Skip to main content

Machine Learning and Data Networks: Perspectives, Feasibility, and Opportunities

  • Conference paper
  • First Online:
Book cover Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1160))

Included in the following conference series:

Abstract

Currently, Machine Learning has become a research trend around the world and its application is being studied in most fields of human work where it is possible to take advantage of its potential. Current computer networks and distributed computing systems are key infrastructures that have allowed the development of efficient computing resources for Machine Learning. The benefits of Machine Learning mean that the data network itself can also use this promising technology. The aim of the study is to provide a comprehensive research guide on networking (networking) assisted by machine learning to help motivate researchers to develop new innovative algorithms, standards, and frameworks. This article focuses on the application of Machine Learning for Networks, a methodology that can stimulate the development of new network applications. The article presents the basic workflow for the application of Machine Learning technology in the field of networks. Then, there is also a selective inspection of recent representative advances with explanations of its benefits and its design principles. These advances are divided into several network design objectives and detailed information on how they perform at each step of the Machine Learning Network workflow is presented. Finally, the new opportunities presented by the application of Machine Learning in the design of networks and collaborative construction of this new interdisciplinary field are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipourfard, O., Yu, M.: CherryPick: adaptively unearthing the best cloud configurations for big data analytics, 15 (2017)

    Google Scholar 

  • Chen, J.X.: The evolution of computing: AlphaGo. Comput. Sci. Eng. 18(4), 4–7 (2016). https://doi.org/10.1109/MCSE.2016.74

    Article  Google Scholar 

  • Chen, Z., Wen, J., Geng, Y.: Predicting future traffic using Hidden Markov Models. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP), pp. 1–6 (2016). https://doi.org/10.1109/ICNP.2016.7785328

  • Clark, D.D., Partridge, C., Ramming, J.C., Wroclawski, J.T.: A knowledge plane for the internet. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 3–10 (2003). https://doi.org/10.1145/863955.863957

  • Cunha, Í., Marchetta, P., Calder, M., Chiu, Y.-C., Schlinker, B., Machado, B.V.A., Katz-Bassett, E.: Sibyl: a practical internet route Oracle. In: Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, pp. 325–344. Recuperado de (2016). http://dl.acm.org/citation.cfm?id=2930611.2930633

  • Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: Re-architecting congestion control for consistent high performance, p. 15 (2015)

    Google Scholar 

  • IETF - Internet Engineering Task Force: IETF97-NMLRG-20161117-1330. Recuperado de (2016). https://www.youtube.com/watch?v=XORRw6Sqi9Y

  • Jiang, J., Sekar, V., Milner, H., Shepherd, D., Stoica, I., Zhang, H.: CFA: a practical prediction system for video QoE optimization, 15 (2016)

    Google Scholar 

  • Jiang, J., Sun, S., Sekar, V., Zhang, H.: Pytheas: enabling data-driven quality of experience optimization using group-based exploration-exploitation, 15 (2017)

    Google Scholar 

  • Kato, N., Fadlullah, Z.M., Mao, B., Tang, F., Akashi, O., Inoue, T., Mizutani, K.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2017). https://doi.org/10.1109/MWC.2016.1600317WC

    Article  Google Scholar 

  • Mao, B., Fadlullah, Z.M., Tang, F., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning. IEEE Trans. Comput. 66(11), 1946–1960 (2017). https://doi.org/10.1109/TC.2017.2709742

    Article  MathSciNet  MATH  Google Scholar 

  • Mao, B., Fadlullah, Z.M., Tang, F., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  • Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning, pp. 50–56 (2016). https://doi.org/10.1145/3005745.3005750

  • Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M., Cabellos, A.: Knowledge-defined networking. SIGCOMM Comput. Commun. Rev. 47(3), 2–10 (2017). https://doi.org/10.1145/3138808.3138810

    Article  Google Scholar 

  • Poupart, P., Chen, Z., Jaini, P., Fung, F., Susanto, H., Geng, Y., Jin, H.: Online flow size prediction for improved network routing. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP), pp. 1–6 (2016). https://doi.org/10.1109/ICNP.2016.7785324

  • Sun, Y., Yin, X., Jiang, J., Sekar, V., Lin, F., Wang, N., Sinopoli, B.: CS2P: improving video bitrate selection and adaptation with data-driven throughput prediction. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp. 272–285. ACM (2016)

    Google Scholar 

  • Winstein, K., Balakrishnan, H.: TCP ex machina: computer-generated congestion control. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 123–134 (2013). https://doi.org/10.1145/2486001.2486020

  • Zhang, J., Chen, X., Xiang, Y., Zhou, W., Wu, J.: Robust network traffic classification. IEEE/ACM Trans. Netw. 23(4), 1257–1270 (2015). https://doi.org/10.1109/TNET.2014.2320577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Molina-Granja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lozada-Yánez, R., Molina-Granja, F., Lozada-Yánez, P., Guaiña-Yungan, J. (2020). Machine Learning and Data Networks: Perspectives, Feasibility, and Opportunities. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1160. Springer, Cham. https://doi.org/10.1007/978-3-030-45691-7_26

Download citation

Publish with us

Policies and ethics