Skip to main content

A Virtual Reality Approach to Automatic Blood Sample Generation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1160))

Abstract

Given the nature of the elements that make up blood, microscopes are fundamental to identifying blood cell morphology. These instruments are expensive and limited, and it is difficult to keep blood samples and their diversity in educational environments. We propose a solution based on virtual reality, that generates reliable blood samples using the automatic creation of images that simulate specific pathologies. We validated the proposal in three aspects: A method of adoption model, the validation of replicated samples and a performance test. The study and subsequent development of the mobile application were able to generate simulations of samples corresponding to a healthy adult and an adult with acute myeloid leukemia, where users can visualize, explore and obtain data on each of the elements that appear in the sample. This iteration not only verifies its technical feasibility but opens the way for future research on improving education or training processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hematología Adulto. http://www.clinicavespucio.cl/especialidad/hematologia-oncologia/. Accessed 15 Oct 2019

  2. Peña Amaro, J.: Competencias y habilidades en histología médica: el potencial formativo de la observación microscópica (2007)

    Google Scholar 

  3. Wu, D.-W., Li, Y.-M., Wang, F.: How long can we store blood samples: a systematic review and meta-analysis. EBioMedicine 24, 277–285 (2017). https://doi.org/10.1016/j.ebiom.2017.09.024

    Article  Google Scholar 

  4. Handsfield, H.H., Cummings, M.J., Swenson, P.D.: Prevalence of antibody to human immunodeficiency virus and hepatitis B surface antigen in blood samples submitted to a hospital laboratory: implications for handling specimens. JAMA 258, 3395–3397 (1987)

    Article  Google Scholar 

  5. Brereton, M., De La Salle, B., Ardern, J., Hyde, K., Burthem, J.: Do we know why we make errors in morphological diagnosis? an analysis of approach and decision-making in haematological morphology. EBioMedicine 2, 1224–1234 (2015). https://doi.org/10.1016/j.ebiom.2015.07.020

    Article  Google Scholar 

  6. Dee, F.R.: Virtual microscopy in pathology education. Hum. Pathol. 40, 1112–1121 (2009). https://doi.org/10.1016/j.humpath.2009.04.010

    Article  Google Scholar 

  7. Ahmed, L., Seal, L.H., Ainley, C., De la Salle, B., Brereton, M., Hyde, K., Burthem, J., Gilmore, W.S.: Web-based virtual microscopy of digitized blood slides for malaria diagnosis: an effective tool for skills assessment in different countries and environments. J. Med. Internet Res. 18, e213 (2016). https://doi.org/10.2196/jmir.6027

    Article  Google Scholar 

  8. Hande, A.H., Lohe, V.K., Chaudhary, M.S., Gawande, M.N., Patil, S.K., Zade, P.R.: Impact of virtual microscopy with conventional microscopy on student learning in dental histology. Dent. Res. J. 14, 111–116 (2017)

    Google Scholar 

  9. Carlson, A.M., McPhail, E.D., Rodriguez, V., Schroeder, G., Wolanskyj, A.P.: A prospective, randomized crossover study comparing direct inspection by light microscopy versus projected images for teaching of hematopathology to medical students (2014). http://dx.doi.org/10.1002/ase.1374

  10. Zumberg, M.S., Broudy, V.C., Bengtson, E.M., Gitlin, S.D.: Preclinical medical student hematology/oncology education environment. J. Cancer Educ. 30, 711–718 (2015). https://doi.org/10.1007/s13187-014-0778-8

    Article  Google Scholar 

  11. Sun, G.C., Wang, F., Chen, X.L., Yu, X.G., Ma, X.D., Zhou, D.B., Zhu, R.Y., Xu, B.N.: Impact of virtual and augmented reality based on intraoperative magnetic resonance imaging and functional neuronavigation in glioma surgery involving eloquent areas (2016). http://dx.doi.org/10.1016/j.wneu.2016.07.107

  12. Ha, W., Yang, D., Gu, S., Xu, Q.-W., Che, X., Wu, J.S., Li, W.: Anatomical study of suboccipital vertebral arteries and surrounding bony structures using virtual reality technology. Med. Sci. Monit. 20, 802–806 (2014). https://doi.org/10.12659/MSM.890840

    Article  Google Scholar 

  13. Russel, A.B.M., Abramson, D., Bethwaite, B., Dinh, M.N., Enticott, C., Firth, S., Garic, S., Harper, I., Lackmann, M., Schek, S., Vail, M.: An abstract virtual instrument system for high throughput automatic microscopy. Procedia Comput. Sci. 1, 545–554 (2010). https://doi.org/10.1016/j.procs.2010.04.058

    Article  Google Scholar 

  14. Kent, M.N., Olsen, T.G., Feeser, T.A., Tesno, K.C., Moad, J.C., Conroy, M.P., Kendrick, M.J., Stephenson, S.R., Murchland, M.R., Khan, A.U., Peacock, E.A., Brumfiel, A., Bottomley, M.A.: Diagnostic accuracy of virtual pathology vs traditional microscopy in a large dermatopathology study. JAMA Dermatol. 153, 1285–1291 (2017). https://doi.org/10.1001/jamadermatol.2017.3284

    Article  Google Scholar 

  15. Media, U.: Lichtman’s Atlas of Hematology - Apps en Google Play. https://play.google.com/store/apps/details?id=com.usatineMediaLLC.atlasHematology&hl=es_CL. Accessed 15 Oct 2019

  16. Puzzles, K.: Hematology quiz App - Apps en Google Play. https://play.google.com/store/apps/details?id=com.keywordpuzzles.microbiologyapp&hl=es_CL. Accessed 15 Oct 2019

  17. Eolas Technologies Inc: AnatLab Histology - Aplicaciones en Google Play. https://play.google.com/store?hl=es. Accessed 23 Oct 2019

  18. Fishbein, M.A., Ajzen, I.: Belief, Attitude, Intention and Behaviour: An Introduction to Theory and Research. Addison-Wesley, Boston (1975). Reading

    Google Scholar 

  19. Moody, D.: Dealing with complexity: a practical method for representing large entity relationship models (2001)

    Google Scholar 

  20. Fernandez, O.N.C.: Un procedimiento de medición de tamaño funcional para especificaciones de requisitos (2007). https://dialnet.unirioja.es/servlet/tesis?codigo=18086&orden=0&info=link&info=link

  21. Clark Brelje, T., Sorenson, R.L.: MH 033hr Blood Smear. http://www.histologyguide.com/slideview/MH-033hr-blood-smear/07-slide-2.html?x=1704&y=6268&z=44.0&page=1. Accessed 15 Oct 2019

  22. Bhavnani, S.P., Parakh, K., Atreja, A., Druz, R.: Roadmap for innovation—ACC health policy statement on healthcare transformation in the era of digital health, big data, and precision health: a report of of the american college of cardiology task force on health policy statements and systems of care. J. Am. Coll. Cardiol. 70, 2696–2718 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project was initiated thanks to the “Multidisciplinary Research Contest for students - Experimentando 2.0 - organized by the Macrofacultad de Ingeniería, Universidad de La Frontera, Universidad del Bio-Bio and Universidad de Talca, 2018. The authors would like to thank all the participants of the “vNanoscope” initiative: Pablo Acuña, Matias Hernandez, Joaquin Gebauer, Diego Acuña y Jaime Díaz, all from the Universidad de La Frontera. This work was (partially) financed by the Dirección de Investigación, Universidad de La Frontera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz, J., Arango-López, J., Sepúlveda, S., Ahumada, D., Moreira, F., Gebauer, J. (2020). A Virtual Reality Approach to Automatic Blood Sample Generation. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1160. Springer, Cham. https://doi.org/10.1007/978-3-030-45691-7_21

Download citation

Publish with us

Policies and ethics