents with
respect to the contextual information only (i.e., the similar documents). We
illustrate the effect of smoothing in Fig. 1.
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4 Experiments

In this section, we present our experimental results on classification and link
prediction tasks, followed by a qualitative analysis of document representations.

We use two citation networks: Cora [18] and DBLP [13,17]. We also use
New York Times articles (https://www.nytimes.com/) from January 2007. We
create a link between pairs of articles sharing a common tag. The class corre-
sponds to the article section. Cora contains 2,211 labeled documents (7 classes)
with 5,001 citation links. The dataset includes the abstract of each article. The
New York Times dataset (Nyt) contains 5,135 documents, 3,050,513 edges and
4 classes. Dblp has 60,744 documents (4 classes) and 52,914 edges. It includes
the title of the articles only. After pruning the vocabulary (removing stop words,
filtering word occurring in more than 25% of the corpus and less than 10 times),
we obtain vocabularies made of 2,421 features for the Cora dataset, 6,407 for
the Nyt dataset, and 3,763 for Dblp.

All embeddings are in dimension 160. We use DeepWalk with 40 walks of
length 40, and a window of size 10. We also experiment with Latent Semantic
Analysis (LSA) [5] and a concatenation of LSA and DeepWalk representations
in dimension 80 as done by [20], referred as “Concatenation”. We also com-
pare the performance of RLE with recent methods that embed attributed net-
works: STNE, Graph2Gauss, GVNR-t, VGAE, AANE and TADW. For STNE,
we set the depth to 1 which leads to the best scores in our experiments. For
Graph2Gauss, we set K=1, depth=1. We use default architecture for VGAE
and determine optimal A and p for AANE, and x,,;, for GVNR-t. For TADW,
we use LSA in dimension 200 as a textual feature matrix and set regularization
to 0.2, following authors’ recommendation. For each method, we use the imple-
mentation provided by the authors. We discard LDE since it is semi supervised
and will not lead to a fair comparison.

RLE needs prelearned word representations. Hence, we build word vectors
using Skip-gram with negative sampling [12]. We use the implementation in
gensim?, with window size of 15 for Cora, 10 for Nyt and 5 for DBLP, and 5
negative examples for both. The procedure is fast (46s for Cora, 84 on DBLP
and 42 on Nyt). Similarly to baselines methods, we use the value of A (0.7) that
produces the optimal results on both datasets (see Fig.2).
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Fig. 2. Impact of A on RLE in terms of document classification for d = 160. Optimum
is achieved around 0.7 on each dataset (Cora, Nyt: 0.7, Dblp: 0.65).

2 https://radimrehurek.com/gensim /.
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4.1 Quantitative Results

We evaluate RLE in its ability to separate documents by classes in the embed-
ding space and to predict links between documents. We perform SVM with L2
regularization on the vector representations of documents and report Micro F1
scores for different train/test ratios in Tablel. The regularisation strength is
fixed through grid search. We also report computation times in second. For link
prediction, we hide a percent of edges and compare the cosine similarity between
hidden pairs and negative examples of unconnected documents. We report the
Area Under the Roc Curve in Table 2.

Table 1. Comparison of Micro-F1 results on a classification task for different train/test
ratios. The best score is in bold, second best is underlined. Execution time order is
presented in seconds (Time).

Cora Dblp

train/test ratio|  10% 30% 50% |Time 10% 30% 50% |Time
DeepWalk|70.6 (2.0) 77.2 (0.9) 81.0 (0.7)] 10" |[52.3 (0.4) 53.4 (0.1) 53.5 (0.2)[ 102
LSA|72.3 (1.9) 79.0 (0.7) 80.6 (0.7)|1072||73.5 (0.2) 74.1 (0.1) 74.2 (0.2)| 10"
Concatenation|71.4 (2.1) 80.5 (1.0) 84.0 (1.1)| 10" [|77.5 (0.2) 78.0 (0.1) 78.2 (0.2)| 10?
TADW/|81.9 (0.8) 86.3 (0.8) 87.4 (0.8)[10 1{[74.8 (0.1) 75.3 (0.2) 75.5 (0.1)] 10"
AANE|79.8 (0.9) 83.3 (1.1) 84.4 (0.7)|10"{|73.3 (0.1) 73.9 (0.1) 74.2 (0.2)| 10?
GVNR-t(83.7 (1.2) 86.4 (0.7) 87.0 (0.8)| 10 |{69.6 (0.1) 70.1 (0.1) 70.2 (0.2)| 10?

VGAE|72.3 (1.7) 79.2 (0.9) 81.1 (0.7)] 10" Memory overflow -
G2G|79.0 (1.5) 83.7 (0.8) 84.8 (0.7)| 10" [|70.8 (0.1) 71.3 (0.2) 71.5 (0.2)| 102
STNE|79.4 (1.0) 84.7 (0.7) 86.7 (0.8)| 10? ||73.8 (0.2) 74.4 (0.1) 74.5 (0.1)| 10*
RLE|84.0 (1.3) 86.9 (0.5) 87.7 (0.6)| 10" {|79.8 (0.2) 80.9 (0.2) 81.2 (0.1)| 10

Nyt

train/test ratio|  10% 30% 50% |Time
DeepWalk|66.9 (0.7) 68.2 (0.3) 68.7 (0.9)] 107
LSA|71.6 (1.0) 75.7 (0.7) 76.7 (0.7)|102
Concatenation|77.9 (0.3) 80.0 (0.5) 81.1 (0.7)| 10?
TADW|75.8 (0.5) 78.4 (0.5) 79.4 (0.4) 10T
AANE|71.7 (0.5) 75.6 (0.8) 76.9 (1.1)| 10"
GVNR-t|74.3 (0.4) 76.0 (0.6) 76.7 (0.6)| 10°
VGAE[68.1 (0.8) 69.3 (0.9) 70.1 (0.6)| 107
G2G|69.0 (0.5) 70.5 (0.7) 71.5 (0.8)| 10?
STNE|75.1 (0.7) 77.3 (0.5) 78.1 (0.6)| 10?
RLE|77.7 (0.7) 79.3 (0.5) 80.0 (0.6)[ 10!

In the classification task, RLE outperforms existing methods on Cora and
Dblp, and is the second best method on Nyt. Interestingly, GVNR-t performs
well with few training example, while TADW become second with 50% of training
examples. Let us highlight that RLE runs fast, it is even faster than AANE on
Dblp. Additionally, it is up to four orders of magnitude faster than STNE on
Dblp. Additionally Fig.2 shows that the optimal lambda values are similar for
both datasets. Its tuning is not that crucial since RLE outperforms the baselines
with A € [0.6,0.85] on Cora, A € [0.15,0.85] on DBLP, and every methods except
Concatenation for A € [0.45,0.8] on Nyt.
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Table 2. Comparison of AUC results on a link prediction task for different percents
of edges hidden. The best score is in bold, second best is underlined.

Cora Dblp

% edges hidden| 50% 25% 50% 25%
DeepWalk|73.2 (0.6)[80.9 (1.0)(|89.7 (0.0)[93.2 (0.2)
LSA|[87.4(0.6)|87.2 (0.8)||54.2 (0.1)|54.8 (0.0)
Concatenation|77.9 (0.3)|83.7 (0.8)||88.8 (0.0)[92.6 (0.3)
TADW|90.1 (0.4)|93.3 (0.4)||61.2 (0.1)|65.0 (0.5)
AANE|83.1 (0.8)[86.6 (0.8)||67.4 (0.1)[66.5 (0.1)
GVNR-t|83.9 (0.9)|91.5 (1.1)|(88.1 (0.3)|91.4 (0.1)

VGAE|87.1 (0.4)|88.2 (0.7) Does not scale
Graph2Gauss [92.0 (0.3)(93.8 (1.0)||88.0 (0.1)(92.1 (0.5)
STNE|83.1 (0.5)(90.0 (1.0)|(45.6 (0.0)|53.4 (0.1)
RLE|94.3 (0.2)(94.8 (0.2)|(89.3 (0.1)|91.2 (0.2)

In link prediction, RLE outperforms existing methods on Cora, while Deep-
Walk yields better results than baselines on Dblp. This might be due to the
shortness of the documents (mean length is 6 while it is 49 for Cora): the tex-
tual information may not be as informative as the network information for link
prediction.

4.2 Qualitative Insights

We compute a vector representation for a class by computing the centroid of
the representations of the documents inside this class. We present the closest
words to this representation in term of cosine similarity, which provides a general
description of the class. In Table 3, we present a description using this method for
the first four classes of the Cora Dataset. We also provide most weighted terms
when computing the mean of documents tf - idf of the class. The ¢ f - idf method
produces too general words, such as “learning”, “algorithm” and “model”. RLE
seems to provide specific words, which makes the descriptions more relevant.

Table 3. Classes description with our method as opposed to tf - idf. Words that are
repeated across classes are in bold. RLE produces more discriminative descriptions

Cora
Class 1 Class 2 Class 3 Class 4

RLE  ¢f - idf RLE tf - idf RLE  tf -idf RLE tf - adf
hebbian  neural [reinforcement learning |posterior bayesian pac learning
network network | discounted reinforcement| gibbs model learnability ~ algorithm
layers networks| qlearning control bayesian models |polynomialtime algorithms

multilayer learning rl state meme  algorithm dnf model
filters model | multiagent policy sampler  belief queries decision
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5 Conclusion

In this article, we presented the RLE method for embedding documents that are
organized in a network. Despite its simplicity, RLE shows state-of-the art results
for the three considered datasets. It is faster than most recent deep-learning
methods. Furthermore, it provides informative qualitative insights. Future works
will concentrate on automatically tuning A, and exploring the effect of the sim-
ilarity matrix S.
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