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Abstract. ​Automatic classification of software requirements is an active         
research area; it ​can alleviate the tedious task of manual labeling and improves             
transparency in the requirements engineering process. ​Several attempts have         
been made towards the identification and classification by type of functional           
requirements (FRs) as well as non-functional requirements (NFRs). Previous         
work in this area suffers from misclassification. This study investigates issues           
with NFRs in particular the limitations of existing methods in the classification            
of NFRs. The goal of this work is to minimize misclassification and help             
stakeholders consider NFRs in early phases of development through         
automatically classifying requirements. In this study, we have proposed an          
improved requirement detection and classification technique. The following        
summarizes the proposed approach: 

A newly created labeled corpus.  
Textual semantics to augment user requirements by word2vec for automatically          

extracting features, and  
A convolution neural network-based multi-label requirement classifier that classifies         

NFRs into five classes: reliability, efficiency, portability, usability, and         
maintainability. 

Keywords:​ Non-functional requirements · Requirement engineering · Machine learning 
approaches · Natural language processing · Neural networks 
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1 Introduction 

 
Requirements originate from stakeholders in natural language [1]. Non-functional         
requirements (NFRs) are always associated with functional requirements (FRs) [2].          
While FRs describe the functions, tasks or behavior that a system must support [3],              
NFRs represent the particular qualities the systems must have. For a successful            
implementation, it is crucial to have comprehensive and transparent requirements for           
the identification of relevant constraints, assumptions, risks, and dependencies [4].          
Fulfillment of a single FR can lead to the achievement of one or more NFRs [5].                
NFRs are significant for the success of a software system [4]. However, literature             
suffers from both terminological and theoretical conflict [6]. Given the diversity of            
definitions of NFRs, stakeholders tend to disagree on important NFR attributes [7].            
Each NFR attribute is treated differently and requires specialized expertise [8], but            
due to lack of resources and engineering skills, these have not been effectively             
addressed, resulting in higher structural defects and project failure rates [9, 10]. The             
complexity of NFR concepts has led to the development of numerous automated and             
semi-automated classification methods based on natural language processing (NLP),         
rule-based (RB) approaches, and machine learning (ML) approaches [11]. However,          
these tools are naïve and exhibit misclassification [12]. The literature highlights           
concerns in this domain, described below.  

 
Limited in Generalizability 
 
The RB approach has limited generalizability [13]. Rules need to be manually            

crafted and enhanced all the time. Moreover, the system can become overly            
complicated with some rules beginning to contradict each other [14]. The u​se of             
keywords or certain vocabulary is correlated with specific NFR attributes ​[15]​.       
Furthermore, the RB approach is limited to defining rules for handling security,            
usability, and maintainability [14].

 

 

Limitation of Feature Selection Techniques 
 
The fit criteria for NFR identification and ML training lacks clarity ​[16]​. ​Mostly,     

syntactic feature part-of-speech (POS) tagging is used [13, 17–19]. Abad found that            
pre-processing improved the performance of an existing classification method [16].          
The second most common technique, Bag of Word (BOW) [17, 18, 20, 21], fails to               
maintain the sentence order and cannot deal with polysemy [22]. In comparison,            
n-grams feature can consider the word order in a close contest to its neighboring              
words [20, 23], but it also suffers from data scarcity [24]. However, it is observed that                
the semantic knowledge of sentences based on word2vec reach better classification           
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performance [5, 25]. In ML approach reliability, portability [26] and usability ​[16]            
have not been adequately addressed. 

 
Limited NFR Ontology 
 
Most of classification refers to functionality, availability, fault tolerance, legal,          

look and feel, maintainability, operational, performance, portability, scalability,        
security and usability. The NFR attributes chosen to be a part of existing studies are               
not the critical NFR attributes to be representative of its whole domain [27], leading              
to misclassification [5, 12]. 

 
Lack of Corpus 
 
To a large extent, ML techniques are dependent on training data [28]. They require              

a representative and balanced corpus which is currently lacking [17, 26]. The            
PROMISE dataset used in previous studies has misconceptions about requirements. A           
corpus with an unbalanced number of examples of a specific linguistic construction            
can cause an algorithm to apply a specific label more frequently than others, resulting              
in a bias in the classification results [29]. 

 
Limitation to Handle Multi-label Classification 
 
Peng [25] argues that one requirement could exhibit the characteristics of more            

than one attribute. In such a case, the classification should be made based on more               
than one label [29]. However, this has not been addressed. 

 
This study proposes a novel approach for handling the misclassification of           

NFRs based on multiple labels using deep learning techniques. The paper is            

organized as follows: Section 2 describes work related to NFRs and their            

classification; Section 3 illustrates a proposed conceptual framework; and         

finally, Section 4 details recommendations for further research. 

2 The Classification of NFRs 

 
This section presents work related to the detection and classification of NFRs.  
 

Cleland designed an NFR classifier which uses a fixed set of keywords to identify              
NFRs [30]. In another study by Cleland, first he describes the classification algorithm             
and then evaluates its effectiveness through a series of experi​ments and against a large              
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requirement document obtained from Siemens Logistics and Automotive        
Organization​ [21]. 

 
Hussain proposes a supervised automatic classifier with the use of syntactic and            

keyword features for information retrieval for classifying NFRs. The experiment was           
performed for binary as well as multi-class NFR classification with the hybrid training             
set [19]. 

 
Vlas and Robinson developed RCNL, a multilevel ontology in which the lower            

levels apply generic English grammar-based concepts while the upper, abstract levels           
apply OSS requirements-based concepts [13]. 

 
Ormandjieva proposes a supervised learning approach based on a support vector           

machine (SVM) for the classification of the requirement into ISO/IEC 9126 ontology            
classes using Wen ontology language (OWL). The ontology contains dependency          
relationship between FRs and NFRs, further an association of NFRs with           
subcategories has been highlighted. They also proposed gold standard annotated NFR           
corpus [31]. 

 
Slankas proposes an NFR locator to locate and classify 14 NFRs using ​k-nearest             

neighbors ​(K-nn), SVM and naïve Bayes algorithms. The tool resulted in various            
misclassification and suffered from generalizability issues. Slankas found that certain          
features are associated with specific NFR attributes [15]. 

 
Sharma suggests an approach to identify NFRs based on rules extracting multiple            

syntactic and semantic features and relationship among them through a          
domain-specific language. The approach was practiced on a publicly available          
requirement corpus [14]. 

 
Singh proposes automated identification and classification of NFRs, and subclasses          

based on the ISO 9126 quality model. The study proposes an RB classifier using the               
thematic role as well as identified the priority of the extracted NFRs according to their               
occurrence. The results were analyzed on two corpora. The PROMISE corpus           
contains higher-ranked sentences than the Concordia Corpus [32]. 

 
Casamayor suggests a semi-supervised approach based on user feedback,         

iteratively collecting data using an expectation maximization strategy to enable          
learning an initial classifier for NFRs. It uses a multinomial naïve Bayes classifier             
with expectation maximization (EM) for the initial training of requirement documents           
labeled manually to train the binary classifier [18]. 

 
Zhang uses three kinds of index terms at different levels of linguistic semantics, as              

n-grams, individual words, and multi-word expressions (MWE) are used in the           
representation of NFRs. Then, an SVM with the linear kernel is used as the classifier               
[23]. 
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Sunner proposes a supervised learning-based cluster technique requirement mining         

and classification of FR and NFRs in agile software development. In the study,             
k-means was used with the UPGMA classifier model, SVM was used with RBF             
kernel, and a neural network used with a genetic algorithm. The results show that a               
cluster neuro-genetic approach provides better results than the SVM and RBF kernel            
[17]. 

Mahmoud A. proposes an unsupervised approach that exploits the textual          
semantics of FRs to identify potential NFRs with a clustering algorithm. The            
experiment was performed on datasets from SafeDrink, SmartTrip, and BlueWallet          
[33]. 

 
Kurtanovic develops and evaluates a supervised machine learning approach         

employing meta-data, lexical, and syntactical features—in particular, usability,        
security, operational, and performance requirements [26]. 

 
Abad uses various feature extraction and feature selection techniques to maximize           

the accuracy of classification algorithms. This study was performed on the           
tera-PROMISE repository and shows that pre-processing improved the performance         
of an existing classification method [16]. 

 
Lu proposes an approach that uses textual semantics by word2vec for automatically            

classifying user reviews from two popular apps, iBooks and WhatsApp. The approach            
is used for classifying user reviews into NFRs with each user review sentence labeled              
as one type [25]. 

 
Younas came up with an automated semi-supervised semantic similarity-based         

approach that uses an application of the word2vec model and popular keywords for             
the identification of NFRs. The study as performed on the PROMISE-NFR dataset            
[5]. 

 
Baker made a first attempt to use a convolution neural network (CNN) and             

artificial neural network (ANN) for the classification of NFRs into five           
classes—maintainability, operability, performance, security, and usability—using an       
unsupervised approach. The experiment was performed on the PROMISE dataset. The           
resulting tool shows inexperience and lacks practicality [27].  

 

3 Handling the Misclassification of NFRs 

 
We have adopted a multi-label classification approach for handling misclassification.          
The proposed approach uses a CNN, which has proven to be successful for             
single-label classification [27]. A CNN has a clear advantage over traditional machine            



6 

learning algorithms as it can learn and generate dense vectors for word representation.             
Traditional machine learning algorithms tend to divide the multi-label problem into           
multiple binary classifications, whereas a CNN has the ability to learn multiple labels             
in one classifier. The experiment is a two-step procedure which is described in Fig. 1 

 

 

Fig. 1.​ -Conceptual framework for multi-label classification 

 

3.1 Step 1: Corpus Construction and Annotation 

 
In ​Fig. 1, the first step describes the multi-label corpus construction and annotation.             

The procedure starts with the identification of the critical NFR attributes—reliability,           
efficiency, portability, usability, and maintainability—based on the software quality         
model: McCall’s, Boehm’s, Dromey’s, ISO 9125/25010 and FURPS/FURPS+ [34].         
Various Software requirement specification (SRS) documents has been collected. The          
researcher manually extracts requirements related to the selected NFR attributes and           
records them in the form of a dataset. 

To overcome the limitations of the existing corpus and construction of a new             
corpus, we have followed a set of guidelines through the MATTER-MAMA           
framework proposed by Stubs [35]. We aim to have a representative and balanced             
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corpus which makes the corpus to be generalized to the domain it belongs to and               
contains roughly equal numbers of training examples of all attributes selected to be a              
part of this ontology.  

To have a labeled corpus, all the requirements related to the selected categories will              
be re-assessed by a crowd. For instance, a requirement related to efficiency may also              
be referred to usability. So, It will be labeled for both NFR classes. This minimizes               
the chances of mislabeling. Three annotators perform specification to the given           
dataset based on the guidelines and instruction [36]. 

The selection of annotators, annotation tool, and annotation scheme have all been            
performed through the MATER-MAMA framework under the supervision of the          
researcher. Step 1 delivers the outcome in the form of the multi-labeled corpus. 

3.2 Step 2:   Feature Extraction and CNN Training 

 
Step 2 involves designing a CNN for feature extraction and classification. This step             
takes the labeled corpus from the previous step, extracts features on word2vec, and             
trains a word-level CNN for multi-label text classification that uses libraries like            
TensorFlow and Keras. These libraries provide a set of tools for building neural             
network architecture.  

Whereas, the use of word2vec for word embeddings finds the semantic dependency            
and relatedness of the words in a requirement to determine class label(s). The CNN              
learns and generates dense vectors for word representation [37], which assumes that            
words with similar meanings occur in similar contexts [38]. Hence, predicts the labels             
with improved fit criteria for classification. 
 

4 Conclusion and Future Work 

 
This study provides a good starting point for handling misclassification with regards            
to NFRs. In this work, we have proposed a CNN based multi-label classifier to              
automatically classify stakeholder requirements into five classes of NFRs: reliability,          
usability, portability, maintainability, and efficiency. 

The adoption of the proposed tool will aid in manual effort and time invested in the                
management of NFRs. It will also result in practical benefits to stakeholders. The             
identification of hidden requirements, the reduction of misclassification, and timely          
detection of NFRs dependencies and conflicts will benefit stakeholders in the           
prioritization of requirements and management of resources. 

In a prospective course of action, we will bring the design and implementation             
details of the following: (1) a labeled corpus for NFRs and (2) a multi-label CNN               
based classifier trained on ​a representative and balanced corpus for improved training            
of the classifier on the basis of a broad ontology of NFR domain. 
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