®

Check for
updates

Reproducibility is a Process,
Not an Achievement: The Replicability
of IR Reproducibility Experiments

Jimmy Lin®9 and Qian Zhang

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada

jimmylinQuwaterloo.ca

Abstract. This paper espouses a view of reproducibility in the compu-
tational sciences as a process and not just a point-in-time “achievement”.
As a concrete case study, we revisit the Open-Source IR Reproducibility
Challenge from 2015 and attempt to replicate those experiments: four
years later, are those computational artifacts still functional? Perhaps
not surprisingly, we are not able to replicate most of the retrieval runs
encapsulated by those artifacts in a modern computational environment.
We outline the various idiosyncratic reasons why, distilled into a series
of “lessons learned” to help form an emerging set of best practices for
the long-term sustainability of reproducibility efforts.

Keywords: Artifact evaluation - Community benchmarks

1 Introduction

In the broad discussion on reproducibility in the computational sciences, there
has not been, at least in our view, much discussion of the fact that reproducibility
is an ongoing process, not just an achievement—a “checkbox” we “tick off” and
then continue going about our business.

There are many reasons why reproducibility is a worthwhile goal, ranging
from demonstrating good stewardship of public resources (who fund a large
portion of research worldwide) to the fact that reproducibility is intrinsic to
the scientific process itself. Reproducibility enhances the veracity of findings
and supports the iterative process of knowledge accumulation through which
researchers build on each other’s results.

The general discussion about reproducibility implicitly treats it as an achieve-
ment: a particular finding was reproduced successfully. And as a result, we (the
scientific community) gain greater confidence in the veracity of the claims. This
perspective is entirely appropriate in, for example, the physical or life sciences.
Once we unravel the mystery of a particular physical phenomena, it is unlikely to
change. Furthermore, reproduction efforts, for the most part, need to start “from
scratch”, with a completely independent set of experiments. Although further

© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12036, pp. 43-49, 2020.
https://doi.org/10.1007/978-3-030-45442-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45442-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-45442-5_6

44 J. Lin and Q. Zhang

studies refine our understanding over time (e.g., Newton’s vs. Einstein’s per-
spective on gravity), subsequent experiments are usually driven by new research
questions, and cannot be considered reproduction efforts per se.

Reproducibility in the computational sciences, on the other hand, has many
fundamentally different characteristics. A successful effort to reproduce a result
typically yields a computational artifact that, ideally, should be executable by
other researchers and remain functional over time. We explore exactly these
desiderata and espouse the viewpoint that reproducibility in the computational
sciences should not be viewed as an achievement (i.e., “we reproduced the tech-
nique of Yang et al. and confirm their findings”) but rather a process.

Before proceeding, it is helpful to more precisely define our terminology.
Here, we adopt recent ACM guidelines pertaining to artifact review and badg-
ing,! where reproducibility refers to artifacts created by an independent group to
recreate a result, and replicability refers to using an existing artifact to recreate
a result. Thus, we are concerned with the replicability of previous reproducibil-
ity (or replicability) experiments. That is, can we still rerun old computational
artifacts to replicate their results?

As a case study, we attempt to replicate results from the Open-Source IR
Reproducibility Challenge from 2015 [8] (henceforth, OSIRRC 2015). To quote:
“the product is a repository that contains all code necessary to generate com-
petitive ad hoc retrieval baselines, such that with a single script, anyone with a
copy of the collection can reproduce (sic) the submitted runs.” Four years later,
can we still replicate those results? The answer, perhaps unsurprisingly, is no for
most of the artifacts in a modern computational environment.

One might wonder, why would anyone want to run old code, and who cares?
We present two compelling scenarios: First, findings in the computational sci-
ences are always couched in some computational context. Take a simple example:
algorithm A is faster than algorithm B, but the experiments were conducted on
magnetic disks. With memory-resident data structures, does the finding still
hold? Verification of results should be a continual process as computational con-
texts change: the shift from magnetic disks to SSDs, the advent of multi-core
computing, etc. Although we do not undertake such an examination in this paper
due to limited space, being able to replicate results using old computational arti-
facts is a pre-requisite. Second, another compelling scenario is long-term software
preservation [11], especially for artifacts that have historical value, in the same
way that there is active interest in preserving old video games today. For exam-
ple, the SMART system [14] might fall into this category.

The contribution of this work is a discussion as well as a specific case study
examining the long-term sustainability of reproducibility efforts. We grapple with
issues that are under-explored in the community—for example, our questions
do not naturally fit into the Platform, Research goal, Implementation, Method,
Actor, and Data (PRIMAD) model [6] that attempts to capture the multi-faceted
aspects of reproducibility. Of course, platforms change over time, but this change
is an inevitable consequence of the passage of time; in other words, “platform” is

! https://www.acm.org/publications/policies/artifact-review-badging.

https://www.acm.org/publications/policies/artifact-review-badging

The Replicability of IR Reproducibility Experiments 45

a dependent variable, not an independent variable, in our conception. PRIMAD
implicitly assumes a static view of reproducibility, as opposed to the process-
oriented view we advocate. More concretely, from the successes as well as failures
in replicating OSIRRC 2015, we are able to extract a number of “lessons learned”
that can be further distilled into best practices, especially to inform ongoing
efforts such as the latest iteration of OSIRRC [3].

2 Replication Study

OSIRRC 2015 billed itself as providing scripts that allow any researcher to recre-
ate, “out of the box”, a number of baseline runs on the Gov2 web collection on
topics 701-850 from the TREC Terabyte Tracks (2004-2006) [4]. Our experi-
ments put these claims to the test. We cloned the git repository? and proceeded
to run the dotgov2.sh script associated with each system after changing the
location of the document collection in a common settings script. As designed,
the single script should handle all aspects of producing an ad hoc experimental
run from scratch, including building the inverted index, performing retrieval,
and using trec_eval to generate effectiveness figures. In a few cases, the script
worked exactly “as is”, but more often than not, we encountered failures, which
we then spent some time debugging (details below).

We ran experiments on two different servers, which we refer to as “old” and
“new” for convenience. The “old server” was purchased in Spring 2017 and runs
Ubuntu 16.04.2, with Oracle Java version 1.8.0_121 and gcc 5.4.0. The “new
server” was purchased in Summer 2019 and runs Ubuntu 18.04.2, with Oracle
Java version 11.0.2 and gcc 7.4.0.

The results of our replication study are summarized in Table 1; we refer the
reader to the caption and our revised repository® for details. In summary, we
were able to replicate results from five of the seven systems on the old server,
and for two we obtained ezactly the same AP scores; the remaining systems saw
minor score differences. On the new server, we were only able to replicate results
from one of the systems. Details for each system are presented below:

ATIRE [15] and JASS [9] are closely related in that the latter depends on the
former. On the old server, the dotgov2. sh script worked without modification for
both systems, and for ATIRE we obtained exactly the same AP scores as in the
OSIRRC 2015 paper. Unfortunately, ATIRE fails to compile on the new server,
and thus we were unable to replicate results there (and JASS by extension). Both
systems are implemented in C++, so the critical difference here is the version
of gcc (5.4.0 vs. 7.4.0); the compilation error arises from namespace clashes and
different definitions of std: :unordered map between C++11 and C++17.

Indri [12] results were replicable on the old server without any modifications to
the dotgov2.sh script, but the AP scores differed slightly from those reported

2 https://github.com/lintool /TR-Reproducibility.
3 https://github.com/lintool /IR-Reproducibility?2.

https://github.com/lintool/IR-Reproducibility
https://github.com/lintool/IR-Reproducibility2

46 J. Lin and Q. Zhang

Table 1. Summary of our replicability experiments, reporting average precision (AP)
across different topics for different system combinations. Bolded headings represent
rows copied directly from the OSIRRC 2015 paper; (old) and (new) refer to replication
attempts on our “old” and “new” servers, respectively. AP scores that differ from
OSIRRC 2015 are enclosed in parentheses.

System Model Index Topics

701-750 751-800 801-850
ATIRE BM25 Count 0.2616 0.3106 0.2978
ATIRE (old) BM25 Count 0.2616 0.3106 0.2978
ATIRE (new) BM25 Count — Failed: compile error —
ATIRE Quantized BM25 | Count 4+ Quantized | 0.2603 0.3108 0.2974
ATIRE (old) Quantized BM25 | Count + Quantized | 0.2603 0.3108 0.2974
ATIRE (new) Quantized BM25 | Count + Quantized | — Failed: compile error —
Galago QL Count 0.2776 0.2937 0.2845
Galago (old) QL Count — Failed: exception —
Galago (new) QL Count — Failed: exception —
Galago SDM Positions 0.2726 0.2911 0.3161
Galago (old) SDM Positions — Failed: exception —
Galago (new) SDM Positions — Failed: exception —
Indri QL Positions 0.2597 0.3179 0.2830
Indri (old) QL Positions (0.2746) (0.3182) (0.2893)
Indri (new) QL Positions — Failed: segmentation fault —
Indri SDM Positions 0.2621 0.3086 0.3165
Indri (old) SDM Positions (0.2624) (0.3079) (0.3244)
Indri (new) SDM Positions — Failed: segmentation fault —
JASS 1B Postings Count 0.2603 0.3109 0.2972
JASS (repl. old) | 1B Postings Count 0.2603 (0.3108) 0.2972
JASS (repl. new) | 1B Postings Count — Failed: compile error —
JASS 2.5M Postings Count 0.2579 0.3053 0.2959
JASS (repl. old) | 2.5M Postings Count 0.2579 0.3053 0.2959
JASS (repl. old) | 2.5M Postings Count — Failed: compile error —
Lucene BM25 Count 0.2684 0.3347 0.3050
Lucene (old) BM25 Count 0.2684 (0.3346) 0.3050
Lucene (new) BM25 Count — Failed: exceptions —
Lucene BM25 Positions 0.2684 0.3347 0.3050
Lucene (old) BM25 Positions 0.2684 (0.3346) 0.3050
Lucene (new) BM25 Positions — Failed: exceptions —
MG4J BM25 Count 0.2640 0.3336 0.2999
MG4J Model B Count 0.2469 0.3207 0.3003
MG4J Model B+ Positions 0.2322 0.3179 0.3257
Terrier BM25 Count 0.2432 0.3039 0.2614
Terrier (old) BM25 Count 0.2432 0.3039 0.2614
Terrier (new) BM25 Count 0.2432 0.3039 0.2614
Terrier DPH Count 0.2768 0.3311 0.2899
Terrier (old) DPH Count 0.2768 0.3311 0.2899
Terrier (new) DPH Count 0.2768 0.3311 0.2899
Terrier DPH + Bol QE | Count (inc direct) |0.3037 0.3742 0.3480
Terrier DPH + Prox SD | Positions 0.2750 0.3297 0.2897

The Replicability of IR Reproducibility Experiments 47

in the OSIRRC 2015 paper. On the new server, Indri compiles successfully but
immediately encounters a segmentation fault when starting to build the index.

Galago [2] retrieval runs aborted due to a thrown exception after the indexing
process finished without any obvious signs of error; the same issue was encoun-
tered on both servers. The exception appears to come from TupleFlow, a cus-
tom MapReduce-like framework used by Galago, which never gained widespread
adoption and thus likely suffers from robustness issues.

Lucene runs successfully without any modification to the dotgov2.sh script
on the old server; we encountered two tiny differences in AP scores compared
to the OSIRRC 2015 paper, we suspect due to tie-breaking effects [10]. Lucene,
however, failed to run on the new server, throwing exceptions during indexing.
The critical difference is the version of Java (8 vs. 11). In the Lucene version used
in these experiments (5.2.1), a bug was noted in Oracle’s JRE implementation of
MMapDirectory, which is unable to properly close the underlying OS file handle.
The workaround deployed at that time used an undocumented internal cleanup
functionality, which no longer works on Java 11.

MGA4J [1] failed for the simple reason that the dotgov2.sh script attempts to
fetch a tarball that was no longer available at the specified URL.

Terrier [13] was the only system where the dotgov2.sh script worked without
modification on both the old server and the new server. Furthermore, we obtained
exactly the same AP scores as the OSIRRC 2015 paper. However, the paper
references two additional retrieval models, “DPH + Bol QE” and “DPH + Prox
SD”; these runs were not included in the same script (unlike for most of the other
systems). They were, in fact, provided in separate scripts (also available in the
repository), but we did not discover this fact until much later; as a result, we
were not able to replicate those two runs in time.

After encountering the initial errors with each of the systems, we did undertake
efforts to debug the various issues. Ultimately, we did get two additional sys-
tems (ATIRE and Lucene) working on the new server. However, we consider it
unreasonable to expect such debugging efforts from an envisioned user of the
OSIRRC repository. Anything other than scripts “just working” should be con-
sider a replicability failure, and a failure of OSIRRC to deliver on its promise.

3 Lessons Learned

For OSIRRC 2015, the passage of time has been ruthless in destroying the
functionality of the computational artifacts. Although each artifact broke in
its own idiosyncratic way, we do notice common themes. Given continued inter-
est in reproducibility, most notably a new Docker-based iteration of OSIRRC in
2019 [3],* these “lessons learned” might form the basis of future best practices.

* https://osirrc.github.io/osirrc2019/.

https://osirrc.github.io/osirrc2019/

48 J. Lin and Q. Zhang

Where Do These Results Come From? In many cases, the correspondence
between figures in the paper and execution traces of the computational artifacts
(even when successful) was not clear. As a simple example, Table 1 originally
contained an “All” column, which, inexplicably, does not simply appear to be
the average of each set of topics. The execution trace of each dotgov2.sh script
was different: some printed out AP scores directly to stdout; others didn’t, and
silently completed execution. In the latter cases, it was necessary to dig through
system outputs to find the actual scores; the fact that each system used com-
pletely different naming conventions for output runs, evaluation results, and log
files made this task non-trivial.

Due to space restrictions, we focused on replicating effectiveness results in
this paper, but OSIRRC 2015 also evaluated index size and query latency. How-
ever, the repository offered few details on how to extract figures corresponding to
those reported in the paper. As one example, it wasn’t clear where each system
stored its index: some were contained in directories, some were single files, and
others were groups of files (and in many cases, not intuitively named).

The high-level lesson here is that researchers should strive to make the cor-
respondence between documentation, repository organization, execution traces,
and reported figures in papers as explicit as possible—all these facets have to
“line up” for successful replication. This can be viewed as an endorsement of
“executable papers” [5,7]. Although this idea dates back decades (cf. literate
programming), the popularity of notebooks (e.g., Jupyter) makes this much eas-
ier to realize today.

External Dependencies. Six of the seven systems in OSIRRC 2015 began by
pulling in an external dependency (namely, the search engine itself) over the
internet; the only exception, Lucene, had jars directly checked into the reposi-
tory. “Link rot” is a well-known phenomenon, and the replication effort for MG4J
failed at the outset because the artifact was no longer available. To ensure the
long-term availability of resources at stable URLs, we advocate the use of ded-
icated archiving services such as Zenodo (or other domain-specific data reposi-
tories), which also provide citeable DOIs.

Platform Dependencies. As the saying goes, “change is the only constant”, and
computing platforms inevitably evolve, often in non-compatible ways: the two
poignant examples here being JVM differences and compiler differences. Unlike
external dependencies discussed above, it would be impractical to directly store
and manage platform dependencies inside the OSIRRC 2015 repository, but here
the use of Docker in OSIRRC 2019 represents an improvement. Docker allows
platforms to be isolated in “layers” that can be composed to form images in
a lightweight manner (compared to VMs); images themselves can be stored at
stable locations (for example, in Docker Hub). Admittedly, this design does not
guard against the obsolescence of Docker itself; despite the popularity of Docker
today, one day it too will be superseded by new practices.

The Replicability of IR Reproducibility Experiments 49

4 Conclusions

The 2019 edition of OSIRRC represents the next iteration of community efforts
to advance the cause of reproducibility in information retrieval. It seems that
many of the lessons discussed in the previous section have already been incorpo-
rated into its design. However, only time will tell if those efforts are successful:
it would be interesting to try and rerun those experiments in 2023, the same
distance we are from the initial OSIRRC efforts in 2015.

Acknowledgments. This research was supported by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada and a Postdoctoral Fellowship in Soft-
ware Curation grant from the Council on Library and Information Resources (CLIR),
made possible by funding from the Andrew W. Mellon Foundation. We’d like to thank
Craig Macdonald for catching a stupid mistake on our end.

References

1. Boldi, P., Vigna, S.: MG4J at TREC 2006. In: TREC (2006)

2. Cartright, M.A., Huston, S., Field, H.: Galago: a modular distributed processing
and retrieval system. In: SIGIR 2012 Workshop on Open Source IR (2012)

3. Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z.: Overview of the
2019 open-source IR replicability challenge (OSIRRC 2019). In: CEUR Workshop
Proceedings, Paris, France, vol. 2409, pp. 1-7 (2019)

4. Clarke, C., Craswell, N., Soboroff, I.: Overview of the TREC 2004 terabyte track.
In: TREC (2004)

5. Dittrich, J., Bender, P.: Janiform intra-document analytics for reproducible
research. Proc. VLDB Endow. 8(12), 1972-1975 (2015)

6. Ferro, N., Fuhr, N., Jarvelin, K., Kando, N., Lippold, M., Zobel, J.: Increasing
reproducibility in IR: findings from the Dagstuhl seminar on “reproducibility of
data-oriented experiments in e-science”. SIGIR Forum 50(1), 68-82 (2016)

7. Gorp, P.V., Mazanek, S.: SHARE: a web portal for creating and sharing executable
research papers. Procedia Comput. Sci. 4, 589-597 (2011)

8. Lin, J., et al.: Toward reproducible baselines: the open-source IR reproducibility
challenge. In: ECIR, Padua, Italy, pp. 408-420 (2016)

9. Lin, J., Trotman, A.: Anytime ranking for impact-ordered indexes. In: ICTIR, pp.
301-304 (2015)

10. Lin, J., Yang, P.: The impact of score ties on repeatability in document ranking.
In: SIGIR, Paris, France, pp. 1125-1128 (2019)

11. Matthews, B., Shaon, A., Bicarregui, J., Jones, C.: A framework for software preser-
vation. Int. J. Digit. Curation 5(1), 91-105 (2010)

12. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. Inf. Process. Manag. 40(5), 735-750 (2004)

13. Ounis, 1., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier:
a high performance and scalable information retrieval platform. In: SIGIR 2006
Workshop on Open Source IR (2006)

14. Salton, G.: The SMART Retrieval System-Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

15. Trotman, A., Jia, X.F., Crane, M.: Towards an efficient and effective search engine.
In: SIGIR 2012 Workshop on Open Source IR (2012)

	Reproducibility is a Process, Not an Achievement: The Replicability of IR Reproducibility Experiments
	1 Introduction
	2 Replication Study
	3 Lessons Learned
	4 Conclusions
	References

